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Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

» Sortiert wird haufig benutzt, und hat viele Anwendungen.
» Sortierverfahren geben Ideen, wie man Algorithmen verbessern kann.

» Geniale und optimale Algorithmen wurden gefunden.
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Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

v

Sortiert wird haufig benutzt, und hat viele Anwendungen.

v

Sortierverfahren geben ldeen, wie man Algorithmen verbessern kann.

v

Geniale und optimale Algorithmen wurden gefunden.

v

Neben der Funktionsweise der Algorithmen widmen wir uns vor allem
der Laufzeitanalyse.
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Anwendungen des Sortierens

Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binare Suche findet ein Element in O(log n).
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Beispiel (Engstes Paar (closest pair))

> Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.
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Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binare Suche findet ein Element in O(log n).

Beispiel (Engstes Paar (closest pair))

> Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.

» Nach dem Sortieren liegen die Paare nebeneinander.
Der Aufwand ist dann noch O(n).
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Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

» Sind alle n Elemente einzigartig oder gibt es Duplikate?
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Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

» Sind alle n Elemente einzigartig oder gibt es Duplikate?
» Das k-t groBte Element einer Menge?

Beispiel (Textkompression (Entropiekodierung))

» Sortiere die Buchstaben nach Haufigkeit des Auftretens um sie dann
effizient zu kodieren (d. h. mit moglichst kurzen Bitfolgen).
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Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.
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Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., a,} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = a;.
2. Transitivitat: a; < a; und a; < a, impliziert a; < ai.

3. Totalitat: a; < aj oder a; < a;.

Beispiel

Die lexikographische Ordnung von Zeichenketten und die numerische
Ordnung von Zahlen sind totale Ordnungen.
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Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.
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Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Ausgabe: Ein Array F mit n Eintragen, so dass

1. F[1], ..., F[n] eine Permutation von E[1], ..., E[n] ist
2. Fiur alle 0 < i,j < ngilt: F[i]l < F[i+1].

Annahmen dieser Vorlesung

> Die zu sortierende Sequenz ist als Array organisiert, nicht als Liste.

» Die Elementaroperation ist ein Vergleich von Schliisseln.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32



Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.
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Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.
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Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Wenn z. B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.
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Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Wenn z. B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.

Wir werden erst einen einfachen Sortieralgorithmus betrachten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32



Dutch National Flag Problem (1)
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Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau
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E[i] == rot, E[i] == blau oder
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Erwiinschte Worst-Case Zeitkomplexitat: ©(n).
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Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau
Ausgabe: Ein sortiertes Array mit den Eintragen aus E.
Erwiinschte Worst-Case Zeitkomplexitat: ©(n).

Erwiinschte Worst-Case Speicherkomplexitat: ©(1).
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Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b,
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Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:

1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r
E[i] == rot.

2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d.h. fir alle r < i < u
E[i] == weiss.

3. E[ul, ..., E[b-1] ist die unbekannte Region, d.h. fiir alle u </ <
b
E[i] == rot oder E[i] == weiss oder E[i] == blau.

4. E[b], ..., E[n] ist die “blaue” Region, d.h. fiiralleb </ <n

E[i] == blau.

Arrayelemente konnen mit der swap-Operation vertauscht werden.
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Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[u] == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { rou b
11 u=u+1;

s " m—"
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }
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Frage: Ist der DNF-Algorithmus ein stabiles Sortierverfahren?
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Frage: Ist der DNF-Algorithmus ein stabiles Sortierverfahren? Antwort:
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Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.
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DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen
Speicherplatz.

Zeitkomplexitat

Betrachte als elementare Operation die Vergleiche der Form E[i] == ....

Die Worst-Case Zeitkomplexitat ist ©(n), da:

1. in jedem Durchlauf werden eine konstante Anzahl Vergleiche
durchgefiihrt

2. die Anzahl der Durchlaufe ist ©(n), da in jedem Durchlauf die GroBe
vom unbekannten Gebiet b - u um eins verkleinert wird.
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Sortieren durch Einfiigen — Insertionsort
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Sortieren durch Einfiigen — Insertionsort

bereits sortiert noch unsortiert
als Nachstes einzusortieren

» Durchlaufen des (unsortierten) Arrays von links nach rechts.
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Sortieren durch Einfiigen — Insertionsort
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bereits sortiert noch unsortiert

als Nachstes einzusortieren

v

Durchlaufen des (unsortierten) Arrays von links nach rechts.

v

Gehe zum ersten bisher noch nicht beriicksichtigte Element.

v

Fiige es im sortierten Teil (links) nach elementweisem Vergleichen ein.

v

Dieser Algorithmus funktioniert auch mit anderen lineare
Anordnungen, etwa Listen.
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Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}
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6
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E[j1 = E[j-11; // schiebe Element j-1 mach rechts
}
E[j] = v; // fuge E[%] an der richtigen Stelle ein
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10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.
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Insertionsort — Best- und Worst-Case-Analyse

» Im Best-Case ist das Array bereits sortiert.
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Insertionsort — Average-Case-Analyse (1)

Annahmen fiir die Average-Case-Analyse

» Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.

» Die zu sortierenden Elemente sind alle verschieden.
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Insertionsort — Average-Case-Analyse (1)

Annahmen fiir die Average-Case-Analyse

» Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.
» Die zu sortierenden Elemente sind alle verschieden.
Es gilt:
n—1

A(n) = Zerwartete Anzahl an Vergleichen, um E[i] einzusortieren
i=1

Die erwartete Anzahl an Vergleichen, um den richtigen Platz fir E[i] zu
finden wird dann wie folgt hergeleitet:
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Insertionsort — Average-Case-Analyse (1)
i Pr {i—tes Element wird } Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | ~an Position j einzufiigen
J:
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Insertionsort — Average-Case-Analyse (1)

i Pr {i—tes Element wird } Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | ~an Position j einzufiigen
J:

E[i] wird an beliebiger Position j
mit gleicher W'lichkeit eingefiigt

’ 1 .Anzahl Vergleiche, um E[i]
i+ 1 an Position j einzufiigen

j=0
Anzahl Vergleiche, um an Position 0
oder 1 einzufligen ist /, sonst i—j+1.
1 1<
= - . i—j+1
AR AP G )

J=1
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Insertionsort — Average-Case-Analyse (1)

i Pr {i—tes Element wird } 'Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | an Position j einzufiigen
J:

E[i] wird an beliebiger Position j
mit gleicher W'lichkeit eingefiigt

’ 1 .Anzahl Vergleiche, um E[i]
i+ 1 an Position j einzufiigen

j=0
Anzahl Vergleiche, um an Position 0
oder 1 einzufligen ist /, sonst i—j+1.
1 1<
_ w ) a1
ir1 't J.;(' j+1)
| Vereinfachen
1 1 1
_ Z i I+ _ I $1- - .
i+ 1 mr i+ 1 i+1 2 2 i+1
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Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):nf(;“_iiJ

i=1
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Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):§(£+1_ii1)

i=1

| Auseinanderziehen

RGP
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Sortieren Sortieren durch Einfiigen

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):§(£+1_ii1)

i=1

| Auseinanderziehen

| Verschieben des Summenstarts
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Sortieren Sortieren durch Einfiigen

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):nf(;“_iiJ

i=1

| Auseinanderziehen

| Verschieben des Summenstarts

n

Harmonische Reihe: Z(l/l) ~Inn
i=1
n-(n—1)

A(n)%ern—lnn € 0(n?)
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Ubersicht

© Mergesort
@ Das Divide-and-Conquer Paradigma

@ Mergesort
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Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem

in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.
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kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.
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Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.
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Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem &hneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Verbinde die Losungen der Teilprobleme zur Lésung des
Ausgangsproblem.
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Sortieren Mergesort

Mergesort — Strategie

|

rekursiv Sortieren L Mitte L rekursiv Sortieren

\/ﬁrschmelz;e\/

Teile das Array in zwei —moglichst gleichgroBe— Halften.
Beherrsche: Sortiere die Teile durch rekursive Mergesort-Aufrufe.

Verbinde: Mische die 2 sortierte Teilsequenzen zu einem einzigen,
sortierten Array.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/32



Mergesort — Algorithm

1 void mergeSort(int E[], int left, int right) {

> if (left < right) {

3 int mid = (left + right) / 2; // finde Mitte

4 mergeSort(E, left, mid); // sortiere linke Hilfte
5 mergeSort(E, mid + 1, right); // sortiere rechte Hilfte
6 // Verschmelzen der sortierten Hdilften

7 merge(E, left, mid, right);

8}

o}

10 // Aufruf: mergeSort(E, 0, E.length-1);

» Verschmelzen kann man in Linearzeit. — Wie?
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Mergesort — Animation
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Sortieren Mergesort

Mergesort — Animation
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Mergesort — Animation
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Mergesort — Animation
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Mergesort — Verschmelzen in Linearzeit

1 void merge(int E[], int left, int mid, int right) {

2 int a = left, b = mid + 1;

3 int Eold[] = E;

4 for (; left <= right; left++) {

5 if (a > mid) { // Wir wissen (Widerspruch): b <= right
6 E[left] = Eold[b];

7 b++;

8 } else if (b > right || Eold[a] <= Eold[b]) { // stabil: <=
9 E[left] = Eold[al;

10 at+;

1 } else { // Eold[a] > Eold[b]

12 E[left] = Eold[b];

13 b++;

14 }

15}

16
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Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).
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W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).
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Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).

Speicherbedarf

©(n) fir die Kopie des Arrays beim Mergen. ©(log n) fiir den Stack.

» Mergesort ist nicht in-place.

» Mit zusatzlichen Verschiebungen ist die Kopie des Arrays nicht nétig.
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Ubersicht

@ Effizienteres Sortieren?
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Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (1)

E[1] < E[2]?

Ja Nein
E[2] < E]7 E[1] < EQJ?
JAa/ Wein J;a/ \Qein
E[1] < EQ3J? E[2] < E[3?

J;;/ \l\lein J:;/ \lﬂein

Betrachte vergleichsbasierte Sortieralgorithmen als Entscheidungsbaum:

» Dieser beschreibt die Abfolge der durchgefiihrten Vergleiche.

» Sortieren verschiedener Eingabepermutationen ergibt also
verschiedene Pfade im Baum.
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Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Es gilt:
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Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Beweis.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

» Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.
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Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Beweis.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

» Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.

= Mit n! < 2K erhalt man k > log([n!]) Vergleiche im Worst-Case.
Da log([n!]) ~ n-logn — 1.4 - n geht es nicht besser als O(n -logn)! []
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