Sortieren

Datenstrukturen und Algorithmen

Vorlesung 7: Sortieren (K2)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.rwth-aachen.de/i2/dsal10/

7. Mai 2010
RWTH

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32
Ubersicht
@ Sortieren - Einfithrung

@ Bedeutung des Sortierens

@ Dutch National Flag Problem
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/32

Sortieren

Ubersicht

@ Sortieren - Einfiihrung
@ Bedeutung des Sortierens
@ Dutch National Flag Problem

@ Sortieren durch Einfiigen

© Mergesort
@ Das Divide-and-Conquer Paradigma
@ Mergesort

@ Effizienteres Sortieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/32

Sortieren Sortieren - Einfithrung

Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

» Sortiert wird haufig benutzt, und hat viele Anwendungen.
» Sortierverfahren geben Ideen, wie man Algorithmen verbessern kann.

> Geniale und optimale Algorithmen wurden gefunden.

> Neben der Funktionsweise der Algorithmen widmen wir uns vor allem
der Laufzeitanalyse.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/32

http://www-i2.rwth-aachen.de/i2/dsal10/

Sortieren Sortieren - Einfithrung

Anwendungen des Sortierens

Beispiel (Suchen)

> Schnellere Suche ist die wohl haufigste Anwendung des Sortierens.

» Binére Suche findet ein Element in O(log n).

Beispiel (Engstes Paar (closest pair))

> Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.

» Nach dem Sortieren liegen die Paare nebeneinander.
Der Aufwand ist dann noch O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/32

Einige Hilfsbegriffe

Eine Permutation einer Menge A = {a1, ..., a,} ist eine bijektive
Abbildung 7 : A — A.

Totale Ordnung

Sei A={a1,...,an} eine Menge. Die binédre Relation < C A x A ist eine
totale Ordnung (auf A) wenn fiir alle a;, aj, ax € A gilt:

1. Antisymmetrie: a; < aj und a; < a; impliziert a; = aj.
2. Transitivitat: a; < a; und aj < a, impliziert a; < ay.

3. Totalitat: a; < aj oder a; < a;.

Die lexikographische Ordnung von Zeichenketten und die numerische
Ordnung von Zahlen sind totale Ordnungen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/32

Sortieren Sortieren - Einfithrung

Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

» Sind alle n Elemente einzigartig oder gibt es Duplikate?
> Das k-t groBte Element einer Menge?

Beispiel (Textkompression (Entropiekodierung))

» Sortiere die Buchstaben nach Haufigkeit des Auftretens um sie dann
effizient zu kodieren (d. h. mit moglichst kurzen Bitfolgen).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/32

Sortieren Sortieren - Einfithrung

Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Eintragen.
2. Die Eintrage gehoren zu einer Menge A mit totaler
Ordnung <.

Ausgabe: Ein Array F mit n Eintragen, so dass
1. F[1], ..., F[n] eine Permutation von E[1], ..., E[n] ist
2. Furalle 0 < i,j < ngilt: F[1] < F[i+1].
Annahmen dieser Vorlesung

» Die zu sortierende Sequenz ist als Array organisiert, nicht als Liste.

» Die Elementaroperation ist ein Vergleich von Schliisseln.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/32

Sortieralgorithmen Dutch National Flag Problem (1)

Beispiel (Einige Sortieralgorithmen)
Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschliissel gleich sind, bewahrt.

Wenn z. B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.

Wir werden erst einen einfachen Sortieralgorithmus betrachten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/32
Dutch National Flag Problem (I1) Dutch National Flag Problem (l11)
Hauptidee
Beispiel (Das niederlandische Flaggen-Problem [Dijkstra, 1972]) Zerlege das Array E in 4 Regionen:
Eingabe: 1. Ein Array E mit n Eintragen, wobei fiir alle 0 < i < n (1)0<i<r, (2Jr<i<u (3 u<i<b, und(4)Db<i<n
E[i] == rot, E[i] == blau oder fir die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:
E[1] == weiss 1. E[1], ..., E[r] ist die “rote” Region, d.h. fiiralle 0 < i < r
2. Ordnung: rot < weiss < blau E[i] == rot.
2. E[r+1], ..., E[u-1] ist die “weiBe” Region, d. h. fiiraller </ <u
Ausgabe: Ein sortiertes Array mit den Eintragen aus E. E[i] == weiss.
3. E[ul, ..., E[b-1] ist die unbekannte Region, d. h. fiir alle u </ <
Erwiinschte Worst-Case Zeitkomplexitat: ©(n). 12
E[i] == rot oder E[i] == weiss oder E[i] == blau.
. o 4. E[p], ..., E ist die “blaue” Region, d.h. fiir alle b </ <
Erwiinschte Worst-Case Speicherkomplexitit: ©(1). Egli o bla[z] st ! . ! SIS

Arrayelemente kénnen mit der swap-Operation vertauscht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/32

Sortieren Sortieren - Einfithrung Sortieren Sortieren - Einfithrung

Dutch National Flag Problem (1V) Dutch National Flag Problem (V)

1 void DutchNationalFlag(Color E[], int n) { Speicherkomplexitat

2 int r =0, b=n + 1; // die rote und blaue Region sind leer

3 int u = 1; // die unbekannte Region == Die Worst-Case Speicherkomplexitdt vom DNF-Algorithmus ist ©(1), da
4+ while (u < b) { die einzigen extra Variablen r, u und b sind.

5 if (E[u]l == rot) {

6 swap(E[r + 11, E[ul); DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusatzlichen

7 r=r+ 1; // vergréflere die rote Region Speicherplatz.

8 u=u+1; // verkleinere die unbekannte Region

9 }

10 if (E[u] == weiss) { Zeitkomplexitat

r u b
1: , u=u+1; v Betrachte als elementare Operation die Vergleiche der Form E[i] ==
13 if (E[u] == blau) { '
14 swap(E[b - 1], E[ul);

Die Worst-Case Zeitkomplexitat ist ©(n), da:

15 b=Db - 1; // vergrifere die blaue Region
16 } 1. in jedem Durchlauf werden eine konstante Anzahl Vergleiche
7} durchgefiihrt
e) 2. die Anzahl der Durchlaufe ist ©(n), da in jedem Durchlauf die GroBe
Frage: Ist der DNF-Algorithmus ein stabiles Sortierverfahren? Antwort: vom unbekannten Gebiet b - u um eins verkleinert wird.
Nein.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/32
Sortieren Sortieren durch Einfiigen Sortieren Sortieren durch Einfiigen
Ubersicht Sortieren durch Einfiigen — Insertionsort

@ Sortieren durch Einfiigen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/32

Sortieren Sortieren durch Einfiigen Sortieren Sortieren durch Einfiigen

Sortieren durch Einfiigen — Insertionsort Insertionsort — Animation und Algorithmus

D —— % ——.
bereits sortiert noch unsortiert

void insertionSort(int E[]) {
als Nachstes einzusortieren

1
2 int i,j;

3 for (i = 1; i < E.length; i++) {

4 int v = E[i]; // speichere E[]

5 for (j =i; j > 0 && E[j-11 > v; j——) {
6

7

8

9

v

Durchlaufen des (unsortierten) Arrays von links nach rechts. E[j] = E[j-1]; // schiebe Element j-1 nach rechts
}

E[j]l = v; // fige E[i] an der richtigen Stelle ein

v

Gehe zum ersten bisher noch nicht beriicksichtigte Element.

» Fige es im sortierten Teil (links) nach elementweisem Vergleichen ein. }

10 }

v

Dieser Algorithmus funktioniert auch mit anderen lineare
Anordnungen, etwa Listen.

> Insertionsort ist in-place, d. h. der Algorithmus arbeitet ohne
zusatzlichen Speicherplatz.

> Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverandert bleibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/32
Sortieren Sortieren durch Einfiigen Sortieren Sortieren durch Einfiigen
Insertionsort — Best- und Worst-Case-Analyse Insertionsort — Average-Case-Analyse (1)

Best-Case

» Im Best-Case ist das Array bereits sortiert.

Annahmen fiir die Average-Case-Analyse
» Pro Element ist daher nur ein Vergleich nétig.

— Esgilt: B(n) = n—1 ¢ ©(n) > Alle Permutationen von Elementen treten in gleicher Haufigkeit auf.

» Die zu sortierenden Elemente sind alle verschieden.

Worst-Case Es gilt:
n—1

A(n) = Z erwartete Anzahl an Vergleichen, um E[i] einzusortieren
i=1

> Im Worst-Case wird das einzusortierende Element immer ganz vorne
eingefiigt.
» Es musste mit allen vorhergehenden Elementen verglichen werden.

> Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.]) o)
Die erwartete Anzahl an Vergleichen, um den richtigen Platz fiir E[i] zu

= Zum Einsortieren des i-ten Elements sind im schlimmsten Fall finden wird dann wie folgt hergeleitet:

n—1
i Vergleiche nétig: W(n) =) i= @ € 0(n?)
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/32

Sortieren Sortieren durch Einfiigen Sortieren Sortieren durch Einfiigen

Insertionsort — Average-Case-Analyse (1) Insertionsort — Average-Case-Analyse (111)
Damit gilt fir A(n):

i Pr {i—tes Element wird } Anzahl Vergleiche, um E[i] 1
= an Position j eingefiigt | an Position j einzufligen Aln) = Z <2 11 = 1>
E[i] wird an beliebiger Position j i=1 . _
mit gleicher W'lichkeit eingefiigt | Auseinanderziehen
. n
1 _Anzahl Vergleiche, um E[i] - n-(n—-1) +(n—1)— Zl
o <i41 an Position j einzufiigen 4 !
J: .
Anzahl Vergleiche, um an Position 0 | Verschieben des Summenstarts
oder 1 einzufiigen ist i, sonst i—j+1. ~n-(n—-1) . 1
_ 1 1 Lo 4 il
BT RARTS PO "
j=1 Harmonische Reihe: Z(l//) ~lInn
| Vereinfachen i=1
) ' . . . n-(n—1)
i 1 . i 1 i+l i 1 AN~ ——4n—Inn €6
=t > j= ——t+— = 41— —. () 4 (n°)
i+1 i+1 = i+1 i+1 2 2 i+1
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/32
Ubersicht Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem dhneln, jedoch von
kleinerer GroBe sind.

Sie l6sen die Teilprobleme rekursiv und kombinieren diese Losungen dann,
um die Lésung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder

Rekursionsebene:
© Mergesort

@ Das Divide-and-Conquer Paradigma
@ Mergesort Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt gelost.

Teile das Problem in eine Anzahl von Teilproblemen auf.

Verbinde die Losungen der Teilprobleme zur Losung des
Ausgangsproblem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/32 Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/32

Sortieren Mergesort

Mergesort — Strategie

|

rekursiv Sortieren L L rekursiv Sortieren

Mitte

\/frschmelz‘e/

Teile das Array in zwei —moglichst gleichgroBe— Halften.

Beherrsche: Sortiere die Teile durch rekursive Mergesort-Aufrufe.

Verbinde: Mische die 2 sortierte Teilsequenzen zu einem einzigen,
sortierten Array.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/32

Sortieren Mergesort

Mergesort — Animation

1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/32

Sortieren Mergesort

Mergesort — Algorithm

1 void mergeSort(int E[], int left, int right) {

2> if (left < right) {

3 int mid = (left + right) / 2; // finde Mitte

4 mergeSort (E, left, mid); // sortiere linke Hilfte
5 mergeSort(E, mid + 1, right); // sortiere rechte Hailfte
6 // Verschmelzen der sortierten Hdlften

7 merge (E, left, mid, right);

8 X

9}

1w // Aufruf: mergeSort(E, 0, E.length-1);

» Verschmelzen kann man in Linearzeit. — Wie?

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren Mergesort

Mergesort — Animation

Joost-Pieter Katoen Datenstrukturen und Algorithmen

26/32

27/32

Mergesort — Verschmelzen in Linearzeit

1 void merge(int E[], int left, int mid, int right) {

2 int a = left, b = mid + 1;

3 int Eold[] = E;

4 for (; left <= right; left++) {

5 if (a > mid) { // Wir wissen (Widerspruch): b <= right
6 E[left] = Eold[bl;

7 b++;

8 } else if (b > right || Eold[a]l <= Eold[bl) { // stabil: <=
9 E[left] = Eold[al;

10 at+;

1 } else { // Eold[a] > Eold[b]

12 E[left] = Eold[b];

13 b++;

14)

15}

16 }

> Mergesort ist stabil (vgl. Zeile 8), d. h. die Reihenfolge von Elementen
mit gleichem Schlissel bleibt erhalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/32
Sortieren Effizienteres Sortieren?
Ubersicht

@ Effizienteres Sortieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/32

Sortieren Mergesort

Mergesort — Analyse

Worst-Case
Wir erhalten:

W(n) = W(|n/2])+ W([n/2]) +n—1 mit W(1)=0.
Mit Hilfe des Mastertheorems ergibt sich: W(n) € ©(n - log n).

Best-Case, Average-Case

Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W(n) = B(n) = A(n) € ©(n - log n).

Speicherbedarf
©(n) fir die Kopie des Arrays beim Mergen. ©(log n) fiir den Stack.

» Mergesort ist nicht in-place.

» Mit zusatzlichen Verschiebungen ist die Kopie des Arrays nicht nétig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (1)

E[1] < E[2]?

Ja Nein
E[2] < E[3]? E[1] < E[3]?
JAa/ Wein J‘a/ \Qein
E[1] < E[3]? E[2] < E[3]?

Jz;/ \l\lein Jz;/ \l\lein

Betrachte vergleichsbasierte Sortieralgorithmen als Entscheidungsbaum:
» Dieser beschreibt die Abfolge der durchgefiihrten Vergleiche.

» Sortieren verschiedener Eingabepermutationen ergibt also
verschiedene Pfade im Baum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/32

Sortieren Effizienteres Sortieren?

Wie effizient kann man sortieren? (1)

Vergleichsbasiertes Sortieren benétigt im Worst-Case mindestens
O(nlog n) Vergleiche.

Es gilt:

> Anzahl Vergleiche im Worst-Case = Lange des langsten Pfades =
Baumhohe k.

> Da wir bindre Vergleiche verwenden, ergibt sich ein Binarbaum mit n!
Blattern.

= Mit nl < 2k erhalt man k > log([n!]) Vergleiche im Worst-Case.
Da log([n']) ~ n-logn— 1.4 - n geht es nicht besser als O(n-logn)! [

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/32

	Sortieren - Einführung
	Bedeutung des Sortierens
	Dutch National Flag Problem

	Sortieren durch Einfügen
	Mergesort
	Das Divide-and-Conquer Paradigma
	Mergesort

	Effizienteres Sortieren?

