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Ubersicht Algorithmen

@ Was sind Algorithmen?

@ Algorithmen und Datenstrukturen ] o . . .
o Effizienz von Algorithmen Ein wohldefinierte Rechenvorschrift um ein Problem durch ein

Computerprogramm zu Idsen.

Algorithmus

Beispiel (Algorithmen)

Quicksort, Heapsort, Lineare und Binare Suche, Graphalgorithmen.

Lost ein Rechenproblem, beschrieben durch:
» die zu verarbeitenden Eingaben (Vorbedingung / precondition),
» die erwartete Ausgabe (Nachbedingung / postcondition).

mithilfe von einer Folge von Rechenschritten.
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Beispiel Rechenproblem: Sortieren

Eingabe: Eine Folge von n natiirlichen Zahlen (a;, ap, ..., a,) mit
aj € N.

Ausgabe: Eine Permutation (Umordnung) (b1, by, ..., bp) der
Eingabefolge, sodass by < by < ... < b,.
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Andere Rechenprobleme: kiirzester Weg
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Andere Rechenprobleme: kiirzester Weg
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Andere Rechenprobleme: kiirzester Weg

Beispiel (kiirzester Weg)

Eingabe: 1. Eine StraBenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,
2. eine Startkreuzung s, und
3. eine Zielkreuzung z.

Ausgabe: Der kiirzeste Weg von s nach z.
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Andere Rechenprobleme: maximale Fliisse Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse
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Andere Rechenprobleme: maximale Fliisse

Beispiel (maximale Fliisse)

Eingabe: 1. Eine StraBenkarte, auf der die Kapazitat der StraBen
eingezeichnet ist,
2. eine Quelle, und
3. eine Senke.
Ausgabe: Die maximale Rate, mit der Material (= Zuschauer) von der
Quelle bis zur Senke (= Stadion) transportiert werden kann,
ohne die Kapazitatsbeschrankungen der Straen zu verletzen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/52



Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: das CD-Brennproblem
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Andere Rechenprobleme: das CD-Brennproblem

Beispiel (CD-Brennproblem)

Eingabe: 1. N € N Songs, Song i dauert 0 < n; < 80 Minuten,
2. k € N CDs, jeweils mit Kapazitat: 80 Minuten.
Ausgabe: k CDs gefiillt mit einer Auswahl der N Songs, so dass

1. die Songs in chronologische Reihenfolge vorkommen,
und

2. die totale Dauer der (verschiedenen) ausgewahlten
Songs maximiert wird,

wobei ein Song komplett auf eine CD gebrannt werden soll.
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Andere Rechenprobleme: das CD-Brennproblem

Betrachte alle Schallplatten von Nina Hagen:

r‘_qendwc Auf Der EE|1 Return Of The
Mother
Freud Euch . Revolution Ballroom M Street
E i Nina Hagen a.z.i'

PR Fearless (Brazilian
E" il Edition)

g Nina Hagen Band
=

Wie bekommen wir eine Kompilation ihrer Songs auf einige CDs?

Bee Happy

1In Ekstasy {English

unbe! Unbehagen
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Algorithmen

Kernpunkte

» Korrektheit: Bei jeder Eingabeinstanz stoppt der Algorithmus mit der
korrekten Ausgabe

» Eleganz

» Effizienz: wieviel Zeit und Speicherplatz wird bendtigt?

|
Effiziente Algorithmen verwenden effektive Datenstrukturen
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Datenstrukturen

Datenstruktur

Ein mathematisches Objekt zur Speicherung von Daten.

|
Es handelt sich um eine Struktur, weil die Daten in einer bestimmten Art
und Weise angeordnet und verkniipft werden, um den Zugriff auf sie und
ihre Verwaltung geeignet und effizient zu ermoglichen.

Beispiele (Datenstrukturen)

Array, Baum, Kellerspeicher (stack), Liste,
Warteschlange (queue), Heap, Hashtabelle ...
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Effizienz von Algorithmen — Elementare Operation

Die Analyse hangt von der Wahl der elementaren Operationen ab, etwa:
> Vergleich zweier Zahlen" beim Sortieren eines Arrays von Zahlen.

» , Multiplikation zweier FlieBkommazahlen* bei Matrixmultiplikation.

Elementare Operationen

> Anzahl der elementaren Operationen sollte eine gute Abschatzung fiir
die Anzahl der Gesamtoperationen sein.

» Anzahl der elementaren Operationen bildet die Basis zur Bestimmung
der Wachstumsrate der Zeitkomplexitat bei immer langeren Eingaben.
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Effizienz von Algorithmen — Kriterien

Wichtige Kriterien sind (fiir eine bestimmte Eingabe):
> die bendtigte Zeit, Zeitkomplexitat

> der bendétigte Platz. Platzkomplexitat
Zeitkomplexitat # Platzkomplexitat £ Komplexitat des Algorithmus

Beurteilung der Effizienz von Algorithmen unabhangig von

» verwendetem Computer, Programmiersprache,
Fahigkeiten des Programmierers, usw.
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Effizienz von Algorithmen — Beispiele

Technologie fithrt nur zu Verbesserung um einen konstanten Faktor:

Selbst ein Supercomputer kann einen ,,schlechten® Algorithmus nicht
retten: Fir geniigend groBe Eingaben gewinnt immer der schnellere
Algorithmus auf dem langsameren Computer.

Typische Laufzeiten (bis auf einen konstanten Faktor) fiir Eingabelange n:

1 konstant n-logn
logn logarithmisch | n? quadratisch
n linear 2" exponentiell
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Zeitkomplexitat in der Praxis |

Beispiel (Tatsachliche Laufzeiten)

Komplexitat
Lange n 33n 46nlogn 13n? 3,4n3 2"
10 0,00033s 0,0015s 0,0013s 0,0034s 0,001s
10> 0,0033s 0,03s 0,13s 3,4s 4.10%y
103 0,033s 0,45s 13s 0,94h
10* 0,33s 6,1s 1300s 39d
10° 3,3s 1,3m 1,5d 108y

Benotigte Zeit (s = Sekunde, h = Stunde, d = Tag, y = Jahr)

» Der Einfluss groBer konstanter Faktoren nimmt mit wachsendem n ab.
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Schnellere Computer. ..

Sei N die groBte Eingabeldange, die in fester Zeit geldst werden kann.

Wie verhalt sich N, wenn wir einen K-mal schnelleren Rechner verwenden?

#Operationen

benoétigt fur Eingabe Grahte lshare

Eingabelange

der Lange n
log n NK
n K-N
n? VK-N
2" N+ log K
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Zeitkomplexitat in der Praxis Il

Beispiel (GroBte losbare Eingabelange)

Komplexitat
Verfligbare Zeit 33n 46nlogn  13n®> 3,4n% 27
ls 30000 2000 280 67 20

1m 1800000 82000 2170 260 26
1h 108000000 1180800 16818 1009 32

GroBte losbare Eingabeldange

» Eine 60-fach langere Eingabe lasst sich nicht durch um den Faktor 60
langere Zeit (oder hohere Geschwindigkeit) bewaltigen.
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Ubersicht

© Average, Best und Worst Case Laufzeitanalyse
@ Lineare Suche
@ Average-Case Analyse von linearer Suche
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Idee Beispiel
Wir betrachte einen gegebenen Algorithmus A.
Worst-Case Laufzeit W(n)

Die Worst-Case Laufzeit von A ist die von A maximal bendtigte Anzahl
elementaren Operationen auf einer beliebigen Eingabe der Lange n.

A(n)
Best-Case Laufzeit
Die Best-Case Laufzeit von A ist die von A minimal bendtigte Anzahl
elementaren Operationen auf einer beliebigen Eingabe der Lange n.
Average-Case Laufzeit B(n)

Die Average-Case Laufzeit von A ist die von A durchschnittlich bendtigte
Anzahl elementaren Operationen auf einer beliebigen Eingabe der Lange n.

Laufzeit

Eingabelange n
Dies sind alle Funktionen: Laufzeit in Abhangigkeit von der Eingabelange!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/52 Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/52
" e e « e ..
Formale Definition (1) Formale Definition (1)

Einige hilfreiche Begriffe Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal bendtigte Anzahl

Dn = Menge aller Eingaben der Lange n elementaren Operationen auf einer beliebigen Eingabe der Lange n:

t(/) = fir Eingabe I benétigte Anzahl elementarer Operationen W(n) = max{ t(/) | I € D, }.
Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Best-Case Laufzeit

Woher kennen wir: Die Best-Case Laufzeit von A ist die von A minimal benétigte Anzahl elementaren

£()? - Durch Analyse des fraglichen Algorithmus. Operationen auf einer beliebigen Eingabe der Lange n:

Pr(/)? — Erfahrung, Vermutung (z. B. ,alle Eingaben treten mit gleicher B(n) = min{t(/) | | € D, }.
Wabhrscheinlichkeit auf").
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Formale Definition (1)

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich benétigte Anzahl
elementaren Operationen auf einer beliebigen Eingabe der Lange n:

A(n) = > Pr(l)-t()

€Dy,
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Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn X == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.

» A(n) ~ %n, da im Schnitt X mit etwa der Halfte der Array E
verglichen werden muss? — Nein.
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Lineare Suche

Rechenproblem

Eingabe: Array E mit n Eintradgen, sowie das gesuchte Element K.

Ausgabe: Ist K in E enthalten?

1 bool linSearch(int E[], int n, int K) {

2 for (int index = 0; index < n; index ++) {
3 if (E[index] == K) {
4 return true; // oder: return indezx;
5 3
6
7 return false; // nicht gefunden
8}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/52

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. X kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akeg(n) die Average-Case-Laufzeit fir den Fall "K in E".

|
A(n) = Pr{K in E} - Akce(n) + Pr{K nicht in E} - Axgze(n)
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[ 1] . (1] .
Der Fall "k in E Ableitung

» Nehme an, dass alle Elemente in E unterschiedlich sind.
A(n) = Pr{K in E} - Akce(n) + Pr{K nicht in E} - Axge(n)

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich % 1
n
» Die Anzahl benétigte Vergleiche im Fall K == E[i] ist i+1. Axee(n) = ——
. . - 1
> Damit ergibt sich: = Pr{K in E} - —n—; + Pr{K nicht in E} - Axge(n)
n—1 .
Akee(n) = Pr{k == E[i][K in E} - t(K == E[i]) | Prinicht Biz 1 - PriB}
= — Pr{K in E} - ”7 + (1= Pr{K in E}) - Axge(n)
-2 (n> D) | Axge(n) =n
i=0 n+1
_ (1).”2‘:1(1_“) =Pr{Kin E} - =5~ + (1~ Pr{k in E}) - n
n ‘
1 nl(?—?-l)
— (1). 1 1
_ SL) ? =n (1 ~5 Pr{K in E}) + 5 Pr{K in E}
= o
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Lineare Suche — Average-Case-Analyse Ubersicht

Endergebnis

Die Average-Case-Zeitkomplexitat von linearer Suche ist:

A(n) = n- (1 - % Pr{K in E}> + % Pr{K in E}

Beispiel

Wenn Pr{K in E} © Organisatorisches

=1, dann A(n) = 2£1, d.h. etwa 50% von E ist iiberpriift. e Ubersicht
= 0, dann A(n) = n= W(n), d.h. E wird komplett tiberprift. o Ubungsbetrieb
— % dann A(n) = %” 4 %, d.h. etwa 75% von E wird tberprift. © Prifung
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Ubersicht (Teil 1)

1. Algorithmische Komplexitat
2. Asymptotische Effizienz
3. Elementare Datenstrukturen
4. Suchen
5. Rekursionsgleichungen
6. Sortieren: in-situ, Mergesort, Heapsort, Quicksort
7. Binare Suchbaume
8. Rot-schwarz Baume
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Literatur
Die Vorlesung orientiert sich im Wesentlichen an diesem Buch:
"t l‘
Algorithmen -
. Eine Einfiih
Thomas H. Cormen, Charles E. Leiserson, Edeicliol MY
Ronald Rivest, Clifford Stein:
Algorithmen - Eine Einfithrung
R. Oldenbourg Verlag , 2. Auflage 2007. ‘
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Ubersicht (Teil I1)

Hashing

Elementare Graphenalgorithmen
Minimale Spannbdume
Kiirzeste Pfadalgorithmen
Maximaler Fluss

Dynamische Programmierung
B-Baume

© No ok b

Algorithmische Geometrie
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Wichtige Termine

Vorlesungstermine

Vorlesung: Di. 14:00-15:30, Fr. 14:00-15:30, GroBer Horsaal (Audimax)
Keine Vorlesung am 14. Mai und 1. Juni.
Letzte Vorlesung am 23. Juli.
Frontaliibung: Mo. 14:00-15:30, AH IV (Informatikzentrum)

Erste Frontaliibung: Mo. 26. April
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Ubungsbetrieb Ubungsbetrieb
» 15 Ubungsgruppen: verschiedene Uhrzeiten am Mo.—Mi. Ubungszettel: Freitags ab 18:00 im Web
> Spezialiibung fiir Lehramtsstudenten Erster Ubungszettel: 16. April 2010
> 4 Ubungsgruppen fiir Erstsemester Abgabe Ubungszettel: Montags vor 11:00 Uhr im Sammelkasten
» Koordinatoren: Jonathan Heinen, Sabrina von Styp und Haidi Yue. (Lehrstuhl i2) oder am Anfang der Ubungsstunde.

Erste Ubungsabgabe: Montag, 26. April 2010
Ubungszeiten: Montag, Dienstag oder Mittwoch
Anmeldung zum Ubungsbetrieb iiber CAMPUS-Office bis spatestens Erste Ubungen: 17. Kalenderwoche: 26.—30. April 2010
Mittwoch, 21.04., 12 Uhr (Aachener Zeit) Frontaliibung: Montags, 14:00-15:30 (AH 1V) ab 26. April
Prasenziibung: Montag, 28. Juni 2010 (13:45-15:30, AH 1V)

> moglichst viele Prioritaten angeben
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Priifung Sonstiges

Die Priifung ist eine schriftliche Klausur von 120 Minuten. Mehr Information
Zulassungskriterium Klausur > Webseite: http://moves.rwth-aachen.de/i2/dsal10/

1. Mindestens 50% aller in den Ubungen erreichbaren Punkte, und
» Diskussionsforum:

2. mindestens 50% der in der Prasenziibung erreichbaren Punkte. e e e Y ey A e oY

CES-Studenten brauchen kein Zulassungskriterium zu erfiillen.

Wichtige Termine » Oder: http://www.infostudium.de/

Prasenziilbung: Montag, 28. Juni 2010 (13:45-15:30, AH 1V)
Klausur: Dienstag, 10. August 2010 (vormittags)
Wiederholungsklausur: Montag, 20. September 2010 (nachmittags)

» E-Mail: dsal@informatik.rwth-aachen.de
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