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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(](n-1)/2])+1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Die zentrale Frage ist: Wie l6st man solche Rekursionsgleichungen?
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum
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Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.
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Mastertheorem Lésen von Rekursionsgleichungen
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Beispiel
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v

v

v

» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.
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Die Substitutionsmethode: Beispiel

T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn
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Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.
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Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n
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log,n—1 3\/
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
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Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

log,n—1 7

1
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.
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Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.
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Mastertheorem Lésen von Rekursionsgleichungen
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Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Mastertheorem

Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) =3 - T(n/4) + n sieht etwa so aus:

Nichtrekursive

Aktuelles ________ » T(n)
Rekursionsargument o la----~~ Kosten
T(n/4) T(n/4) R T(n/4)
n/4 n/4 n/4
T(n/16)] [T(n/16)] [T(n/16) T(n/16)| [T(n/16)] [T(n/16)
n/16 n/16 njit6 | n/16 n/16 n/16
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Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

) | > N
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Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

N .
S . r—
T(n/16)||T(n/16)|| T (n/16) T(n/16)||T(n/16)|| T (n/16)
nj16 || n/16 || nji6 | w16 | /16 |[ nj1e | ™ 9n/16
T)TA)TQA) T() T(L) e T(1) T(1) T(1) T(1) T(1)
< 3I0g4n n|°g43 >
logyn—1 3\
T(n) = ;} (4> .n + c-n's3

N P —— Gesamtkosten
Summe iiber KOSten pro  fiir die Blatter
alle Ebenen  Ebene mit T(1) = ¢
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Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhalt man nun folgendermaBen:

logyn—1 i
T(n) = Z (4) -n+ c-n'°3 | Vernachlissigen kleinerer Terme

i=0
o) 3 i
< Z (4) -n+c-n'°s3 | Geometrische Reihe
i=0
1 log, 3
< -n—+ c- nosts | Umformen

3 Asymptotische Ordnung bestimmen
setze ein, dass log, 3 < 1
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Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.
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Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Und wir stellen fest, dass es ein ny gibt, so dass T(ng) < d-ng ist.
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Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.
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Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind 7(n).
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Das Mastertheorem

n

T(n)zb-T( >+f(n) mit b > 1 und ¢ > 1.

c

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.
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1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)
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Das Mastertheorem

T(n):b-T<Z>+f(n) mit b>1 und ¢ > 1.

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.

Mastertheorem

Wenn Dann
1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)
2. f(n) € ©(nk) T(n) € ©(nf -log n)

3. f(n) € Q(nE*®) fiir ein € > 0 und T(n) € ©(f(n))
b-f(n/c) < d-f(n) fir d < 1 und
n hinreichend groB

» Bemerke, dass das Mastertheorem nicht alle Falle abdeckt.
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Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition
Wenn Dann

1. f(n) polynomial kleiner ist als nf T(n) € ©(nf)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
1. f(n) polynomial kleiner ist als nf T(n) € ©(nf)
2. f(n) und nf die gleiche GroBe haben T(n) € ©(nf - log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Mastertheorem Lésen von Rekursionsgleichungen

Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
1. f(n) polynomial kleiner ist als nfE T(n) € ©(nf)
2. f(n) und nf die gleiche GroBe haben T(n) € ©(nf - log n)

3. f(n) ist polynomial gréBer als nf und er- T (n) € ©(f(n))
fullt b-f(n/c) < d-f(n)

Nicht abgedeckte Falle:

1. f(n) ist kleiner als nf, jedoch nicht polynomiell kleiner.
2. f(n) ist groBer als nE, jedoch nicht polynomiell groBer.
3. f(n) ist polynomiell gréBer als nf, erfiillt nicht b-f(n/c) < d-f(n).
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Anwendung des Mastertheorems

T(n)=4-T(n/2)+n
» Somit: b=4, c=2und f(n) =n; E =log4/log2 = 2.

» Da f(n) = n€ O(n>~9), gilt Fall 1:| T(n) € ©(n?)

Beispiel
T(n)=4-T(n/2) + n?
» Somit: b=4, c =2 und f(n) = n?, E = log4/log2 = 2.
» Da n? ¢ O(n?>¢), gilt Fall 1 nicht.
» Aber weil f(n) = n? € ©(n?), gilt Fall 2: | T(n) € ©(n? - log n)
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Mastertheorem Lésen von Rekursionsgleichungen

Anwendung des Mastertheorems

Beispiel
T(n)=4T(n/2) + nd
» Somit: b=4, c =2 und f(n) = n% E = log4/log?2 = 2.
» Wegen E = 2 gelten Falle 1 und 2 offenbar nicht.
Da f(n) = n® € Q(n?**) fiir e = 1, kdnnte Fall 3 gelten.
Uberpriife: gilt f(n/2) g-f( ) fur d < 1 und hinreichend grosse n?
Dies liefert $n® < §-n*, und dies gilt fiir alle 3 < d <1 (und n)

v

v

v

v

Somit gilt Fall 3 tatsachlich und wir folgern: T(n) € ©(n®)
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Das Mastertheorem ist nicht immer anwendbar

Beispiel
T(n)=4-T(n/2)+ &

» Also gilt: b =4, ¢ =2 und f(n) = n?/logn; E = 2.

Fall 1 ist nicht anwendbar:
n?/logn ¢ O(n*~*), da f(n)/n* = (logn)~! ¢ O(n~*).
Fall 2 ist nicht anwendbar: n?/log n & ©(n?).
Fall 3 ist nicht anwendbar:
f(n) & Q(n**), da f(n)/n® = (logn)~t & O(n™®).

—> Das Mastertheorem hilft hier iiberhaupt nicht weiter!

» Durch Substitution erhilt man: | T(n) € ©(n? - log log n)
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Master Theorem: Beweis
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