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Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fir jede Eingabeldnge an.
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Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fir jede Eingabeldnge an.

Worst-Case Laufzeit

Die Worst-Case Laufzeit W/(n) fir Eingabelénge n ist die langste Laufzeit
aus allen Eingaben mit Lange n.
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Asymptotische Effizienz Asymptotische Betrachtung

Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fir jede Eingabeldnge an.

Worst-Case Laufzeit

Die Worst-Case Laufzeit W/(n) fir Eingabelénge n ist die langste Laufzeit
aus allen Eingaben mit Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit B(n) fir Eingabeldnge n ist die kiirzeste Laufzeit
aus allen Eingaben mit Lange n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iblicherweise sehr schwierig.
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Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:
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iiblicherweise sehr schwierig. AuBerdem:

» ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.
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iiblicherweise sehr schwierig. AuBerdem:

» ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung
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» Betrachte Wachstum der Laufzeit fir n — oo.
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Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

» ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fiir n — oo.

» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
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Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fir n — oo.
» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B.:
W(n) = 3n* +5n% + 10 € O(n*)
(d. h. n* ist dominierender Faktor fiir n — o)
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Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

» ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fir n — oo.
» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B.:
W(n) = 3n* +5n% + 10 € O(n*)
(d. h. n* ist dominierender Faktor fiir n — o)
» So erhalten wir untere/obere Schranken fiir A(n), B(n) und W(n)!

» Mathematische Zutat: Asymptotische Ordnung von Funktionen.
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Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, xp, .. .. Dann: .

1. liminfx, = Ilim (inf xm)

n—o00 n—oo \ m>=n

2. limsupx, = lim | sup xn
N—00 n—00 \ m>p
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Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, xp, .. .. Dann: .
1. liminfx, = Ilim (inf xm)
n—o00 n—oo \ m>=n
5 . » n
2. limsupx, = lim | sup xn
N—00 n—=00 \ ;m>n

Einige Fakten

1. Existieren liminf x, und limsup x,: liminf x, < limsup x,.
n—00 n—o00 n—00 n—00

2. Existiert lim x, dann: liminfx, = limsupx, = lim x,.
n— 00 n— 00 N—00 n— 00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, xp, .. .. Dann:
1. liminfx, = Ilim (inf xm)
n—o00 n—oo \ m>=n
. . » n
2. limsupx, = lim | sup xn
N—00 n—=00 \ ;m>n

Einige Fakten

1. Existieren liminf x, und limsup x,: liminf x, < limsup x,.
n—o0 (0.0

n—00 = n—00
2. Existiert lim x, dann: liminfx, = limsupx, = lim x,.
n— 00 n— 00 N—00 n— 00
. |
/
n n
Sind f, g differenzierbar, dann gilt lim g(n) = lim & ) L'Hépital

n—so0 f(n) n—so0 f’(n)
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.
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Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, 0 c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: c- f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n
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Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, 0 c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: c- f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Beispiel
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, 0 c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: c- f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Definition (alternativ)

g € O(f) gdw. limsup,__, 5((23 = ¢ >0 mit ¢ # 0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < ¢ - f(n).
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.
Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, fé:g = ¢ > 0 mit ¢ # oo.

N
~
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < ¢ - f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, fg:; = ¢ > 0 mit ¢ # oo.

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann:

limsup,__.o f((g)) existiert gdw. 3¢ > 0, ng mit Vn > ng : g(n) < c- f(n).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert lim sup,__, % gdw. 3¢ > 0,n9.Yn > ng : g(n) < c-f(n).
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, . % gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).
”:ll:
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Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, fg )) gdw. Ic > 0,n9.Vn > ng : g(n) < c-f(n).

Beweis

,==": Sei limsup,__, féng = ¢ < oo.
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, fén)) gdw. Ic > 0,n9.Vn > ng : g(n) < c-f(n).
g(n) _ g(n)

,==": Sei limsup,__, fn) = € < 00 Fire > 0esfolgt c+¢ > 7(n)
und f(n) # 0 bis auf endlich viele Ausnahmen.
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,,_ ., g(n) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).
n oo f(n) g

Beweis

—

,—": Sei limsup, .. g}éf'g =c<oo. Fire >0esfolgtc+ec> f((,':)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

allen> ng also: c+¢ > %;
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

Beweis.

‘

,=—": Sei limsup,__, g}éf'g =c<oo. Fire >0esfolgtc+¢e> i((,':)
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: ¢ +¢ > fégg und damit: g(n) < (¢ +¢) - f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

Beweis.

,==": Sei limsup,__, g}éf'g =c<oo. Fire >0esfolgt c+e2> f((,':)
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > fégg und damit: g(n) < (c+¢€) - f(n).

—

,<—": Gegeben seien nun nj, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,ng.Vn = ng : g(n) < c-f(n).

—

Beweis.
,=—": Sei limsup,__, g);ég; =c<oo. Fire >0esfolgtc+¢e> ?((Z)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir
alle n > ng also: c+¢ > @' und damit: g(n) < (¢ +¢) - f(n).

(n)" =
,<—": Gegeben seien nun nj, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).

/
0 .
Ab einem ny > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

o0

Beweis.

,—": Sei limsup, .. g}éf'g =c<oo. Fire >0esfolgtc+ec> f((g)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c +¢ > %; und damit: g(n) < (c +¢) - f(n).

—

,<—": Gegeben seien nun nj, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ny > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
Damit ist Vn > ng : 0 < g"; c.
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

Beweis.

“. Gai i g(n) _ i g(n
=" Sei limsup,,__, fn) = € < 00 Fire > 0 es folgt c+¢ > 7(n)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir
alle n > ng also: c+¢ > %; und damit: g(n) < (¢ +¢) - f(n).

,<—": Gegeben seien nun nj, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ny > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
Damit ist Vn > ng : 0 < % <c.

—

Die Folge a, = ‘%83 ist in [0, c], also beschrankt und abgeschlossen.
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Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.

Dann existiert limsup,__, ‘?ég)) gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

Beweis.

“. Gai i g(n) _ i g(n
=" Sei limsup,,__, fn) = € < 00 Fire > 0 es folgt c+¢ > 7(n)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir
alle n > ng also: c+¢ > @' und damit: g(n) < (¢ +¢) - f(n).

(n) =
,<—": Gegeben seien nun nj, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ny > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.

DamitistVn)nozog%gc.

—

Die Folge a, = ‘%83 ist in [0, c], also beschrankt und abgeschlossen.
Dann existiert limsup,__, ., an < c0. Ol
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.
Die Klasse GroB-0 (1V)

g € O(f) gdw. 3¢ >0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, fé;’g = ¢ >0 mit ¢ # oo.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-0 (1V)

g € O(f) gdw. 3c > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__,, % = ¢ > 0 mit ¢ # oco.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
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Asymptotische Effizienz

Die Klasse GroB-0 (1V)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3c > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, % = ¢ > 0 mit ¢ # oc.
Betrachte g(n) = 3n? 4 10n + 6. Dann ist:
» g & O(n), da limsup,__,. g(n)/n = .
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Die Klasse GroB-0 (1V)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__,, % = ¢ > 0 mit ¢ # oco.
Betrachte g(n) = 3n? + 10n + 6. Dann ist:

» g & O(n), da limsup,__,. g(n)/n = .

» g € O(n?), da g(n) < 20n? for n > 1.
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Asymptotische Effizienz

Die Klasse GroB-0 (1V)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, % = ¢ > 0 mit ¢ # oc.
Betrachte g(n) = 3n? 4 10n + 6. Dann ist:

» g & O(n), da limsup,__,. g(n)/n = .

» g € O(n?), da g(n) < 20n? for n > 1.

> g € O(n*), da g(n) < £n® fiir n hinreichend groB.

Joost-Pieter Katoen
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (1)

|
Q(f) ist die Menge von Funktionen, Q
die nicht langsamer als f wachsen.
» g € Q(f) heiBt: c- f(n)
ist untere Schranke fiir g(n). c-f(n)

g(n)

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n
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Die Klasse GroB-Omega (1)

|
Q(f) ist die Menge von Funktionen, Q
die nicht langsamer als f wachsen.
» g € Q(f) heiBt: c- f(n)
ist untere Schranke fiir g(n). c-f(n)

g(n)

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Definition
g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

Definition (alternativ)

g € Q(F) gdw. liminf, o &5 > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, ng mit Vn > ng : ¢ - f(n) < g(n).
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Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, ng mit Vn = ng : ¢ - f(n) < g(n).

Definition (alternativ)

g € Q(f) gdw. liminf, o &0 > 0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, ng mit Vn > ng : ¢ - f(n) < g(n).

Definition (alternativ)

g € Q(f) gdw. liminf, . 2 > 0.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

Definition

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

Definition (alternativ)

) > 0.

g € Q(f) gdw. liminf,_, %

Beispiel

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
» g € Q(n), da liminf,_,o g(n)/n= 00 > 0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

Definition

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

Definition (alternativ)

) > 0.

g € Q(f) gdw. liminf,_, %

Beispiel

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
» g € Q(n), da liminf,_,o g(n)/n= 00 > 0.
» g € Q(n?), da liminf,_ . g(n)/n*> =3 > 0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

Definition

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

Definition (alternativ)

) > 0.

g € Q(f) gdw. liminf,_, %

Beispiel

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
» g € Q(n), da liminf,_,o g(n)/n= 00 > 0.
» g € Q(n?), da liminf,_ . g(n)/n*> =3 > 0.
» g ZQ(n), da g(n) < 5n3 fiir n > 2.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen



Die Klasse GroB-Theta (1)

|
O(f) ist die Menge von Funktionen,

die genauso schnell wie f wachsen. © co-f(n)
> g € O(f) heiBt: E g(n)
¢z - f(n) ist obere Schranke und 3 :
c1 - f(n) ist untere Schranke - ! c1-f(n)
fur g(n). .
Diese Eigenschaft gilt ab einer E
Konstanten ng; Werte unter ng werden No Eingabeladnge n

vernachlassigt.
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Die Klasse GroB-Theta (1)

|
O(f) ist die Menge von Funktionen,

die genauso schnell wie f wachsen. © co-f(n)
> g € O(f) heiBt: E g(n)
¢z - f(n) ist obere Schranke und 3 :
c1 - f(n) ist untere Schranke - ! c1-f(n)
fur g(n). .
Diese Eigenschaft gilt ab einer E
Konstanten ng; Werte unter ng werden No Eingabeladnge n

vernachlassigt.

Die Klasse GroB-Theta liefert eine obere und untere Schranke fir die
Komplexitat einer Funktion.

Definition
g € O(f) gdw. Jc1, @ >0, np mit Vn = ng : ¢1 - f(n) < g(n) < 2 - f(n)
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Die Klassen O, Q2 und ©

Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen O, 2 und ©
Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).

Funktionen, die Funktionen, die
nicht schneller Funktionen, die nicht langsamer
als f wachsen. genauso schnell als f wachsen.

wie f wachsen.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen O, 2 und ©
Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).

Funktionen, die Funktionen, die
nicht schneller Funktionen, die nicht langsamer
als f wachsen. genauso schnell als f wachsen.

wie f wachsen.

Lemma

=

g € O(f) wenn lim;_ ffg,':) = c fiir ein 0 < ¢ < o0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, f((;'; — ¢ fiirein 0 < ¢ < o0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, fg;’)) — ¢ fiirein 0 < ¢ < oo.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
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Asymptotische Effizienz

Die Klasse GroB-Theta (1)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, fg;’)) — ¢ fiirein0 < ¢ < oo.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
> g & ©(n), da zwar g € Q(n), aber g & O(n).

Joost-Pieter Katoen

Datenstrukturen und Algorithmen



Asymptotische Effizienz

Die Klasse GroB-Theta (1)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, fg;’)) — ¢ fiirein0 < ¢ < oo.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:
> g & ©(n), da zwar g € Q(n), aber g & O(n).
» g € 09(n?), dalim, . g(n)/n* =3.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, fg;’)) — ¢ fiirein0 < ¢ < oo.

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
> g ¢ ©(n), da zwar g € Q(n), aber g & O(n).
» g € 09(n?), dalim, . g(n)/n* =3.
» g ¢ ©(n?), da zwar g € O(n®), aber g & Q(n®).

Joost-Pieter Katoen
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Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.
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Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(1l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(1l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(1l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.
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_Asymptotische Effizienz Bl o o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(F).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(F).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz Bl o o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(F).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz Bl o o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(F).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).
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_Asymptotische Effizienz Bl o o
Einige elementare Eigenschaften

> f € O(f), f € Q(f), feO(f).

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).

Symmetrie von ©

» f € O(g) gdw. g € O(f).
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_Asymptotische Effizienz Bl o o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(F).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).

Symmetrie von ©

» f € O(g) gdw. g € O(f).

Beziehung zwischen O und

» f e 0(g) gdw. g € Q(f).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c:log,n.

log, ne O(log,, n) log;, n€O(log, n)
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c:log,n.

log, ne O(log,, n) log;, n€O(log, n)
|
Dann: log,n < c1 -logyn < log,n< ¢ - lzgzz & log,b< g
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logypn und logyn<c-log,n
log, ne O(log,, n) log;, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wabhle ¢; > [log, b].
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logypn und logyn<c-log,n
log, ne O(log,, n) log;, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wabhle ¢; > [log, b].

Analog erhalten wir log, a < ¢z; dann wahle ¢; > [log, al.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logypn und logyn<c-log,n
log, ne O(log,, n) log;, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wabhle ¢; > [log, b].
Analog erhalten wir log, a < ¢z; dann wahle ¢; > [log, al.

Die Aussagen (a) und (b) folgen auf dhnliche Weise. O
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Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen Klein-O, Klein-Omega

o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

Definition

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.
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Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

|
w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

Definition
g € w(f) gdw. Vc > 0, Ing mit ¥n > ng : ¢ - f(n) < g(n).
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Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

|
w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

g € w(f) gdw. Vc > 0, dng mit Vn > ng : ¢ - f(n) < g(n).

Beziehung zwischen o und w

» f e o(g) gdw. g € w(f).
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Ubersicht

© Platzkomplexitit
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Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.
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Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

» Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!
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Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

» Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

» Dilemma: Eine Reduktion der Zeitkomplexitat fiihrt oft zur Erhéhung
der Platzkomplexitat, und vice versa.
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Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

» Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

» Dilemma: Eine Reduktion der Zeitkomplexitat fiihrt oft zur Erhéhung
der Platzkomplexitat, und vice versa.

> Dies werden wir in spater in der DSAL Vorlesung 6fters feststellen.
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Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?
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Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken
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Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
mussen.
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Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
mussen.

2. 5(n) € Q(1), da wir mindestens eine Sache iber das Lied wissen
miissen, um es singen zu kénnen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
miussen.

2. 5(n) € Q(1), da wir mindestens eine Sache iber das Lied wissen
miissen, um es singen zu kénnen.

Kann man die Platzkomplexitat durch Refrains (= Kehrverse) reduzieren?
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Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens iiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.
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Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens iiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]
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Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens iiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.
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Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens iiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.
Dann: S(n) € O(n),
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Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens iiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.

Dann: S(n) € O(n), da die Anzahl der Wérter immer noch O(n) ist;
z. B. bei Stropheldnge = Refrainlange halbiert sich der Speicherbedarf.
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Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:
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Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me giftx, giftk—1, ..., gifts
On the (k—1)st day of Xmas, my true love gave to me giftx_1, ..., gifti

On the first day of Xmas, my true love gave to me a bottle of wine
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Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me gifty, gifti—1, ..., gift1
On the (k—1)st day of Xmas, my true love gave to me giftx_1, ..., gifti

On the first day of Xmas, my true love gave to me a bottle of wine

Bekanntere Variante: ,,0Old MacDonald had a farm*.

Platzkomplexitat

Die benétigte Zeit, um das Lied zu singen ist (betrachte keine Refrains):
n = i = k (kH) € O(k?)
= | = 5

i=1
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Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me gifty, gifti—1, ..., gift1
On the (k—1)st day of Xmas, my true love gave to me giftx_1, ..., gifti

On the first day of Xmas, my true love gave to me a bottle of wine

Bekanntere Variante: ,,0Old MacDonald had a farm*.

Platzkomplexitat
Die benétigte Zeit, um das Lied zu singen ist (betrachte keine Refrains):

i = k- (kgl) € O(k%)

k
n —
=

Da n € ©(k?) folgt k € O(/n), also S(n) € O(y/n).
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100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fiir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

~~~~~~~~ [Andy Kaufman]
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100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fiir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

~~~~~~~~ [Andy Kaufman]

Platzkomplexitat

S(n) € O(log n), da nur der Wert von n von Bedeutung ist. Dafiir reichen
log n Bits aus.
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100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fiir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

~~~~~~~~ [Andy Kaufman]

Platzkomplexitat

S(n) € O(log n), da nur der Wert von n von Bedeutung ist. Dafiir reichen
log n Bits aus.

Es geht jedoch noch etwas einfacher, ndmlich indem man auf das Zahlen
verzichtet.
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Untere Schranke?

Ein Lied mit S(n) € ©(1)

That's the way, uh-huh, uh-huh
I like it, uh-huh, huh
-------- [KC & the Sunshine Band, 1977]
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