Suchen

Datenstrukturen und Algorithmen

Vorlesung 4: Suchen (K5)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsall10/

27. April 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/42

http://www-i2.rwth-aachen.de/i2/dsal10/

Suchen

Ubersicht

© Lineare Suche
@ Average-Case Analyse von Linearer Suche

© Bilineare Suche
@ Das Prominentensuche Problem
@ Das Boxenstopp Problem

© Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binarer Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/42

Ubersicht

© Lineare Suche
@ Average-Case Analyse von Linearer Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/42

Formale Definition (1)

Einige hilfreiche Begriffe

D, = Menge aller Eingaben der Lange n
t(/) = fur Eingabe | bendtigte Anzahl elementarer Operationen

Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/42

Formale Definition (1)

Einige hilfreiche Begriffe

D,, = Menge aller Eingaben der Lange n
t(/) = fur Eingabe [bendtigte Anzahl elementarer Operationen

Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Woher kennen wir:

t(/)? — Durch Analyse des fraglichen Algorithmus.

Pr(/)? — Erfahrung, Vermutung (z. B. ,alle Eingaben treten mit gleicher
Wahrscheinlichkeit auf").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/42

Formale Definition (1)

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich bendtigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n:

A(n) =Y Pr(l)-t())

leD,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/42

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Suchen Lineare Suche

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Suchen Lineare Suche

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Suchen Lineare Suche

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Man gewinnt die Halfte des Jackpots wenn alle Rader ein Karo-Symbol
zeigen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Man gewinnt die Halfte des Jackpots wenn alle Rader ein Karo-Symbol
zeigen.

Sonst gewinnt man nichts.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Man gewinnt die Halfte des Jackpots wenn alle Rader ein Karo-Symbol
zeigen.

Sonst gewinnt man nichts.

Frage: Wieviel Prozent des Jackpots gewinnt man im Schnitt?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Man gewinnt die Halfte des Jackpots wenn alle Rader ein Karo-Symbol
zeigen.

Sonst gewinnt man nichts.
Frage: Wieviel Prozent des Jackpots gewinnt man im Schnitt?

Antwort:%x1+%x%+gx0 = 1—3’6.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/42

Lineare Suche

Rechenproblem

Eingabe: Array E mit n Eintragen, sowie das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/42

Lineare Suche

Rechenproblem

Eingabe: Array E mit n Eintragen, sowie das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

1 bool linSearch(int E[], int n, int K) {
for (int index = 0; index < n; index ++) {
if (El[index] == K) {
return true; // oder: return index;
}
}
return false; // nicht gefunden

0 N o o b W N

}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/42

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/42

Suchen Lineare Suche

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/42

Suchen Lineare Suche

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/42

Suchen Lineare Suche

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/42

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.

> A(n) ~ %n, da im Schnitt X mit etwa der Halfte des Arrays E
verglichen werden muss? — Nein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/42

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/42

Suchen Lineare Suche

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akce(n) die Average-Case-Laufzeit fir den Fall "K in E".

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/42

Suchen Lineare Suche

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akce(n) die Average-Case-Laufzeit fir den Fall "K in E".

|
A(n) = Pr{K in E} - Akce(n) + Pr{X nicht in E} - Axge(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/42

Der Fall '« in "

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.
» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.
» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.
» Damit ergibt sich:

Akee(n) = ZPr{K E[i]|K in E} - t(K == E[i])

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.
» Damit ergibt sich:
n—1
Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])
i=0
n—1

- (,11)-(/41)

Il
o

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.
» Damit ergibt sich:

>
|
-

Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])

(j,) 0+

> ,§/+1

i=0

3~
[
—_O

I
N

Il
7 N\
3*—‘0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.
» Damit ergibt sich:

>
|
-

Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])

[
—Oo

Il
~— —
S|
N——

=

+

—

N—r

S
N———
5 .
s ||
+o
—
=

> -
|

B\P—‘cHD

Il
YN

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Der Fall '« in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist j 4 1.
» Damit ergibt sich:

>
|
-

Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])

[
—Oo

Il
~— —
S|
N——

=

+

—

N—r

> -
|

Il
o

Il
7 N\
S|

i=0
. 1 n(n+1)
- n 2
_ n+1
= 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/42

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/42

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

1
=Pr{KinE}- % + Pr{K nicht in E} - Akge(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/42

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

1
=Pr{KinE}- % + Pr{K nicht in E} - Axge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{K in E} - %1 + (1= Pr{Kin E}) - Akge(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/42

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

= Pr{Kin E} - %1 + Pr{K nicht in E} - Akge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{Kin E} - %1 + (1= Pr{k in E}) - Akge(n)
| Axge(n) = n

:Pr{KinE}~%1+(1—Pr{KinE})~n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/42

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

= Pr{Kin E} - %1 + Pr{K nicht in E} - Akge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{Kin E} - %1 + (1= Pr{k in E}) - Akge(n)
| Axge(n) = n

:Pr{KinE}~%1+(1—Pr{KinE})~n

=n (1 - % Pr{K in E}> + % Pr{k in E}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/42

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in E}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/42

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Beispiel
Wenn Pr{K in E}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/42

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Beispiel
Wenn Pr{K in E}
= 1, dann ist A(n) = 241, d. h. etwa 50% von E ist iiberpriift.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/42

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Beispiel
Wenn Pr{K in E}
= 1, dann ist A(n) = 241, d. h. etwa 50% von E ist iiberpriift.
= 0, dannist A(n) = n= W(n), d.h. E wird komplett tiberprift.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/42

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Beispiel
Wenn Pr{K in E}
= 1, dann ist A(n) = 241, d. h. etwa 50% von E ist iiberpriift.
= 0, dannist A(n) = n= W(n), d.h. E wird komplett tiberprift.

=1 dannist A(n) =22 + 1, d.h. etwa 75% von E wird iiberpriift.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/42

Ubersicht

© Bilineare Suche
@ Das Prominentensuche Problem
@ Das Boxenstopp Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/42

Bilineare Suche

Statt eine Reihe in einer Richtung zu durchsuchen, kann man dies auch in
beide Richtungen “zeitgleich”.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/42

Bilineare Suche

Statt eine Reihe in einer Richtung zu durchsuchen, kann man dies auch in
beide Richtungen “zeitgleich”.

Dies fuhrt zur bilineare Suche.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 14/42

Bilineare Suche

Statt eine Reihe in einer Richtung zu durchsuchen, kann man dies auch in
beide Richtungen “zeitgleich”.

Dies fuhrt zur bilineare Suche.

1 bool bilinSearch(int E[], int n, int K) {
int left = 0, right = n - 1;
while (left <= right) {
if (E[left] == K || El[right] == K) {
return true;
}
left = left + 1;
right = right - 1;
}
return false; // nicht gefunden

© 0 N o U A~ W N

=
o

-
s
(-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/42

Suchen Bilineare Suche

Bilineare Suche — Analyse

Worst-Case Zeitkomplexitat

Im schlimmsten Fall, wird die Schleife [4] maul durchlaufen.

Pro Schleife finden zwei Vergleiche K == E[i] statt.
Also W (n) =2[7].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/42

Suchen Bilineare Suche

Bilineare Suche — Analyse

Worst-Case Zeitkomplexitat

Im schlimmsten Fall, wird die Schleife [4] maul durchlaufen.

Pro Schleife finden zwei Vergleiche K == E[i] statt.
Also W (n) =2[7].

Best-Case Zeitkomplexitat

B(n) = 2, da zwei Vergleiche reichen, wenn K == E[1] oder K == E[n].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/42

Suchen Bilineare Suche

Bilineare Suche — Analyse

Worst-Case Zeitkomplexitat

Im schlimmsten Fall, wird die Schleife [4] maul durchlaufen.

Pro Schleife finden zwei Vergleiche K == E[i] statt.
Also W (n) =2[7].

Best-Case Zeitkomplexitat

B(n) = 2, da zwei Vergleiche reichen, wenn K == E[1] oder K == E[n].

Average-Case Zeitkomplexitat

Ahnlich wie fiir die lineare Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/42

Bilineare Suche

Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn
verzichtet wird auf Terminierung der Suche sobald X gefunden ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/42

Suchen Bilineare Suche

Bilineare Suche

Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn
verzichtet wird auf Terminierung der Suche sobald X gefunden ist.

Weiterhin soll der Ausgabe i sein, sodaB E[i] == X gilt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/42

Bilineare Suche

Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn
verzichtet wird auf Terminierung der Suche sobald X gefunden ist.

Weiterhin soll der Ausgabe i sein, sodaB E[i] == X gilt.

1 int bilinSearch(int E[], int n, int K) {

2 int left = 0, right = n - 1;

3 while (left != right) {

4 if (E[left] !'= K || E[right] == K) { left = left + 1; }

5 if (Elright] != K || E[left] == K) { right = right - 1; }
6 }

7}

8 return left

9}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/42

Bilineare Suche

Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn
verzichtet wird auf Terminierung der Suche sobald X gefunden ist.

Weiterhin soll der Ausgabe i sein, sodaB E[i] == X gilt.

1 int bilinSearch(int E[], int n, int K) {

2 int left = 0, right = n - 1;

3 while (left != right) {

4 if (E[left] !'= K || E[right] == K) { left = left + 1; }

5 if (Elright] != K || E[left] == K) { right = right - 1; }
6 }

7}

8 return left

9}

Hausaufgabe: bestimmen Sie fiir dieses Programm W(n) und A(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/42

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert 0, ..., n—1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert 0, ..., n—1
2. Mindestens eine Person ist ein Prominenter

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert 0, ..., n—1
2. Mindestens eine Person ist ein Prominenter
3. nx n boolean Matrix K, so dass fir 0 < i,j < n:

o 1 falls Person i kennt Person j
Kli.jl =

0 sonst

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert 0, ..., n—1
2. Mindestens eine Person ist ein Prominenter
3. nx n boolean Matrix K, so dass fir 0 < i,j < n:

o 1 falls Person i kennt Person j
Kli.jl =

0 sonst

Ausgabe: Sei k € {0, ..., n—1}, so dass Person k Prominenter ist, d.h.:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert 0, ..., n—1
2. Mindestens eine Person ist ein Prominenter
3. nx n boolean Matrix K, so dass fir 0 < i,j < n:

o 1 falls Person i kennt Person j
Kli.jl =

0 sonst
Ausgabe: Sei k € {0, ..., n—1}, so dass Person k Prominenter ist, d.h.:

VO i<ni##k= K[i,k] und VO < i< n.i# k= —=K[k,i]

alle kennen Person k Person k kennt niemandem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/42

Beispiel: Wer ist ein Prominenter?

11111101
11111010
00111010
0001O0O0O0TO O
10011111
01111000
11111010
0001O0O0O0T1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/42

Beispiel: Wer ist ein Prominenter?

11111101
11111010
00111010
0001O0O0O0TGO
10011111
01111000
11111010
0001O0O0O0T1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/42

Beispiel: Wer ist ein Prominenter?

11111101
11111010
00111010
0001O0O0O0TGO
10011111
01111000
11111010
0001O0O0O0T1

Es ist einfach, einen Prominenten mit W(n) € O(n?) zu bestimmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/42

Beispiel: Wer ist ein Prominenter?

11111101
11111010
00111010
0001O0O0O0TGO
10011111
01111000
11111010
0001O0O0O0T1

Es ist einfach, einen Prominenten mit W(n) € O(n?) zu bestimmen.

Geht es auch mit W(n) € O(n)?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/42

Das Prominentensuche Problem: Lineare Suche

Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m # 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/42

Suchen Bilineare Suche

Das Prominentensuche Problem: Lineare Suche
Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m # 0.

Dann gilt: VO < kK < m. k ist kein Prominenter.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 21/42

Suchen Bilineare Suche

Das Prominentensuche Problem: Lineare Suche

Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m # 0.

Dann gilt: VO < kK < m. k ist kein Prominenter.

Die Suche geht dann weiter in Zeile m, Spalte m, usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/42

Das Prominentensuche Problem: Lineare Suche

Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m # 0.

Dann gilt: VO < kK < m. k ist kein Prominenter.

Die Suche geht dann weiter in Zeile m, Spalte m, usw.

1 int CelebritySearch(bool K[], int n) {

2 int row = 0; column = 0; // Reihe- und Spalte-index
3 while (row !'= n && column !'= n) {

4 if (row '= column) {

5 if ('K[row,column]) { column = column + 1; }
6 if (K[row,column]) { row = column; }

7 } else { column = column + 1; } // row == column
s

9

return row

10}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/42

Das Prominentensuche Problem: Bilineare Suche

Einige Eigenschaften

Fir alle 0 < /,j < n gilt:
1. K[i,j] = i ist kein Prominenter

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/42

Das Prominentensuche Problem: Bilineare Suche

Einige Eigenschaften

Fir alle 0 < /,j < n gilt:
1. Kli,j] = i ist kein Prominenter
2. =K[j, i] = i ist kein Prominenter

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/42

Das Prominentensuche Problem: Bilineare Suche

Einige Eigenschaften

Fir alle 0 < /,j < n gilt:
1. Kli,j] = i ist kein Prominenter
2. =K[j, i] = i ist kein Prominenter

Aus dieser Eigenschaft folgt direkt folgende bilineare Suche im Array K:

1 int CelebritySearch(bool K[], int n) {
2 int row = 0, column = n - 1; // Reihe- und Spalte-indez
3 while (row !'= column) {
4 if (K[row,column]) { row = row + 1; } // Eigenschaft 1
5 if ('K[row,column]) { column = column - 1; } // Eigenschaft
2
}
}
return row

}

© 0 N o

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/42

Das Prominentensuche Problem

Zeitkomplexitat

Es gilt A(n), B(n), W(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/42

Suchen Bilineare Suche

Das Prominentensuche Problem

Zeitkomplexitat
Es gilt A(n), B(n), W(n) € O(n).

Der Algorithmus kann leicht angepasst werden, damit er terminiert sobald
ein Prominenter gefunden wurde.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/42

Das Prominentensuche Problem

Zeitkomplexitat

Es gilt A(n), B(n), W(n) € O(n).

Der Algorithmus kann leicht angepasst werden, damit er terminiert sobald
ein Prominenter gefunden wurde.

Dies andert die asymptotische Zeitkomplexitat W(n) jedoch nicht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/42

Das Prominentensuche Problem

Zeitkomplexitat

Es gilt A(n), B(n), W(n) € O(n).

Der Algorithmus kann leicht angepasst werden, damit er terminiert sobald
ein Prominenter gefunden wurde.

Dies andert die asymptotische Zeitkomplexitat W(n) jedoch nicht.

Aufgabe:

Bestimmen Sie die Zeitkomplexitat der linearen Suche fiir dieses Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/42

Suchen Bilineare Suche

Das Boxenstopp Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/42

Suchen Bilineare Suche

Der Hockenheimring

E
g
i3
Gang/Geschwindigkeit/ N
Querbeschleunigung ._l=_=
[schiasselstelien e}
Auslaufzonen Kies/Beton
Nordkurve
Parabolika
Spitzkehre
g
%
S Siidkurve
$ Allianz @)

Datenstrukturen und Algorithmen

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert 0 durch n—1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Suchen Bilineare Suche

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert 0 durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur

Verfligung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert O durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur
Verfligung
3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V(i) Liter Benzin

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert O durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur
Verfligung
3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V(i) Liter Benzin

n—1 n—1
4. Gegeben: Y T(i) = > V(i)
i=0 i=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert O durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur
Verfligung
3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V(i) Liter Benzin

n—1 =il
4. Gegeben: Z T(i) = Z V(i)
i=0 i=0

Ausgabe: Bestimme k € {0, ..., n— 1}, so dass Michael Schumacher
mit einem leeren Tank eine komplette Runde fahren kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert O durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur
Verfligung
3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V(i) Liter Benzin

n—1 =il
4. Gegeben: Z T(i) = Z V(i)
i=0 i=0

Ausgabe: Bestimme k € {0, ..., n— 1}, so dass Michael Schumacher
mit einem leeren Tank eine komplette Runde fahren kann.

Erwiinschte Worst Case Zeitkomplexitat: O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42

Das Boxenstopp Problem: Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/42

Suchen Bilineare Suche

Das Boxenstopp Problem

Differenzmatrix

Sei D eine n X n Integermatrix, so dass D[/, j] die Differenz ist zwischen
der Anzahl der Liter Benzin die zur Verfiigung stehen und die man braucht
um von Boxenstopp i (rechts herum) nach Boxenstopp j zu fahren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/42

Suchen Bilineare Suche

Das Boxenstopp Problem

Differenzmatrix

Sei D eine n X n Integermatrix, so dass D[/, j] die Differenz ist zwischen
der Anzahl der Liter Benzin die zur Verfiigung stehen und die man braucht
um von Boxenstopp i (rechts herum) nach Boxenstopp j zu fahren.

j—1
Dli.j] = Y T(m) - V(m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/42

Das Boxenstopp Problem

Differenzmatrix

Sei D eine n X n Integermatrix, so dass D[/, j] die Differenz ist zwischen
der Anzahl der Liter Benzin die zur Verfiigung stehen und die man braucht
um von Boxenstopp i (rechts herum) nach Boxenstopp j zu fahren.

j—1
Dli.j] = Y T(m) - V(m).

Starting Boxenstopp
Boxenstopp k ist starting Boxenstopp gdw. V0 < i < n. D[k, i] > 0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/42

Das Boxenstopp Problem

Einige Eigenschaften

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/42

Das Boxenstopp Problem

Einige Eigenschaften

1. Fiiralle 0 < i,j < ngilt: D[i,i] = 0 und D[i,j]+ D[j,i] = 0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/42

Das Boxenstopp Problem

Einige Eigenschaften

1. Fiiralle 0 < i,j < n gilt: D[i,i] = 0 und D[i,j]+ D[j,i] = 0
2. Firalle 0 < i,j,m < ngilt: D[i,m] = Dl[i,j]+ D[j, m]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/42

Das Boxenstopp Problem

Einige Eigenschaften

1. Fiiralle 0 < i,j < n gilt: D[i,i] = 0 und D[i,j]+ D[j,i] = 0
2. Firalle 0 < i,j,m < ngilt: D[i,m] = Dl[i,j]+ D[j, m]
3. k ist starting Boxenstopp gdw. D0, k] minimal ist

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/42

Das Boxenstopp Problem

Einige Eigenschaften

1. Fiiralle 0 < i,j < n gilt: D[i,i] = 0 und D[i,j]+ D[j,i] = 0
2. Firalle 0 < i,j,m < ngilt: D[i,m] = Dl[i,j]+ D[j, m]

3. k ist starting Boxenstopp gdw. D0, k] minimal ist

4. D[i,j] > 0 = j ist kein starting Boxenstopp

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/42

Das Boxenstopp Problem: Bilineare Suche

Mittels einer Hilfsvariable d bekommen wir jetzt folgenden Algorithmus:

1 int PitstopSearch(int V[], int T[], int n) {

2 int left = 0, right = n - 1;

3 int d = V[n-1] - T[n-11; // d = D[0,n-1]

4 while (left != right) { // Invariant: d = D[left,right]

5 if (d <= 0) { left = left + 1; d = d + V[left] - T[left]; }
6

7

8

9

if (d >= 0) { right = right - 1;
d =d + V[right-1] - T[right-1];
}
}
10 return left

1}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/42

Das Boxenstopp Problem: Bilineare Suche

Mittels einer Hilfsvariable d bekommen wir jetzt folgenden Algorithmus:

1 int PitstopSearch(int V[], int T[], int n) {

2 int left = 0, right = n - 1;

3 int d = V[n-1] - T[n-11; // d = D[0,n-1]

4 while (left != right) { // Invariant: d = D[left,right]

5 if (d <= 0) { left = left + 1; d = d + V[left] - T[left]; }
6 if (d >= 0) { right = right - 1;

7 d =d + V[right-1] - T[right-1];

8 }

9 }

10 return left

1}

Es ist leicht festzustellen, dass W(n) € O(n), da die Schleife genau n Mal
durchlaufen wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/42

Ubersicht

© Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binarer Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/42

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Suchen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Bindre Suche — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/42

Binare Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8}

9 return false;

10 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/42

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/42

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/42

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n
2. [r+n] = [r]+n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/42

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n

2. [r+n] = [r]+n

3. |—r] = —]r]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/42

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].

Joost-Pieter Katoen Datenstrukturen und Algorithmen

36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(I+r)/2] -1 = [(r=1/2] = [(n-1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(I+r)/2] -1 = [(r=1/2] = [(n-1)/2]

oder

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(I+r)/2] -1 = [(r=1/2] = [(n-1)/2]

oder

sr—m = r—|(I+1)/2) = [(r=1)/2] = [(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/42

Suchen Binare Suche

Bindre Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(I+r)/2] -1 = [(r=1/2] = [(n-1)/2]

oder

sr—m = r—|(I+1)/2) = [(r=1)/2] = [(n—1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/42

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchliufe bei einer erfolglosen
Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/42

Suchen Binare Suche

Rekursionsgleichung fiir Bindre Suche
Sei S(n) die maximale Anzahl der Schleifendurchliufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 37/42

Suchen Binare Suche

Rekursionsgleichung fiir Bindre Suche
Sei S(n) die maximale Anzahl der Schleifendurchliufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

< B 0 falls n=20
() = { 14 S([(n—1)/2]) falls n >0

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 37/42

Suchen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchliufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

{ 0 falls n=20

S = L s(f(n—1)/2]) falls >0

Die erste Werten sind:

1
1

n |

S(n ‘

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/42

Suchen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchliufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

{ 0 falls n=20

S = L s(f(n—1)/2]) falls >0

Die erste Werten sind:

1
1

n |

S(n ‘

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4

Wir suchen eine geschlossene Formel fir S(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

(k-1)—-1|
| =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

2] - e52)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(zk_;)_ﬂ _ sz_ﬂ T S I =Y

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(zk_;)_ﬂ _ sz_ﬂ R S N

Daher gilt fir kK > 0 nach der Definition S(n) =1+ S([(n—1)/2]), daB:

S(2k-1) = 14502k 1-1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(zk_;)_ﬂ _ sz_ﬂ R S N

Daher gilt fir kK > 0 nach der Definition S(n) =1+ S([(n—1)/2]), daB:

S(2k-1) = 1+5(2K1—-1) und damit S(2K—1) = k+5(2° — 1)
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(zk_;)_ﬂ _ sz_ﬂ R S N

Daher gilt fir kK > 0 nach der Definition S(n) =1+ S([(n—1)/2]), daB:

S(2k-1) = 1+5(2K"1—1) und damit S(2k—1) = k+5(2° - 1) = k.
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/42

Bindre Suche — Analyse

N[
W
w o
w [
w I~
& (00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Bindre Suche — Analyse

1
1

2 3 4
2 2 3

w [
& (00

w I~

5
S(n) | 3

Vermutung: S(2%) = 1+ S(2¢1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Suchen Binare Suche

Bindre Suche — Analyse

n|0 1 2 3 45
S(mlo 12 2 3 3

6 7 8
3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.

Dann ist S(n) = |logn| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0

Induktion Uber n:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0

Induktion Uber n:

Basis: S(1) = 1 = |logl] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0
Induktion Uber n:
Basis: S(1) = 1 = |logl] +1

Induktionsschritt: Sei n > 1. Dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0
Induktion Uber n:

Basis: S(1) = 1 = |logl] +1
Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+5([(n-1)/2]) =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0
Induktion Uber n:
Basis: S(1) = 1 = |logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+5S5([(n—1)/2]) = 1+ |log[(n—1)/2]]+1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0
Induktion Uber n:
Basis: S(1) = 1 = |logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+5S5([(n—1)/2]) = 1+ |log[(n—1)/2]]+1

Man kann zeigen (Hausaufgabe): [log[(n—1)/2]] +1 = |logn].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 40/42

Suchen

Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fiir n >0
Induktion Uber n:
Basis: S(1) = 1 = |logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+5S5([(n—1)/2]) = 1+ |log[(n—1)/2]]+1
Man kann zeigen (Hausaufgabe): [log[(n—1)/2]] +1 = |logn].

Damit: S(n) = [log n] + 1 fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

40/42

Bindre Suche — Analyse

Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 41/42

Suchen Binare Suche

Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexitat Vorteil Nachteil
Lineare Suche O(n) einfach langsam
Bilineare Suche O(n) einfach / elegant langsam
Binare Suche O(log n) schnell sortiertes Array

(O(n-log n) Initia-
lisierungsaufwand)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 42/42

	Lineare Suche
	Average-Case Analyse von Linearer Suche

	Bilineare Suche
	Das Prominentensuche Problem
	Das Boxenstopp Problem

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

