Mastertheorem

Datenstrukturen und Algorithmen

Vorlesung 6: Mastertheorem (K4)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

4. Mai 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

http://www-i2.rwth-aachen.de/i2/dsal10/

Ubersicht

@ Losen von Rekursionsgleichungen
@ Substitutionsmethode
@ Rekursionsbaume
@ Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Ubersicht

@ Losen von Rekursionsgleichungen
@ Substitutionsmethode
@ Rekursionsbaume
@ Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(](n-1)/2])+1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Die zentrale Frage ist: Wie l6st man solche Rekursionsgleichungen?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

» Bestimme ob fiir ein geeignetes ng, fiir n > ng, T(n) < c-n-log n gilt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir ein geeignetes ng, fiir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

» Bestimme ob fiir ein geeignetes ng, fiir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir ein geeignetes ng, fiir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Mastertheorem Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n fiurn>1.

» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir ein geeignetes ng, fiir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v

» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Die Substitutionsmethode: Beispiel

T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

log,n—1 3\/
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

log,n—1 7

1
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Mastertheorem Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Mastertheorem

Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Mastertheorem

Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) =3 - T(n/4) + n sieht etwa so aus:

Nichtrekursive

Aktuelles ________ » T(n)
Rekursionsargument o la----~~ Kosten
T(n/4) T(n/4) R T(n/4)
n/4 n/4 n/4
T(n/16)] [T(n/16)] [T(n/16) T(n/16)| [T(n/16)] [T(n/16)
n/16 n/16 njit6 | n/16 n/16 n/16

Joost-Pieter Katoen

Datenstrukturen und Algorithmen

10/20

Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

) | > N

I e e B = el

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 11/20

Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

N .
S . r—
T(n/16)||T(n/16)|| T (n/16) T(n/16)||T(n/16)|| T (n/16)
nj16 || n/16 || nji6 | w16 | /16 |[nj1e | ™ 9n/16
T)TA)TQA) T() T(L) e T(1) T(1) T(1) T(1) T(1)
< 3I0g4n n|°g43 >
logyn—1 3\
T(n) = ;} (4> .n + c-n's3

N P —— Gesamtkosten
Summe iiber KOSten pro fiir die Blatter
alle Ebenen Ebene mit T(1) = ¢

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 11/20

Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhalt man nun folgendermaBen:

logyn—1 i
T(n) = Z (4) -n+ c-n'°3 | Vernachlissigen kleinerer Terme

i=0
o) 3 i
< Z (4) -n+c-n'°s3 | Geometrische Reihe
i=0
1 log, 3
< -n—+ c- nosts | Umformen

3 Asymptotische Ordnung bestimmen
setze ein, dass log, 3 < 1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-:n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Und wir stellen fest, dass es ein ny gibt, so dass T(ng) < d-ng ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf

» Jedes dieser Teilprobleme hat die GroBe ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind 7(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Das Mastertheorem

n

T(n)zb-T(>+f(n) mit b > 1 und ¢ > 1.

c

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Das Mastertheorem

T(n):b-T<Z>+f(n) mit b>1 und ¢ > 1.

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.
Wenn Dann
1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Das Mastertheorem

T(n):b-T<Z>+f(n) mit b>1 und ¢ > 1.

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.

Mastertheorem

Wenn Dann
1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)
2. f(n) € ©(nk) T(n) € ©(nf -log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Das Mastertheorem

T(n):b-T<Z>+f(n) mit b>1 und ¢ > 1.

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.

Mastertheorem

Wenn Dann
1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)
2. f(n) € ©(nk) T(n) € ©(nf -log n)

3. f(n) € Q(nE+e) fiir ein ¢ > 0 und T(n) € ©(f(n))
b-f(n/c) < d-f(n) fir d < 1 und
n hinreichend groB

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Das Mastertheorem

T(n):b-T<Z>+f(n) mit b>1 und ¢ > 1.

> Anzahl der Blitter im Rekursionsbaum: nf mit E = log b/ log c.

Mastertheorem

Wenn Dann
1. f(n) € O(nE=*) fiir ein ¢ > 0 T(n) € ©(nF)
2. f(n) € ©(nk) T(n) € ©(nf -log n)

3. f(n) € Q(nE*®) fiir ein € > 0 und T(n) € ©(f(n))
b-f(n/c) < d-f(n) fir d < 1 und
n hinreichend groB

» Bemerke, dass das Mastertheorem nicht alle Falle abdeckt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition
Wenn Dann

1. f(n) polynomial kleiner ist als nf T(n) € ©(nf)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
1. f(n) polynomial kleiner ist als nf T(n) € ©(nf)
2. f(n) und nf die gleiche GroBe haben T(n) € ©(nf - log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Mastertheorem Lésen von Rekursionsgleichungen

Das Mastertheorem verstehen

In jedem der 3 Fille wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
1. f(n) polynomial kleiner ist als nfE T(n) € ©(nf)
2. f(n) und nf die gleiche GroBe haben T(n) € ©(nf - log n)

3. f(n) ist polynomial gréBer als nf und er- T (n) € ©(f(n))
fullt b-f(n/c) < d-f(n)

Nicht abgedeckte Falle:

1. f(n) ist kleiner als nf, jedoch nicht polynomiell kleiner.
2. f(n) ist groBer als nE, jedoch nicht polynomiell groBer.
3. f(n) ist polynomiell gréBer als nf, erfiillt nicht b-f(n/c) < d-f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Anwendung des Mastertheorems

T(n)=4-T(n/2)+n
» Somit: b=4, c=2und f(n) =n; E =log4/log2 = 2.

» Da f(n) = n€ O(n>~9), gilt Fall 1:| T(n) € ©(n?)

Beispiel
T(n)=4-T(n/2) + n?
» Somit: b=4, c =2 und f(n) = n?, E = log4/log2 = 2.
» Da n? ¢ O(n?>¢), gilt Fall 1 nicht.
» Aber weil f(n) = n? € ©(n?), gilt Fall 2: | T(n) € ©(n? - log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Mastertheorem Lésen von Rekursionsgleichungen

Anwendung des Mastertheorems

Beispiel
T(n)=4T(n/2) + nd
» Somit: b=4, c =2 und f(n) = n% E = log4/log?2 = 2.
» Wegen E = 2 gelten Falle 1 und 2 offenbar nicht.
Da f(n) = n® € Q(n?**) fiir e = 1, kdnnte Fall 3 gelten.
Uberpriife: gilt f(n/2) g-f() fur d < 1 und hinreichend grosse n?
Dies liefert $n® < §-n*, und dies gilt fiir alle 3 < d <1 (und n)

v

v

v

v

Somit gilt Fall 3 tatsachlich und wir folgern: T(n) € ©(n®)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Das Mastertheorem ist nicht immer anwendbar

Beispiel
T(n)=4-T(n/2)+ &

» Also gilt: b =4, ¢ =2 und f(n) = n?/logn; E = 2.

Fall 1 ist nicht anwendbar:
n?/logn ¢ O(n*~*), da f(n)/n* = (logn)~! ¢ O(n~*).
Fall 2 ist nicht anwendbar: n?/log n & ©(n?).
Fall 3 ist nicht anwendbar:
f(n) & Q(n**), da f(n)/n® = (logn)~t & O(n™®).

—> Das Mastertheorem hilft hier iiberhaupt nicht weiter!

» Durch Substitution erhilt man: | T(n) € ©(n? - log log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Master Theorem: Beweis

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Lösen von Rekursionsgleichungen
	Substitutionsmethode
	Rekursionsbäume
	Mastertheorem

