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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]
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Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Wir halbieren den Suchraum in jedem Durchlauf.
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Bindre Suche — Beispiel
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Binare Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8}

9 return false;

10 }
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Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
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Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n
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Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n
2. [r+n] = [r]+n
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Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n

2. [r+n] = [r]+n

3. |—r] = —]r]
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Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
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Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

s m—1 = |(I+0)/2) =1 = |[(r=1)/2) = [(n—1)/2]
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]
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Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
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Rekursionsgleichungen

_Rekursionsgleichungen

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

S - 0 falls n=20
(n) = {1+5q@—1yﬂ) falls n > 0
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=20
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=20
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Wir suchen eine geschlossene Formel fiir S(n)
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

- -
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ T S I =Y
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ R NS N

Daher gilt fir k > 0 nach der Definition S(n) = 1+ S([(n— 1)/2]), dass:
S(2k-1) = 1+5(2k1-1)
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ R NS N

Daher gilt fir k > 0 nach der Definition S(n) = 1+ S([(n— 1)/2]), dass:
S(2k-1) = 1+5(2*~1) und damit S(2k-1) = k+S5(2° - 1) = k.
=0
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Bindre Suche — Analyse
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Bindre Suche — Analyse
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Vermutung: S(2%) = 1+ S(2¢1).
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Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,
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Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Vermutung: S(2%) = 1+ S(2¢1).
S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,
Oder: falls k — 1 < logn < k.

Dann ist S(n) = |logn| + 1.
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Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
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Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Induktion tiber n:
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Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:

Basis: S(1) = 1 = |[logl] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33



Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+5([(n—1)/2]) =
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+S5([(n—=1)/2]) = 1+ |log[(n—1)/2]] +1
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Damit: S(n) = [logn] + 1 fiir n > 0.
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Bindre Suche — Analyse

Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/33



Rekursionsgleichungen Binare Suche

Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexitat Vorteil Nachteil
Lineare Suche O(n) einfach langsam
Bilineare Suche O(n) einfach / elegant langsam
Binare Suche O(log n) schnell sortiertes Array

(O(n-log n) Initia-
lisierungsaufwand)
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Ubersicht

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen
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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.
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Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(n-1)+1 Lineare Suche
» T(n)=T([(n-1)/2]) +1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2-T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation
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Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.
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Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:
Fib(0) =0
Fib(1) =1
Fib(n + 2) = Fib(n + 1) + Fib(n)  fiir n > 0.
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Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1
Fib(n+ 2) = Fib(n+ 1) + Fib(n)  fiir n > 0.
n|0 1 2 3 45 6 7 8 9
Fib(n) [0 1 1 2 3 5 8§ 13 21 34
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n == || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer
Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
Tfibrec(0) =0
Tfibrec(1) =0
ThibRec(n+2)

Ttibrec(n+1) + Thiprec(n) +3  fiir n > 0.
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer

Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
TiibRec(0) = 0
Tfibrec(1) =0

TﬁbRec(n+2) = Tf,-bRec(n—i-l) + Tf,-bReC(n) +3 firn>0.

Zur Ermittlung der Zeitkomplexitatsklasse von fibRec l6st man diese
Gleichung.
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Analyse: Anwendung der ,,Substitutionsmethode*
Tiibrec(0) =0

Thibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.
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Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.
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Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.
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Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(27),
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Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(2"), oft abgekiirzt dargestellt als fibRec(n) € ©(2").
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Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33



Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.
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Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Damit ergibt sich:
Ttipirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).
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Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).
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Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}
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Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Thibiter2(n) € O(n).
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Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Es gilt fur n > 0:
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Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:

Fib(n+2)\ (1 1\° (Fib(n) \ (1 1\" (Fib(2)
(Fib(n+1)>_<1 0) '(Fib(n—1)>_'“_<1 o) '(Fib(l))
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Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~ \1 o) "\ Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fib(n+2)) _ (1 1\* (Fib(n) \ (1 1\" [(Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) " \1 0 Fib(1)

> Wie kénnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)
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Praktische Konsequenzen

GroBte losbare Eingabelange fiir angenommene 1 ps pro Operation:

Verfligbare Zeit Rekursiv  Iterativ.  Matrix

1ms 14 500 10%2
1ls 28 5.10° 1012000
1m 37 3-107 10700000
1h 45 1,8-10° 10%°°

Vereinfachende Annahmen: Lezbere Enzzlosl Ziss

> Nur arithmetische Operationen wurden beriicksichtigt.

» Die Laufzeit der arithmetischen Operationen ist fix, also nicht von
ihren jeweiligen Argumenten unabhangig.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

» Die Kosten aufeinanderfolgender Blocke werden addiert.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.

» Von alternativen Blocken wird das Maximum genommen.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Lange der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33



Ubersicht

9 Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
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Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.
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wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.
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Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33



Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
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Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k
T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1
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Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k

T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k

T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Falle jedoch selten auf.
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Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:
T(n)y=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.
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Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
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Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Einige Hinweise

» diese Methode ist sehr leistungsfahig, aber

» kann nur angewendet werden in den Fallen in denen es relativ einfach
ist, die Form der Lésung zu erraten.
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

» Wir vermuten als Lésung T(n) € O(n - log n).
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Betrachte folgende Rekursionsgleichung:
T(1) =1
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» Wir vermuten als Lésung T(n) € O(n - log n).
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

v
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1

v

v
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5 < c-3log3 firc>1
» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.
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Die Substitutionsmethode: Beispiel

Beispiel
T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn
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Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.
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Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:
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Die Substitutionsmethode: Variablentransformation

T(n) =2-T (y/n) + logn fiir n >0

(ﬁ) + log n | Variablentransformation m = log n
=2 (2'"/2) +m | Umbenennung T(2") = S(m)

=2-5(m/2)+m | Lsung vorheriges Beispiels

(m-log m) | m=logn
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