Sortieren

Datenstrukturen und Algorithmen

Vorlesung 7: Sortieren (K2)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

7. Mai 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32

http://www-i2.rwth-aachen.de/i2/dsal10/

Ubersicht

@ Sortieren - Einfiihrung
@ Bedeutung des Sortierens
@ Dutch National Flag Problem

@ Sortieren durch Einfiigen

© Mergesort
@ Das Divide-and-Conquer Paradigma

@ Mergesort

@ Effizienteres Sortieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/32

Ubersicht

@ Sortieren - Einfiihrung
@ Bedeutung des Sortierens
@ Dutch National Flag Problem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/32

Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

» Sortiert wird haufig benutzt, und hat viele Anwendungen.
» Sortierverfahren geben Ideen, wie man Algorithmen verbessern kann.

» Geniale und optimale Algorithmen wurden gefunden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/32

Sortieren Sortieren - Einfiihrung

Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

v

Sortiert wird haufig benutzt, und hat viele Anwendungen.

v

Sortierverfahren geben ldeen, wie man Algorithmen verbessern kann.

v

Geniale und optimale Algorithmen wurden gefunden.

v

Neben der Funktionsweise der Algorithmen widmen wir uns vor allem
der Laufzeitanalyse.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/32

Anwendungen des Sortierens

Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binare Suche findet ein Element in O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/32

Anwendungen des Sortierens

Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binare Suche findet ein Element in O(log n).

Beispiel (Engstes Paar (closest pair))

> Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/32

Anwendungen des Sortierens

Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binare Suche findet ein Element in O(log n).

Beispiel (Engstes Paar (closest pair))

> Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.

» Nach dem Sortieren liegen die Paare nebeneinander.
Der Aufwand ist dann noch O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/32

Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

» Sind alle n Elemente einzigartig oder gibt es Duplikate?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/32

Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

» Sind alle n Elemente einzigartig oder gibt es Duplikate?
» Das k-t groBte Element einer Menge?

Beispiel (Textkompression (Entropiekodierung))

» Sortiere die Buchstaben nach Haufigkeit des Auftretens um sie dann
effizient zu kodieren (d. h. mit moglichst kurzen Bitfolgen).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = a;.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = a;.

2. Transitivitat: a; < a; und a; < a, impliziert a; < ai.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., an} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = a;.
2. Transitivitat: a; < a; und a; < a, impliziert a; < ai.

3. Totalitat: a; < aj oder a; < a;.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., a,} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={ai,...,an} eine Menge. Die bindre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, a;, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = a;.
2. Transitivitat: a; < a; und a; < a, impliziert a; < ai.

3. Totalitat: a; < aj oder a; < a;.

Beispiel

Die lexikographische Ordnung von Zeichenketten und die numerische
Ordnung von Zahlen sind totale Ordnungen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32

Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Ausgabe: Ein Array F mit n Eintragen, so dass
1. F[1], ..., F[n] eine Permutation von E[1], ..., E[n] ist

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32

Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Ausgabe: Ein Array F mit n Eintragen, so dass

1. F[1], ..., F[n] eine Permutation von E[1], ..., E[n] ist
2. Fiur alle 0 < i,j < ngilt: F[i]l < F[i+1].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32

Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Ausgabe: Ein Array F mit n Eintragen, so dass

1. F[1], ..., F[n] eine Permutation von E[1], ..., E[n] ist
2. Fiur alle 0 < i,j < ngilt: F[i]l < F[i+1].

Annahmen dieser Vorlesung

> Die zu sortierende Sequenz ist als Array organisiert, nicht als Liste.

» Die Elementaroperation ist ein Vergleich von Schliisseln.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32

Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32

Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32

Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Wenn z. B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32

Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Stabilitat

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Wenn z. B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.

Wir werden erst einen einfachen Sortieralgorithmus betrachten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32

Dutch National Flag Problem (1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/32

Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/32

Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau

Ausgabe: Ein sortiertes Array mit den Eintragen aus E.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/32

Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss
2. Ordnung: rot < weiss < blau

Ausgabe: Ein sortiertes Array mit den Eintragen aus E.

Erwiinschte Worst-Case Zeitkomplexitat: ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/32

Dutch National Flag Problem (II)

Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Eintrdgen, wobei fiir alle 0 < i < n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau
Ausgabe: Ein sortiertes Array mit den Eintragen aus E.
Erwiinschte Worst-Case Zeitkomplexitat: ©(n).

Erwiinschte Worst-Case Speicherkomplexitat: ©(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:

1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r
E[i] == rot.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:
1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r

E[i] == rot.
2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d.h. fir alle r < i < u
E[i] == weiss.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:

1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r
E[i] == rot.

2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d.h. fir alle r < i < u
E[i] == weiss.

3. E[ul, ..., E[b-1] ist die unbekannte Region, d.h. fiir alle u </ <
b
E[i] == rot oder E[i] == weiss oder E[i] == blau.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:

1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r
E[i] == rot.

2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d.h. fir alle r < i < u
E[i] == weiss.

3. E[ul, ..., E[b-1] ist die unbekannte Region, d.h. fiir alle u </ <
b
E[i] == rot oder E[i] == weiss oder E[i] == blau.

4. E[b], ..., E[n] ist die “blaue” Region, d.h. fiiralleb </ <n

E[i] == blau.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (l11)

Zerlege das Array E in 4 Regionen:
(1)0<i<r, (2Jr<i<wu (B)u<i<b, und(4)b<i<n
fiir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:

1. E[1]1, ..., E[r] ist die “rote” Region, d.h. fiiralle 0 </ < r
E[i] == rot.

2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d.h. fir alle r < i < u
E[i] == weiss.

3. E[ul, ..., E[b-1] ist die unbekannte Region, d.h. fiir alle u </ <
b
E[i] == rot oder E[i] == weiss oder E[i] == blau.

4. E[b], ..., E[n] ist die “blaue” Region, d.h. fiiralleb </ <n

E[i] == blau.

Arrayelemente konnen mit der swap-Operation vertauscht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[u] == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { rou b
11 u=u+1;

s " m—"
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { rou b

11 u=u+1;
SO v v

13 if (E[u] == blau) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region
16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { rou b
11 u=u+1; *
s NN E——
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1; *
12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

s T —
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

s T —
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region
9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region
9 }

10 if (E[u] == weiss) { r u b
11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 } u

10 if (E[u] == weiss) { r b

11 u=u+1;

s - —
13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region
9 }

10 if (E[u] == weiss) {

11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region
9 }

10 if (E[u] == weiss) {

11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Frage: Ist der DNF-Algorithmus ein stabiles Sortierverfahren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) {

2 int r =0, b=n+ 1; // die rote und blaue Region sind leer
3 int u = 1; // die unbekannte Region == E

4 while (u < b) {

5 if (E[ul == rot) {

6 swap(E[r + 1], E[ul);

7 r=r+1; // vergréfere die rote Region

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) {

11 u=u+1;

12 }

13 if (Efu] == blaw) {

14 swap(E[b - 1], E[ul);

15 b=b - 1; // vergrifere die blaue Region

16 }

17}

18 }

Frage: Ist der DNF-Algorithmus ein stabiles Sortierverfahren? Antwort:
Nein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32

Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32

Sortieren Sortieren - Einfiihrung
Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.

DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen
Speicherplatz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32

Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.

DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen
Speicherplatz.

Zeitkomplexitat

Betrachte als elementare Operation die Vergleiche der Form E[i] ==

Die Worst-Case Zeitkomplexitat ist ©(n), da:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32

Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.

DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen
Speicherplatz.

Zeitkomplexitat

Betrachte als elementare Operation die Vergleiche der Form E[i] ==

Die Worst-Case Zeitkomplexitat ist ©(n), da:

1. in jedem Durchlauf werden eine konstante Anzahl Vergleiche
durchgefiihrt

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32

Dutch National Flag Problem (V)

Speicherkomplexitat

Die Worst-Case Speicherkomplexitat vom DNF-Algorithmus ist ©(1), da
die einzigen extra Variablen r, u und b sind.

DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen
Speicherplatz.

Zeitkomplexitat

Betrachte als elementare Operation die Vergleiche der Form E[i] ==

Die Worst-Case Zeitkomplexitat ist ©(n), da:

1. in jedem Durchlauf werden eine konstante Anzahl Vergleiche
durchgefiihrt

2. die Anzahl der Durchlaufe ist ©(n), da in jedem Durchlauf die GroBe
vom unbekannten Gebiet b - u um eins verkleinert wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32

Sortieren Sortieren durch Ei

Ubersicht

@ Sortieren durch Einfiigen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/32

Sortieren Sortieren durch Einfiigen

Sortieren durch Einfiigen — Insertionsort

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/32

Sortieren durch Einfiigen — Insertionsort

bereits sortiert noch unsortiert
als Nachstes einzusortieren

» Durchlaufen des (unsortierten) Arrays von links nach rechts.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/32

Sortieren durch Einfiigen — Insertionsort

bereits sortiert noch unsortiert
als Nachstes einzusortieren

» Durchlaufen des (unsortierten) Arrays von links nach rechts.

» Gehe zum ersten bisher noch nicht beriicksichtigte Element.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/32

Sortieren durch Einfiigen — Insertionsort

bereits sortiert noch unsortiert
als Nachstes einzusortieren

» Durchlaufen des (unsortierten) Arrays von links nach rechts.
» Gehe zum ersten bisher noch nicht beriicksichtigte Element.

» Fiige es im sortierten Teil (links) nach elementweisem Vergleichen ein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/32

Sortieren durch Einfiigen — Insertionsort

[0]12117]17[19] 5 [B5SGIGOI2GAR2NS[S4A

+— A
bereits sortiert noch unsortiert

als Nachstes einzusortieren

v

Durchlaufen des (unsortierten) Arrays von links nach rechts.

v

Gehe zum ersten bisher noch nicht beriicksichtigte Element.

v

Fiige es im sortierten Teil (links) nach elementweisem Vergleichen ein.

v

Dieser Algorithmus funktioniert auch mit anderen lineare
Anordnungen, etwa Listen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

]

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j1 = E[j-11; // schiebe Element j-1 mach rechts
}
E[j] = v; // fuge E[%] an der richtigen Stelle ein
}
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

]

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j1 = E[j-11; // schiebe Element j-1 mach rechts
}
E[j] = v; // fuge E[%] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

*

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j1 = E[j-11; // schiebe Element j-1 mach rechts
}
E[j] = v; // fuge E[%] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

3]sl o IS

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]l; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

S

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j]l = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

m

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {
6

7

8

9

E[j] = E[j-11; // schiebe Element j-1 nach rechts
}
E[j1 = v; // fige E[i] an der richtigen Stelle ein
¥
10 }

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Animation und Algorithmus

1 void insertionSort(int E[]) {

2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[i]

5 for (j = 1i; j > 0 && E[j-1]1 > v; j—-) {

6 E[j] = E[j-1]; // schiebe Element j-1 nach rechts
7 }

8 E[j] = v; // fige E[i] an der richtigen Stelle ein
o }

10}

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

» Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32

Insertionsort — Best- und Worst-Case-Analyse

» Im Best-Case ist das Array bereits sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

» Im Best-Case ist das Array bereits sortiert.

» Pro Element ist daher nur ein Vergleich nétig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

» Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.

» Es musste mit allen vorhergehenden Elementen verglichen werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.
» Es musste mit allen vorhergehenden Elementen verglichen werden.

» Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.

» Es musste mit allen vorhergehenden Elementen verglichen werden.
» Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.

= Zum Einsortieren des i-ten Elements sind im schlimmsten Fall

i Vergleiche nétig:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.

» Es musste mit allen vorhergehenden Elementen verglichen werden.
» Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.

= Zum Einsortieren des i-ten Elements sind im schlimmsten Fall

i Vergleiche nétig: W (n) = Z i=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Best- und Worst-Case-Analyse

> Im Best-Case ist das Array bereits sortiert.
» Pro Element ist daher nur ein Vergleich nétig.
= Esgilt: B(n) =n—1¢€ ©(n)

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.

» Es musste mit allen vorhergehenden Elementen verglichen werden.
» Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.

= Zum Einsortieren des i-ten EIements sind im schlimmsten Fall

i Vergleiche nétig: W(n) = ZI : " LGRS O(n?)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32

Insertionsort — Average-Case-Analyse (1)

Annahmen fiir die Average-Case-Analyse

» Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.

» Die zu sortierenden Elemente sind alle verschieden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/32

Insertionsort — Average-Case-Analyse (1)

Annahmen fiir die Average-Case-Analyse

» Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.
» Die zu sortierenden Elemente sind alle verschieden.
Es gilt:
n—1

A(n) = Zerwartete Anzahl an Vergleichen, um E[i] einzusortieren
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/32

Insertionsort — Average-Case-Analyse (1)

Annahmen fiir die Average-Case-Analyse

» Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.
» Die zu sortierenden Elemente sind alle verschieden.
Es gilt:
n—1

A(n) = Zerwartete Anzahl an Vergleichen, um E[i] einzusortieren
i=1

Die erwartete Anzahl an Vergleichen, um den richtigen Platz fir E[i] zu
finden wird dann wie folgt hergeleitet:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/32

Insertionsort — Average-Case-Analyse (1)
i Pr {i—tes Element wird } Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | ~an Position j einzufiigen
J:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/32

Insertionsort — Average-Case-Analyse (1)

i Pr i-tes Element wird 'Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | an Position j einzufiigen

J:
E[i] wird an beliebiger Position j
mit gleicher W'lichkeit eingefiigt

/ 1 .Anzahl Vergleiche, um E[i]

— i+ 1 an Position j einzufiigen
J:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/32

Insertionsort — Average-Case-Analyse (1)

i Pr {i—tes Element wird } Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | ~an Position j einzufiigen
J:

E[i] wird an beliebiger Position j
mit gleicher W'lichkeit eingefiigt

’ 1 .Anzahl Vergleiche, um E[i]
i+ 1 an Position j einzufiigen

j=0
Anzahl Vergleiche, um an Position 0
oder 1 einzufligen ist /, sonst i—j+1.
1 1<
= - . i—j+1
AR AP G)

J=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/32

Insertionsort — Average-Case-Analyse (1)

i Pr {i—tes Element wird } 'Anzahl Vergleiche, um E[i]

— an Position j eingefiigt | an Position j einzufiigen
J:

E[i] wird an beliebiger Position j
mit gleicher W'lichkeit eingefiigt

’ 1 .Anzahl Vergleiche, um E[i]
i+ 1 an Position j einzufiigen

j=0
Anzahl Vergleiche, um an Position 0
oder 1 einzufligen ist /, sonst i—j+1.
1 1<
_ w) a1
ir1 't J.;(' j+1)
| Vereinfachen
1 1 1
_ Z i I+ _ I $1- - .
i+ 1 mr i+ 1 i+1 2 2 i+1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/32

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):nf(;“_iiJ

i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/32

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):§(£+1_ii1)

i=1

| Auseinanderziehen

RGP

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/32

Sortieren Sortieren durch Einfiigen

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):§(£+1_ii1)

i=1

| Auseinanderziehen

| Verschieben des Summenstarts

Datenstrukturen und Algorithmen 22/32

Joost-Pieter Katoen

Sortieren Sortieren durch Einfiigen

Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

A(”):nf(;“_iiJ

i=1

| Auseinanderziehen

| Verschieben des Summenstarts

n

Harmonische Reihe: Z(l/l) ~Inn
i=1
n-(n—1)

A(n)%ern—lnn € 0(n?)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/32

Ubersicht

© Mergesort
@ Das Divide-and-Conquer Paradigma

@ Mergesort

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem

in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem

in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem &hneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Ldsungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Verbinde die Losungen der Teilprobleme zur Lésung des
Ausgangsproblem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Mergesort — Strategie

|

rekursiv Sortieren L Mitte L rekursiv Sortieren

\/ﬁrschmelz;e\/

Teile das Array in zwei —moglichst gleichgroBe— Halften.
Beherrsche: Sortiere die Teile durch rekursive Mergesort-Aufrufe.

Verbinde: Mische die 2 sortierte Teilsequenzen zu einem einzigen,
sortierten Array.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/32

Mergesort — Algorithm

1 void mergeSort(int E[], int left, int right) {

> if (left < right) {

3 int mid = (left + right) / 2; // finde Mitte

4 mergeSort(E, left, mid); // sortiere linke Hilfte
5 mergeSort(E, mid + 1, right); // sortiere rechte Hilfte
6 // Verschmelzen der sortierten Hdilften

7 merge(E, left, mid, right);

8}

o}

10 // Aufruf: mergeSort(E, 0, E.length-1);

» Verschmelzen kann man in Linearzeit. — Wie?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren Mergesort

Mergesort — Animation

o o o

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren Mergesort

Mergesort — Animation

g

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren Mergesort

Mergesort — Animation

-

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren Mergesort

Mergesort — Animation

-

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Animation

i v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

i

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

e 11 b

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

e 11 b

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

Vi 11 b

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mergesort — Verschmelzen in Linearzeit

1 void merge(int E[], int left, int mid, int right) {

2 int a = left, b = mid + 1;

3 int Eold[] = E;

4 for (; left <= right; left++) {

5 if (a > mid) { // Wir wissen (Widerspruch): b <= right
6 E[left] = Eold[b];

7 b++;

8 } else if (b > right || Eold[a] <= Eold[b]) { // stabil: <=
9 E[left] = Eold[al;

10 at+;

1 } else { // Eold[a] > Eold[b]

12 E[left] = Eold[b];

13 b++;

14 }

15}

16

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/32

Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/32

Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/32

Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).

Speicherbedarf

©(n) fir die Kopie des Arrays beim Mergen. ©(log n) fiir den Stack.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/32

Mergesort — Analyse

Wir erhalten:
W(n) = W([n/2]) + W([n/2])+n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).

Speicherbedarf

©(n) fir die Kopie des Arrays beim Mergen. ©(log n) fiir den Stack.

» Mergesort ist nicht in-place.

» Mit zusatzlichen Verschiebungen ist die Kopie des Arrays nicht nétig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/32

Ubersicht

@ Effizienteres Sortieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (1)

E[1] < E[2]?

Ja Nein
E[2] < E]7 E[1] < EQJ?
JAa/ Wein J;a/ \Qein
E[1] < EQ3J? E[2] < E[3?

J;;/ \l\lein J:;/ \lﬂein

Betrachte vergleichsbasierte Sortieralgorithmen als Entscheidungsbaum:

» Dieser beschreibt die Abfolge der durchgefiihrten Vergleiche.

» Sortieren verschiedener Eingabepermutationen ergibt also
verschiedene Pfade im Baum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

31/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Es gilt:

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 32/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 32/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Beweis.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

» Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

» Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.

= Mit n! < 2K erhalt man k > log([n!]) Vergleiche im Worst-Case.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (l1)

Vergleichsbasiertes Sortieren bendtigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Beweis.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

» Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.

= Mit n! < 2K erhalt man k > log([n!]) Vergleiche im Worst-Case.
Da log([n!]) ~ n-logn — 1.4 - n geht es nicht besser als O(n -logn)! []

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/32

	Sortieren - Einführung
	Bedeutung des Sortierens
	Dutch National Flag Problem

	Sortieren durch Einfügen
	Mergesort
	Das Divide-and-Conquer Paradigma
	Mergesort

	Effizienteres Sortieren?

