
2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2010
Übung 3 (Abgabe bis 10.05.2010)

aaProf. Dr. Ir. Joost-Pieter Katoen Jonathan Heinen, Sabrina von Styp

Hinweise:

• Die Übungsblätter sollen in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung bearbeitet
werden.

• Die Lösungen müssen bis Montag, den 10. Mai um 11:00 Uhr in den entsprechenden Übungskasten einge-
worfen werden. Sie finden die Kästen am Eingang Halifaxstr. des Informatikzentrums (Ahornstr. 55).

• Namen und Matrikelnummern der Studenten sowie die Nummer der Übungsgruppe sind auf jedes Blatt der
Abgabe zu schreiben. Heften bzw. tackern Sie die Blätter!

• Bitte beachten Sie, dass am 4. Mai wegen der Fachschaftsvollversammlung von 10:00 - 14:00 Uhr keine
Übungen stattfinden. Die Ausweichtermine wurden per Email den betroffenen Studierenden mitgeteilt.

Aufgabe 1 (Maximale Laufzeit): (8 Punkte)

Geben Sie einen Algorithmus an, der in O(n) für eine Folge von n ganzen Zahlen (gegeben als Array) eine maximale
Teilfolge findet. Eine Teilfolgen wird hierbei von beliebig vielen (maximal n) aufeinanderfolgender Zahlen gebildet.
Sie ist maximal, wenn die Summe ihrer Elemente maximal ist, d.h. wir suchen aus allen möglichen Teilfolgen eine
mit maximaler Summe.
Die Teilfolge soll dabei als Startindex, Endindex sowie Summe der Folge ausgegeben werden. Die Eingangsfolge

12, −34, 56, −5, −6, 78, −32, 8

liefert beispielsweise die Indizes 3 und 6 sowie die Summe 56− 5− 6 + 78 = 123.

Aufgabe 2 (Baumtraversierung): (3+4+3 Punkte)

a) Geben Sie jeweils das Ergebnis der in-, pre- und post-order Traversierung des folgenden Baumes an:

5

3

4 8

7

2

4

1

b) Bestimmen Sie zu den folgenden Paaren von Linearisierungen den jeweils zugehörigen Baum:

(i) in-order: 8 4 5 7 1 2 6 9 3 (ii) in-order: 3 2 6 1 5 4 7 9 8
pre-order: 1 4 8 7 5 3 6 2 9 post-order: 3 6 1 2 4 8 9 7 5

c) Geben Sie ein minimales Beispiel für zwei unterschiedliche Bäume an, die sowohl die gleicher pre- als auch
post-order Linearisierung besitzen. Minimal bedeutet hier mit der kleinstmöglichen Anzahl von Elementen
wobei jedes Element maximal einmal pro Baum enthalten sein darf.

1



2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2010
Übung 3 (Abgabe bis 10.05.2010)

Aufgabe 3 (Analyse rekursiven Codes): (3+3+3 Punkte)

Geben Sie für die folgenden Programme die Laufzeitkomplexität als Rekursionsgleichung in Abhängigkeit des Ein-
gabeparameters n an:

a)
int berechne1(int n){

int sum = 0;

for(int i = 0; i < n/2; i++){
sum += 2*i - 1;

}
if(n <= 0)

return sum;
else

return sum + 4 * berechne1(n-1) + 5;
}

b)
int berechne2(int n){

if(n <= 0)
return n*n;

int wert = berechne2(n-3) * (berechne2(n-3) + 2);

for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){

sum += i - j;
}

}
return wert * berechne2(n-3);

}

c)
int berechne3(int n){

if(n <= 0)
return 5;

else
return berechne3(n-1) * berechne3(n-2) * berechne3(n-4);

}

Aufgabe 4 (Rekursionsgleichungen): (3+3+3+3 Punkte)

a) Zeigen Sie mit Hilfe der Substitutionsmethode, dass für T (n) = 2 · T (
√
n) + log2n mit T (1) = 1 gilt, dass

T (n) = log2n · log2log2n

b) Raten Sie die Komplexitätsklasse von T (n) = 2 · T (n/2) + 4 · T (n/4) + n mit T (1) = 1 und zeigen Sie mit
Hilfe der Substitutionsmethode die Korrektheit Ihrer geratenen Lösung.

c) Raten Sie mit Hilfe des entsprechenden Rekursionsbaum die Komplexitätsklasse zu T (n) = 3·T (n−1)+3n+5
mit T (1) = 1 und zeigen Sie mit Hilfe der Substitutionsmethode die Korrektheit Ihrer geratenen Lösung.

d) Nutzen sie die Methode der Variablentransformation um die exakte Lösung der Rekursionsgleichung T (n) =
T (
√
n) + 1 mit T (1) = 1 zu bestimmen.

2


