Rekursionsgleichungen

Datenstrukturen und Algorithmen

Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen
Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.rwth-aachen.de/i2/dsal10/

30. April 2010, m Koniginnentag

RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/41
Ubersicht
© Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binérer Suche
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/41

Rekursionsgleichungen

Ubersicht

© Binire Suche
@ Was ist bindre Suche?
@ Worst-Case Analyse von Binarer Suche

©

Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

©

Loésen von Rekursionsgleichungen

@ Die Substitutionsmethode

@ Rekursionsbaume

@ Die Mastermethode (nachste Vorlesung)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/41

Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Fazit:

Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/41

http://www-i2.rwth-aachen.de/i2/dsal10/

Binare Suche — Beispiel Binare Suche

1 bool binSearch(int E[], int n, int K) {

2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8
9

return false;
10}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/41 Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/41
Binare Suche — Analyse Binare Suche — Analyse

Abkilirzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays
Im nachsten Durchlauf ist die GroBe des Arrays m — I oder r — m.

Sei r € R und n € N. Dann gilt: Hierbei ist m= [(/ 4+ r)/2].
Llr+n] = [r]+n Die neue GréBe ist also:
2. [r+n] = [r]+n »m—1 = |(I+n/2]—1 = [(r=1)/2) = [(n-1)/2]
3. |-r] = —]r] oder
>r—m = r—[(I+r)/2] = [(r=1)/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GréBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/41 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/41

Rekursionsgleichungen Binare Suche Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Binare Suche Losen der Rekursionsgleichung

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen

Suche.
. . . . Betrachte den Spezialfall n = 2% — 1.
Wir erhalten die Rekursionsgleichung:
S0 0 falls n=0 Da die maximale GroBe des Arrays [(n—1)/2] ist, leiten wir her:
= k_ 1y _ k _
14 5([(n—1)/2]) falls n >0 {(221)1} _ F . 2} — ok l_q) = okl
Die ersten Werten sind:

Daher gilt fur k > 0 nach der Definition S(n) = 1+ S([(n — 1)/2]), dass:

n|0 1 2 3 45 6 7 8 S(2¥-1) = 1+5(2**~1) und damit S(2*~1) = k+5(2° - 1) = k.
S(m|o 1 2 2 3 3 3 3 4 5
Wir suchen eine geschlossene Formel fiir S(n)
Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/41
Binare Suche — Analyse Binare Suche — Analyse
Wir vermuten S(n) = [logn| + 1 fir n >0
n|0 1 2 3 45 6 7 8
S(n ‘ 01 2 2 3 3 3 3 4 Induktion tber n:
Vermutung: S(2%) = 1+ S(2k71). Basis: S(1) = 1 = [logl] +1
S(n) steigt monoton, also S(n) = k falls 2k=1 < n < 2k, Induktionsschritt: Sei n > 1. Dann:
S(n) = 14+5([(n—1)/2]) = 1+ [log[(n—1)/2]] +1
Oder: falls k — 1 < log n < k. (n) _ (I)/21) Llog()/21]
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]| +1 = |logn].
Dann ist S(n) = |logn| + 1.
(n) = [log n] Damit: S(n) = [logn] + 1 fir n > 0.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/41 Joost-Pieter Katoen

Datenstrukturen und Algorithmen 12/41

Rekursionsgleichungen Binare Suche

Binare Suche — Analyse

Die Worst Case Zeitkomplexitat der bindren Suche ist W(n) = |logn| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/41
Rekursionsgleichungen Rekursionsgleichungen
Ubersicht

@ Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/41

Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexitat Vorteil Nachteil
Lineare Suche O(n) einfach langsam
Bilineare Suche O(n) einfach / elegant langsam
Binare Suche O(log n) schnell sortiertes Array
(O(n-log n) Initia-
lisierungsaufwand)
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/41

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

» T(n)=T(n-1)+1 Lineare Suche

» T(n)=T([(n—1)/2])+1 Binare Suche
» T(n)=T(n-1)+n—-1 Bubblesort
» T(n)=2-T(n/2)+n—1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation
Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/41

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
> Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
» Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Die Anzahl der Kaninchenpaare lasst sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1
Fib(n + 2) = Fib(n + 1) + Fib(n) fiir n > 0.
n|l0 1 2 3 45 6 7 8 9
Fib(n) |0 1 1 2 3 5 8 13 21 34
Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/41

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Ttibrec(1) =0
Ttibrec(n + 2) = Thiprec(n + 1) + Tfiprec(n) +3 fiir n > 0.

Losung (mittels vollstandiger Induktion)

Tf,-bReC(n) =3. Fib(n + 1) - 3.

2(=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Tribrec(n) € ©(2"), oft abgekirzt dargestellt als fibRec(n) € ©(2").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/41

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

int fibRec(int n) {

1

2 if m==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer

Operationen Tfiprec(n) ist durch folgende Rekursionsgleichung gegeben:
TiibRec(0) = 0
TiibRec(1) = 0

Ttibrec(n+2) = Tfibrec(n+1) + Thibrec(n) +3 fiir n > 0.

Zur Ermittlung der Zeitkomplexitatsklasse von fibRec |6st man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/41
Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus

Iterativer Algorithmus

int fibIter(int n) {

1

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (int i = 2; i <= n; i++) {
5 fli] = f[i-1] + £[i-2];

6 }

7 return fl[n];

8}t

Die benétigte Anzahl arithmetischer Operationen Tfpjee (n) ist:
Thibiter(0) =0 und Tpjer(1) = 0
Thbiter(n+2)=3-(n+1) firn>0.

Damit ergibt sich:

Ttibirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/41

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £ [i-1] und £[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {
2 dint a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 o] a + b;

5 a b;
6
7
8
9

b c;
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Ttibiter2(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/41

Praktische Konsequenzen

GroBte I6sbare Eingabeldnge fir angenommene 1 ps pro Operation:

Verfligbare Zeit Rekursiv Iterativ. Matrix

1ms 14 500 1012
il 28 5.10° 1012000
1m g7 g-dpf gty
1h 45 1,8-10° 10%°

Vereinfachende Annahmen: Losbare Eingabelange

» Nur arithmetische Operationen wurden beriicksichtigt.

» Die Laufzeit der arithmetischen Operationen ist fix, also nicht von
ihren jeweiligen Argumenten unabhangig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/41

Rekursionsgleichungen Rekursionsgleichungen

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fir n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~ \1 0} "\ Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fib(n+2)) _ (1 1* (Fib(n) \ (1 1\" [Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) """ \1 0 Fib(1)

> Wie kdnnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/41
Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tgyp1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Lange der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/41

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Ubersicht

© Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
@ Rekursionsbaume
@ Die Mastermethode (nachste Vorlesung)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/41
Rekursionsgleichungen Losen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Einfache Falle

Fiir einfache Falle gibt es geschlossenen Losungen, z. B. fiir k,c € N:
T(0)=k
T(n+1)=c-T(n) furn>=>0
hat die eindeutige Lésung T (n) = c"-k.
Und die Rekursionsgleichung:
T(0)=k
T(n+1)=T(n)+f(n) firn=>0

hat die eindeutige Lsung T(n) = T(0) + > £(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Fille jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/41

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und Iésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T(|n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T (n) fir kleine n konstant ist
anstatt genau festzustellen was T(0) und T (1) ist. Also z.B.:

T(0)=cund T(1)=¢" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n)=T(v/n)+n bedeutet T(n)= T(|/n])+ n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/41
Rekursionsgleichungen Lésen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:
Ty =b-T(2)+f(n

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind 7(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/41

Die Substitutionsmethode Die Substitutionsmethode: Beispiel

Substitutionsmethode Beispiel

Die Substitutionsmethode besteht aus zwei Schritten:

Betrachte folgende Rekursionsgleichung:
1. Rate die Form der Losung, durch z.B.: T(1)=1

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

T(n)=2-T(n/2)+n firn>1.
2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen, » Wir vermuten als Lésung T(n) € O(n - log n).
dass die Losung funktioniert. » Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
» Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5< c-3log3 firc>1

> diese Methode ist sehr leistungsfahig, aber B}
» Uberpriife dann durch Substitution und Induktion (s. nachste Folie)

» kann nur angewendet werden in den Fallen in denen es relativ einfach

ist, die Form der Lésung zu erraten. » Damit gilt fiir jedes ¢ > 1 und n > ng > 1, dass T(n) < c-n-log n.
Joost-Picter Katoen Datenstrukturen und Algorithmen 30/41
Die Substitutionsmethode: Beispiel Die Substitutionsmethode: Feinheiten
T(n)=2-T(n/2)+nfirn>1 und T(1)=1 Einige wichtige Hinweise

T(n)= 2-T(n/2)+n | lnehletemhypadicss 1. D_le asyr;nptohsche ?ch.ranke ist ko_rrekt er_raten, kann aber manchmal
nicht mit der vollstandigen Induktion bewiesen werden.

<2(cn/2-logn/2) +n Das Problem ist gewdhnlich, dass die Induktionsannahme nicht streng

_ log-Rechnung: (log = log,) genug ist.

= c:n:log /2 + 1 logn/2 = log n — log 2

= cn-logn—c-n-log2 +n 2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:

<cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/41 Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/41

Die Substitutionsmethode: Variablentransformation

T(n)=2-T (v/n) + log n fir n >0
T(n)=2-T (v/n) +logn | Variablentransformation m = log n
& T(2M=2T(2"2)+m | Umbenennung T(2") = S(m)
< S(m)=2.5(m/2) +m | Lésung vorheriges Beispiels
< S(m) < cm-logm
< S(m) € O(m-logm) | m=logn

< T(n) € O(log n-loglog n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/41

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

	Rekursionsgleichungen
	Fibonacci-Zahlen
	Ermittlung von Rekursionsgleichungen

	Lösen von Rekursionsgleichungen
	Die Substitutionsmethode
	Rekursionsbäume
	Die Mastermethode (nächste Vorlesung)

