Rekursionsgleichungen

Datenstrukturen und Algorithmen

Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsall10/

30. April 2010, m Kéniginnentag

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/33

http://www-i2.rwth-aachen.de/i2/dsal10/

Ubersicht

© Binire Suche
@ Was ist bindre Suche?
@ Worst-Case Analyse von Binarer Suche

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

9 Losen von Rekursionsgleichungen
@ Die Substitutionsmethode

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/33

Ubersicht

© Binire Suche
@ Was ist bindre Suche?
@ Worst-Case Analyse von Binarer Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/33

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

Bindre Suche — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/33

Binare Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8}

9 return false;

10 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/33

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n
2. [r+n] = [r]+n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Bindre Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. lr+n] = |r|+n

2. [r+n] = [r]+n

3. |—r] = —]r]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

s m—1 = |(I+0)/2) =1 = |[(r=1)/2) = [(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/33

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 9/33

Rekursionsgleichungen

_Rekursionsgleichungen

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

S - 0 falls n=20
(n) = {1+5q@—1yﬂ) falls n > 0

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 9/33

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=20
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/33

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=20
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Wir suchen eine geschlossene Formel fiir S(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

(k—1)—-1|
| =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

- -

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ T S I =Y

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ R NS N

Daher gilt fir k > 0 nach der Definition S(n) = 1+ S([(n— 1)/2]), dass:
S(2k-1) = 1+5(2k1-1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ R NS N

Daher gilt fir k > 0 nach der Definition S(n) = 1+ S([(n— 1)/2]), dass:
S(2k-1) = 1+5(2*~1) und damit S(2—1) = k+5(2° - 1)
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Losen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k — 1.

Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(%_21)_1} _ sz_ﬂ R NS N

Daher gilt fir k > 0 nach der Definition S(n) = 1+ S([(n— 1)/2]), dass:
S(2k-1) = 1+5(2*~1) und damit S(2k-1) = k+S5(2° - 1) = k.
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

Bindre Suche — Analyse

N[
W
w o
w [
w I~
& (00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Bindre Suche — Analyse

1
1

2 3 4
2 2 3

w [
& (00

w I~

5
S(n) | 3

Vermutung: S(2%) = 1+ S(2¢1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Vermutung: S(2%) = 1+ S(2¢1).
S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,
Oder: falls k — 1 < logn < k.

Dann ist S(n) = |logn| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Induktion tiber n:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:

Basis: S(1) = 1 = |[logl] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+5([(n—1)/2]) =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+S5([(n—=1)/2]) = 1+ |log[(n—1)/2]] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Damit: S(n) = [logn] + 1 fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Bindre Suche — Analyse

Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/33

Rekursionsgleichungen Binare Suche

Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexitat Vorteil Nachteil
Lineare Suche O(n) einfach langsam
Bilineare Suche O(n) einfach / elegant langsam
Binare Suche O(log n) schnell sortiertes Array

(O(n-log n) Initia-
lisierungsaufwand)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/33

Ubersicht

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/33

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/33

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/33

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(n-1)+1 Lineare Suche
» T(n)=T([(n-1)/2]) +1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2-T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/33

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/33

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:
Fib(0) =0
Fib(1) =1
Fib(n + 2) = Fib(n + 1) + Fib(n) fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/33

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1
Fib(n+ 2) = Fib(n+ 1) + Fib(n) fiir n > 0.
n|0 1 2 3 45 6 7 8 9
Fib(n) [0 1 1 2 3 5 8§ 13 21 34

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/33

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n == || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/33

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer
Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
Tfibrec(0) =0
Tfibrec(1) =0
ThibRec(n+2)

Ttibrec(n+1) + Thiprec(n) +3 fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/33

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer

Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
TiibRec(0) = 0
Tfibrec(1) =0

TﬁbRec(n+2) = Tf,-bRec(n—i-l) + Tf,-bReC(n) +3 firn>0.

Zur Ermittlung der Zeitkomplexitatsklasse von fibRec l6st man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/33

Analyse: Anwendung der ,,Substitutionsmethode*
Tiibrec(0) =0

Thibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(27),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(2"), oft abgekiirzt dargestellt als fibRec(n) € ©(2").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6 }

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Damit ergibt sich:
Ttipirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2]

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 21/33

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Thibiter2(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Es gilt fur n > 0:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/33

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:

Fib(n+2)\ (1 1\° (Fib(n) \ (1 1\" (Fib(2)
(Fib(n+1)>_<1 0) '(Fib(n—1)>_'“_<1 o) '(Fib(l))

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/33

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~ \1 o) "\ Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fib(n+2)) _ (1 1* (Fib(n) \ (1 1\" [(Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) " \1 0 Fib(1)

> Wie kénnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/33

Praktische Konsequenzen

GroBte losbare Eingabelange fiir angenommene 1 ps pro Operation:

Verfligbare Zeit Rekursiv Iterativ. Matrix

1ms 14 500 10%2
1ls 28 5.10° 1012000
1m 37 3-107 10700000
1h 45 1,8-10° 10%°°

Vereinfachende Annahmen: Lezbere Enzzlosl Ziss

> Nur arithmetische Operationen wurden beriicksichtigt.

» Die Laufzeit der arithmetischen Operationen ist fix, also nicht von
ihren jeweiligen Argumenten unabhangig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/33

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

» Die Kosten aufeinanderfolgender Blocke werden addiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.

» Von alternativen Blocken wird das Maximum genommen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Lange der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33

Ubersicht

9 Losen von Rekursionsgleichungen
@ Die Substitutionsmethode

Joost-Pieter Katoen Datenstrukturen und Algorithmen PLYKX)

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/33

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k
T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/33

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k

T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k

T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Falle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/33

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:
T(n)y=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/33

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/33

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Einige Hinweise

» diese Methode ist sehr leistungsfahig, aber

» kann nur angewendet werden in den Fallen in denen es relativ einfach
ist, die Form der Lésung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

» Wir vermuten als Lésung T(n) € O(n - log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5 < c-3log3 firc>1
» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Die Substitutionsmethode: Beispiel

Beispiel
T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/33

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/33

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/33

Die Substitutionsmethode: Variablentransformation

T(n) =2-T (y/n) + logn fiir n >0

(ﬁ) + log n | Variablentransformation m = log n
=2 (2'"/2) +m | Umbenennung T(2") = S(m)

=2-5(m/2)+m | Lsung vorheriges Beispiels

(m-log m) | m=logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/33

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

	Rekursionsgleichungen
	Fibonacci-Zahlen
	Ermittlung von Rekursionsgleichungen

	Lösen von Rekursionsgleichungen
	Die Substitutionsmethode

