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Elementare Datenstrukturen Abstrakte Datentypen

Abstrakte Datentypen

Abstrakter Datentyp (ADT)

Ein abstrakter Datentyp besteht aus:
» Einer Datenstruktur (Menge von Werten) und

» einer Menge von Operationen darauf.
(z. B. Konstruktor, Zugriffs- und Bearbeitungsfunktionen)

Beispiele

Baum, Kellerspeicher (stack), Liste, Warteschlange (queue),
Prioritatswarteschlange (priority queue), Woérterbuch . ..
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Datenkapselung

Unterscheide zwischen
Spezifikation des ADTs: wie sich die Datenobjekte verhalten, und

Implementierung: wie dieses Verhalten programmtechnisch erreicht wird.

Datenkapselung (data encapsulation)

Dieses Paradigma wird Kapselung (oder: Datenabstraktion) genannt:

» Daten sind auBerhalb des ADT nur iiber wohldefinierte Operationen

zuganglich.
» Die Reprasentation der Daten ist nur fiir die Implementierung
relevant.
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Spezifikation von ADTs (II)

Die Operation void push(Stack s, int e) hat

» die Vorbedingung: true (d. h. leere Aussage) und

> die Nachbedingung: oberster Eintrag von s ist e.

» ADTs sind durch ihre Spezifikation festgelegte
»Standard“-Komponenten zum Aufbau unserer Algorithmen.
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Spezifikation von ADTs (1)

Spezifikation eines ADTs

» Beschreibt wie sich die Operationen auf den Daten verhalten;
> nicht jedoch die interne Reprasentation der Daten,

> genauso wenig wie die Implementierung der Operationen.

Beschreibung der Auswirkung von Operationen durch logische Aussagen:

Vorbedingung (precondition)

Aussage, die vor Aufruf der Operation gelten muss.
(Verpflichtung des Benutzers!)

Nachbedingung (postcondition)

Aussage, die als Ergebnis der Operation gelten wird.

= Grundlage fiir die Argumentation (iber die Korrektheit des ADTs.
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Implementierung von ADTs

Implementierung eines ADTs

» Beschreibt die interne Reprasentation der Daten, und

> die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermoglichen es uns die Performance zu optimieren.

= Grundlage fiir die Argumentation tber die Effizienz des ADTs.

Die Operation push(Stack s, int e) als Array-Implementierung:

1 void push(Stack s, int e) {
2 s.top = s.top + 1;

3 s[s.top] = e;

4}
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Effizienz von Implementierungen
Die Effizienz einer ADT-Implementierung ist entscheidend.

1. Die Zeitkomplexitat der Operationen auf dem ADT.

» Einfigen von Elementen,
» Lodschen von Elementen,
» Suchen von Elementen.

2. Die Platzkomplexitat der internen Datenreprasentation.

Ublicherweise ein Kompromiss zwischen Zeit- und Platzeffizienz:

» Schnelle Operationen benétigen in der Regel zusatzlichen
Speicherplatz.

> Platzsparende Reprasentationen fiihren oft zu langsameren
Operationen.

Implementierungen einer Prioritatswarteschlange (spater).
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Beispiele fiir ADTs: Stapel

Stapel (stack)

Ein Stapel (Kellerspeicher) speichert eine Ansammlung von Elementen und
bietet folgende Operationen:

> bool isEmpty(Stack s) gibt true zuriick, wenn s leer ist und
andernfalls false.

> void push(Stack s, int e) fligt das Element e in den Stapel s ein.

> int pop(Stack s) entfernt das zuletzt eingefiigte Element und gibt
es zurlick; pop(s) bendtigt einen nicht-leeren Stapel s.
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Ubersicht

© Stapel und Warteschlangen
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Beispiele fiir ADTs: Warteschlangen

Warteschlange (queue)

Eine Warteschlange speichert eine Ansammlung von Elementen und bietet
folgende Operationen:

> bool isEmpty(Queue q) gibt true zuriick, wenn g leer ist, andernfalls
false.

> void enqueue(Queue q, int e) fiigt das Element e in die
Warteschlange q eine.

> int dequeue(Queue q) entfernt das schon am langsten in der
Warteschlange vorhandene Element und gibt es zurlick; benétigt
daher eine nicht-leere Warteschlange q.

Ein Stapel bietet LIFO (last-in first-out) Semantik, eine Warteschlange
FIFO (first-in first-out).
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Stapelimplementierung auf unbeschrankten Arrays

(N

Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschrankten Arrays

)

1 bool isEmpty(Stack s) {
2 return (s.top == -1);

— push(41g ] push(llg — pop ) ] s }

» Die Laufzeit ist jeweils O(1).

> In pop muss der Fall eines leeren
Stapels nicht beriicksichtigt
werden. Warum?

5 void push(Stack s, int e) {

6 sS.top = s.top + 1;

— — == top 1 » Eine Implementierung als

1] le«— 7 sls.top] = e;
] 77l to Vel 7 le tO verkettete Liste vermeidet eine
41}«—F 41 41j«—F ¢ ) et )
to 5l vl [~ A a priori Festlegun er
34/«—F 34 34 34 int pop(Stack 8) { priort T reetng
lo 1nt pop(stack s ArraygroBe.
3 3 3 3 11 s.top = s.top - 1;
11 11 11 11 12 return s[s.top+1];
= = == == 1}
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Warteschlangenimplementierung auf beschrankten Warteschlangenimplementierung auf beschrankten

Arrays (1) Arrays (1)
1 tail 0] 0] 0] ‘head 1 bool isEmpty(Queue q) { > ArraygroBe N.
— — — ~—| head return (q.head == q.tail); . e .
17 17 17 17/«— i } d d » Die Laufzeit ist jeweils ©(1).
E head E head E head ] ] )
< 12 12/« L » Der Einfachheit halber werden
5 void enqueue(Queue q, int e) { Uberlaufe nicht abgefangen.
] ] | ] 6 qlq.tail] = e; ) )
] ena(0) ] enq(9) [ _deqO) [ _deqO 7 ) q.tail = (q.tail + 1) mod N; » Die Queue ist voII. gdw.
| | | - 8 g.head == (q.tail + 1) mod N.
I ] I ] 10 int dequeue(Queue q) {
] ] 1 tail 1 tail tail 11 int e = g[q.head];
I | tail 12 q.head = (q.head + 1) mod N;
L | [ @ @ ﬂ 13 return e;
14 }
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Die Prioritdtswarteschlange (1)

v

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

Jeder Schlissel sei hochstens an ein Element vergeben.

Schlissel werden als Prioritat betrachtet.

v

Die Elemente werden nach ihrer Prioritat sortiert.

v

Prioritatswarteschlange (priority queue)

Eine Prioritatswarteschlange speichert eine Ansammlung von Elementen
und bietet folgende Operationen:

> bool isEmpty(PriorityQueue pq) gibt true zuriick, wenn pq leer ist,
andernfalls false.

> void insert(PriorityQueue pq, int e, int k) fligt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten

Schlissel zuriick; bendtigt nicht-leere pq. .
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Prioritatswarteschlange, unsortiert, auf beschrankten
Arrays

<2t 012 012 37
17 4 17 4 17 4 012

128 head 128 head 128 head 128 head

ins(0,12) ins(3,7) delMin() getE1t (12)
—p — — )
tail
——
tail tail
—— 37 ——

schwarz = Element; rot = Schliissel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Elementare Datenstrukturen Stapel und Warteschlangen

Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue) (Forts.)

» void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schliissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schliissel k aus pq zuriick; k muss in pq enthalten sein.

> void decrKey(PriorityQueue pq,int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schliissel von e sein.

Wichtige Datenstruktur fiir Greedy-Algorithmen,
Diskrete-Eventsimulationen, ...
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Prioritatswarteschlange, sortiert, auf beschrankten
Arrays

<2t 012 12 8 28]
28] 128 3 7], 3 7 [«
17 4 [« 17 4 [« 17 4 [«
ins(0,12) ins(3,7) delMin() getE1t (12)
tail tail
' —— ———
el 012 012
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Elementare Datenstrukturen Stapel und Warteschlangen Elementare Datenstrukturen Verkettete Listen

Zwei Prioritatswarteschlangenimplementierungen Ubersicht

Implementierung

Operation unsortiertes Array sortiertes Array

isEmpty (pq) o(1) (1)

insert(pq,e,k) O(1) ©(n)*

getMin (pq) ©(n) O(1) _

delMin (pq) o(n)* o(1) (5 ) Verkettete Listen ‘
getElt (pq, k) ©(n) O(log n)t @ Einfach verkettete Listen
decrKey(pq,e,k) ©(n) O(log ,,)T @ Doppelt verkettete Listen

» In Vorlesung 7 (Heapsort) werden wir eine weitere Implementierung
kennenlernen.

*Beinhaltet das Verschieben aller Elemente ,rechts” von k.
fMittels binirer Suche.
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Einfach verkettete Listen Listen (1)

: :
Einfach verkettete Liste I

Eine Liste speichert eine Ansammlung von Elementen mit fester

Eine einfach verkettete Liste ist eine rekursive, dynamische Datenstruktur. ) . .
y Reihenfolge und bietet folgende Operationen:

» Elemente bestehend aus Schliissel k sowie Zeiger auf ein

> void insert(Liste 1, Element x) fiigt das Element x an den
nachfolgendes Element

Anfang der Liste ein.

> Listen kdnnen dynamisch erweitert werden . i
> void remove(Liste 1, Element x) entfernt das Element x aus der

> head zeigt auf das erste Element der Liste La.

> Element search(Liste 1, int k) gibt das Element mit dem

head —» 48 | @] next 34 | @] 2 [e 25| | iibergebenen Key k zuriick und nul1 falls es kein derartiges Element

gibt.
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Elementare Datenstrukturen Verkettete Listen

Listen (I1)

Liste (Forts.)

> Element minimum(Liste 1) gibt das Element mit dem kleinsten
Schliissel zuriick.

> Element maximum(Liste 1) gibt das Element mit dem hdchsten
Schlissel zuriick.

> Element successor(Liste 1, Element x) gibt das
Nachfolgerelement von Element x zuriick.

> Element predecessor(Liste 1, Element x) gibt das
Vorgangerelement von Element x zuriick.
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Doppelt verkettete Listen

Doppelt verkettete Liste

Eine doppelt verkettete Liste kann sowohl vorwarts als auch riickwarts
durchlaufen werden. Sie implementiert den ADT Liste.

> Elemente besitzen neben Schliissel und Nachfolgender einen weiteren
Zeiger auf das vorherige Element.

» Zusatzlicher Zeiger tail zeigt auf das letzte Element der Liste

next

head tail
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Listen umdrehen

1 void reverse(List
2 last = 1l.head;

3 pos = last.next;
4 last.next = null

D {

’

while(pos != null){

pos.next = last;

6
7 tmp = pos.next;
8
9

last = pos;
10 pos = tmp;

13 l.head = last;

Joost-Pieter Katoen
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Laufzeiten

Verkettete Listen

last pos tmp

Datenstrukturen und Algorithmen

Verkettete Listen

Implementierung

Operation

einfach verkette Liste doppelt verkettete Liste

insert (L,x)
remove (L,x)
search(L,k)
minimum (L)
maximum (L)
search(L,k)
minimum(L)
maximum (L)
successor(L,x)
predecessor(L,x)

o(1)

3 3 3 S

I |

3 =

JoJoRofofofogoyoye
=)

o(1)

S 3
~—

>

ONONONONONONONONO)
ICHE

e e e e R e e e e
= 3
— o — —
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» Suchen eines Schlissels erfordert einen Durchlauf der gesamten Liste.
Gibt es andere Moglichkeiten, die Daten zu organisieren?

Joost-Pieter Katoen

Datenstrukturen und Algorithmen

28/39



Ubersicht Binarbaume — Intuition

Binarbaum — Intuition

Betrachte einen binaren Baum:

» Jedes Element bekommt zwei Zeiger (left und right) zu den
nachfolgenden Elementen.

» Man erhalt in etwa folgende Datenstruktur:

Vater/Mutter A )
von Bund C ---_ ] 124______-Sch|usse|
\
£ &
@ Y,
0 Binire Biume Linkes Kind B > e Rechtes Kind
@ Traversierungen von A "T---_ [ 6 C[ 225 Ja----""~ vonA
//’ l .\\ //’ l .\\
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Binarbaume — Definition Bindrbaume — Begriffe (1)
__ Wurzel
A 102 Ja
Definition (Binérbaum) | | > Ebene 0
™)
Ein Binarbaum (binary tree) ist ein gerichteter, zykelfreier Graph (V/, E) Il innerer
r;nt P?/note\r; (nodes, allgemein: vertices) V' und gerichteten Kanten (edges) Ei 6 |a-~ Knoten --a" 555 > Ebene 1
. = A S ene
€V X K ® Y ole
» Es gibt genau einen ausgezeichneten Knoten, die Wurzel (root). 5 \ )/ / \
c /
» Alle Kanten zeigen von der Wurzel weg. o' ¥
» Der Ausgangsgrad (out-degree) jedes Knotens ist hochstens 2. _q;}i ,3\4Q 1(‘)3 10‘56 ---» Ebene 2
» Der Eingangsgrad eines Knoten ist 1, bzw. 0 bei der Wurzel. @, > 4
» Sonderfall: Baum mit V = E = @. ::E} \\\ !
| 23 40 i
‘ ‘ ‘ b S » Ebene 3
v «- 1 ‘~\\\ \\ ,l
"~ Blatt
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Binarbaume — Begriffe (1) Einige Fakten iiber bindre Baume

Definition (Bindrbaum — Begriffe)

» Ein Knoten mit leerem linken und rechten Teilbaum heiBt Blatt (leaf).

» Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein
Abstand, d. h. die Pfadlange, von der Wurzel.

» Die Hohe (level) eines Baumes ist die maximale Tiefe seiner Blatter.

Lemma (Ubung)

. - d
Beispiel (Vorteile von bindgren Baumen) - (5 O S MOReiRs 2 (et

» Ein Bindrbaum mit Héhe h kann maximal 2"t1 — 1 Knoten enthalten.

A , 6chte 31 El t halten: . . .
ngenommen, man moche cmente voraa=en » Enthilt er n Knoten, dann hat er mindestens Héhe [log(n+1)] — 1

Ebene 0 (Wutzel) enthalt 1 Element Gesamt: (log = log,).
Ebene 1 enthalt 2 Elemente 3
Ebene 2 enthilt 4 Elemente 7 Definiti lIstzndi
Ebene 3 enthalt 8 Elemente 15 efinition (vollstandig)
Ebene 4 enthilt 16 Elemente 31 Ein Binarbaum heiBt vollstandig, wenn er bei Hohe h alle 2771 — 1 Knoten
= Ein Element kann in 5 Schritten (statt 31) erreicht werden. Sl
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Traversierung Inorder-Traversierung
1 void inorder (Node node) {
e 2 if (node !'= null) {
6 a 4 inorder (node.left);
Eine Traversierung ist ein Baumdurchlauf mit folgenden Eigenschaften: 5 print (node);
1. Die Traversierung beginnt und endet an der Wurzel. 0 e e j il)lffrder(mde'rlght);
2. Die Traversierung folgt den Kanten des Baumes. Jede Kante wird s T
genau zweimal durchlaufen: Einmal von oben nach unten und danach @ 4 o}

von unten nach oben.

3. Die Teilbaume eines Knotens werden in festgelegter Reihenfolge Beispiel
(zuerst linker, dann rechter Teilbaum) besucht. ((~(8/4

4. Unterschiede bestehen darin, bei welchen Durchlauf man den Knoten
selbst (bzw. das dort gespeicherte Element) , besucht".

Linearisierung

Eine Aufzdhlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Biume Elementare Datenstrukturen Bindre Biume

Preorder, Inorder, Postorder (1) Preorder, Inorder, Postorder-Traversierung
1 void preorder(Node node) { 16 void postorder(Node node) {
a 1 void inorder (Node node) { 2 if (node '= null) { 17 if (node !'= null) {
> if (node != null) { 3 visit(node); 18 postorder (node.left);
3 inorder (node.left); 4 preorder (node.left); 19 postorder (node.right) ;
‘ e 4 print (node) ; 5 preorder(node.right); 20 visit(node);
5 inorder(node.right) ; 6 } a }
0 9 e 6 7} 2 }
7}
e e 9 void inorder(Node node) {
10 if (node !'= null) {
1 inorder (node.left);
13 inorder (node.right) ;
—8/4+3%x5 +—/84%x35 1w}
15

Beispiel (Postorder — Umgekehrte Polnische Notation (RPN))

84/ -T35%+ Komplexitat
©(n), wobei n die Anzahl der Knoten ist.

Tneg
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Preorder, Inorder, Postorder (l1)

Satz

Ist von einem (unbekannte) Bindrbaum mit eindeutigen Werten sowohl! die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 527 9 e

Preorder: 5729
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