
2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2010
Übung 8 (Abgabe bis 21.06.2010)

aaProf. Dr. Ir. Joost-Pieter Katoen Jonathan Heinen, Sabrina von Styp

Hinweise:

• Die Übungsblätter sollen in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung bearbeitet
werden.

• Die Lösungen müssen bis Montag, den 21. Juni um 11:00 Uhr in den entsprechenden Übungskasten einge-
worfen werden. Sie finden die Kästen am Eingang Halifaxstr. des Informatikzentrums (Ahornstr. 55).

• Namen und Matrikelnummern der Studierenden sowie die Nummer der Übungsgruppe sind auf jedes Blatt
der Abgabe zu schreiben. Heften bzw. tackern Sie die Blätter!

• An den Freitagen 18. und 25. Juni findet, keine Vorlesung statt.

• Die Globalübung am 14. Juni findet ausnahmsweise im Raum H218 (Intzestrasse 5) statt.

Aufgabe 1 (Hashing): (4 + 12 + 2 + 2 + 2 Punkte)

In einem kleinen Studentenkino mit m = 23 Plätzen wird ein Film gezeigt. Um dem Ansturm Herr zu werden,
sollen die Plätze mit einem offenen Hashverfahren auf die Wartenden verteilt werden. Als Schlüssel werden dabei
nur die beiden letzten Ziffern der Matrikelnummer verwendet. Betrachten Sie die folgenden beiden Hashfunktionen:

• h1(x) := Quersumme von x

• h2(x) := x mod 23 (Division-Rest-Methode)

a) Diskutieren Sie, inwieweit h1 und h2 die Bedingungen, die an eine sinnvolle Hashfunktion gestellt werden,
erfüllen.

b) Welche Platznummern erhalten die Besucher, wenn sie in der gegebenen Reihenfolge das Kino betreten?

6, 16, 61, 87, 69, 90, 4, 43, 57, 4, 12, 80, 46

Verwenden Sie jeweils folgende Hashfunktionen:

(i) lineares Sondieren mit h1 und mit h2 als Hashfunktion

(ii) quadratisches Sondieren mit h1 und mit h2 als Hashfunktion und mit c1 = 2 und c2 = 3 als Konstanten,

(iii) Doppelhashing mit h1 als erster und h2 als zweiter Hashfunktion. Inwieweit muss h2 geändert werden,
um Probleme zu vermeiden?

c) Warum ist ein geschlossenes Hashing, in dem geschildertem Szenario, nicht praktikabel bzw. sinnvoll?

d) Angenommen wir haben eine perfekte Hashfunktion und fügen die obigen Elemente in einen Hash der Größe
23 ein. Wieviele Sondierungen sind dann durchschnittlich bei erfolgreicher Suche nötig?

e) Angenommen wir haben eine perfekte Hashfunktion und fügen die obigen Elemente in einen Hash der Größe
23 ein. Wieviele Sondierungen sind dann durchschnittlich bei nicht erfolgreicher Suche nötig?

1



2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2010
Übung 8 (Abgabe bis 21.06.2010)

Aufgabe 2 (gutes Hashing): (5 Punkte)

Diskutieren Sie, welche Eigenschaften eine gute Hashfunktion für Strings haben sollte. Es sei m die Größe der
Hashtabelle und s = a1a2 . . . an ein String, wobei wir die Zeichen mit ihren ASCII-Codes identifizieren. Wie gut
sind die folgenden drei Hashfunktionen:

(

n∑
k=1

ak) mod m (

n∑
k=1

k · ak) mod m a
a
a3
2

1 mod m

Aufgabe 3 (Countingsort): (6 + 2 Punkte)

a) Das folgendes Array ist mit Countingsort zu sortieren. Geben Sie das Histogramm- und das Positionsarray vor
dem ersten Einfügen ins Ausgabearray an, sowie das Positions- und Ausgabearray nach jedem Einfügeschritt.

4 3 0 1 4 2 3 7 3

b) Der in der Vorlesung vorgestellte Algorithmus Countingsort fügt die Elemente des Eingabearrays von hinten
nach vorne in das Ausgabearray ein. Welche Nachteile ergäben sich, wenn man das Eingabearray stattdessen
von vorne nach hinten durchlaufen würde?

2


