
Heapsort

Datenstrukturen und Algorithmen
Vorlesung 8: Heapsort (K6)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

11. Mai 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

http://www-i2.rwth-aachen.de/i2/dsal10/


Heapsort

Übersicht

1 Heaps
Heapaufbau
Heapsort
Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20



Heapsort Heaps

Übersicht

1 Heaps
Heapaufbau
Heapsort
Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20



Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.
I Die Blätter befinden sich damit alle auf einer, höchstens zwei, Ebenen.
I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20



Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.
I Die Blätter befinden sich damit alle auf einer, höchstens zwei, Ebenen.
I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20



Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.

I Die Blätter befinden sich damit alle auf einer, höchstens zwei, Ebenen.
I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20



Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.
I Die Blätter befinden sich damit alle auf einer, höchstens zwei, Ebenen.

I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20



Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.
I Die Blätter befinden sich damit alle auf einer, höchstens zwei, Ebenen.
I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20



Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].
I Das linke Kind von a[i] liegt

in a[2 * i + 1].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].
I Das linke Kind von a[i] liegt

in a[2 * i + 1].
I Das rechte Kind von a[i] liegt

in a[2 * i + 2].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].
I Das linke Kind von a[i] liegt

in a[2 * i + 1].
I Das rechte Kind von a[i] liegt

in a[2 * i + 2].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

I Durch die möglichst vollständige Füllung der Ebenen werden „Löcher“
im Array vermieden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].
I Das linke Kind von a[i] liegt

in a[2 * i + 1].
I Das rechte Kind von a[i] liegt

in a[2 * i + 2].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

I Durch die möglichst vollständige Füllung der Ebenen werden „Löcher“
im Array vermieden.

I Vergrößert man den Baum um ein Element, so wird das Array gerade
um ein Element länger.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20



Heapsort Heaps

Heaps – Eigenschaften

Lemma
Vergrößert man den Schlüssel der Wurzel, dann bleibt der Baum ein Heap.

Lemma
Jedes Array ist ein Heap ab Position bn

2c.

I Ein Heap hat bn
2c innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20



Heapsort Heaps

Heaps – Eigenschaften

Lemma
Vergrößert man den Schlüssel der Wurzel, dann bleibt der Baum ein Heap.

Lemma
Jedes Array ist ein Heap ab Position bn

2c.

I Ein Heap hat bn
2c innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20



Heapsort Heaps

Naiver Heapaufbau
2

7

3

9 4

14

15

10

8 16

2 7 10 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
2

7

3

9 4

14

15

10

8 16

2 7 10 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
7

2

3

9 4

14

15

10

8 16

7 2 10 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
7

2

3

9 4

14

15

10

8 16

7 2 10 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
10

2

3

9 4

14

15

7

8 16

10 2 7 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
10

2

3

9 4

14

15

7

8 16

10 2 7 3 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
10

3

2

9 4

14

15

7

8 16

10 3 7 2 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
10

3

2

9 4

14

15

7

8 16

10 3 7 2 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
10

14

2

9 4

3

15

7

8 16

10 14 7 2 3 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
14

10

2

9 4

3

15

7

8 16

14 10 7 2 3 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
14

10

2

9 4

3

15

7

8 16

14 10 7 2 3 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
14

10

2

9 4

3

15

8

7 16

14 10 8 2 3 7 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
14

10

2

9 4

3

15

8

7 16

14 10 8 2 3 7 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
14

10

2

9 4

3

15

16

7 8

14 10 16 2 3 7 8 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

2

9 4

3

15

14

7 8

16 10 14 2 3 7 8 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

2

9 4

3

15

14

7 8

16 10 14 2 3 7 8 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

9

2 4

3

15

14

7 8

16 10 14 9 3 7 8 2 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

9

2 4

3

15

14

7 8

16 10 14 9 3 7 8 2 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

9

2 4

3

15

14

7 8

16 10 14 9 3 7 8 2 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

10

9

2 4

15

3

14

7 8

16 10 14 9 15 7 8 2 4 3

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau
16

15

9

2 4

10

3

14

7 8

16 15 14 9 10 7 8 2 4 3

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20



Heapsort Heaps

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.
⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)

Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Heapsort Heaps

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.
⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)

Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Heapsort Heaps

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.

⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)
Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Heapsort Heaps

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.
⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)

Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Heapsort Heaps

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.
⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)

Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.

I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.
I Andernfalls tausche E[i] mit dem größten Element und führe Heapify

in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.

I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.
I Andernfalls tausche E[i] mit dem größten Element und führe Heapify

in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.
I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum

mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.
I Andernfalls tausche E[i] mit dem größten Element und führe Heapify

in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.
I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum

mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.

I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

I Andernfalls tausche E[i] mit dem größten Element und führe Heapify
in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.
I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum

mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.

I Andernfalls tausche E[i] mit dem größten Element und führe Heapify
in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.
I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum

mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.
I Andernfalls tausche E[i] mit dem größten Element und führe Heapify

in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20



Heapsort Heaps

Heapify – Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;
3 while (next < n) {
4 if (next + 1 < n &&
5 E[next + 1] > E[next]) {
6 next = next + 1;
7 }
8 if (E[pos] > E[next]) {
9 break;

10 }
11 swap(E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
14 }
15 }

12

16

14

2 8

7

1

10

9 3

12 16 10 14 7 9 3 2 8 1

0

1 2

3 4 5 6

7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20



Heapsort Heaps

Heapify – Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;
3 while (next < n) {
4 if (next + 1 < n &&
5 E[next + 1] > E[next]) {
6 next = next + 1;
7 }
8 if (E[pos] > E[next]) {
9 break;

10 }
11 swap(E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
14 }
15 }

16

12

14

2 8

7

1

10

9 3

16 12 10 14 7 9 3 2 8 1

0

1 2

3 4 5 6

7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20



Heapsort Heaps

Heapify – Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;
3 while (next < n) {
4 if (next + 1 < n &&
5 E[next + 1] > E[next]) {
6 next = next + 1;
7 }
8 if (E[pos] > E[next]) {
9 break;

10 }
11 swap(E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
14 }
15 }

16

14

12

2 8

7

1

10

9 3

16 14 10 12 7 9 3 2 8 1

0

1 2

3 4 5 6

7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

2

14 8

16

7

3

9 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

2

14 8

16

7

3

9 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

2

14 8

16

7

3

9 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

14

2 8

16

7

3

9 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

14

2 8

16

7

3

9 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

14

2 8

16

7

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

1

14

2 8

16

7

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

16

14

2 8

1

7

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

16

14

2 8

7

1

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

4

16

14

2 8

7

1

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

16

4

14

2 8

7

1

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

16

14

4

2 8

7

1

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

16

14

8

2 4

7

1

10

9 3

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 sink(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.

I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten
1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von sink ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

8

13 34

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

8

13 34

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

8

13 34

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

34

13 8

41 26 17 25 19 17 34 3 6 69 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

34

13 8

41 26 17 25 19 17 34 3 6 69 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

19

69 12

17

17

4 2

34

13 8

41 26 17 25 19 17 34 3 6 69 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

69

19 12

17

17

4 2

34

13 8

41 26 17 25 69 17 34 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

69

19 12

17

17

4 2

34

13 8

41 26 17 25 69 17 34 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

69

19 12

17

17

4 2

34

13 8

41 26 17 25 69 17 34 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

69

19 12

34

17

4 2

17

13 8

41 26 34 25 69 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3

0

6

69

19 12

34

17

4 2

17

13 8

41 26 34 25 69 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

69

25

3

0

6

26

19 12

34

17

4 2

17

13 8

41 69 34 25 26 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

69

25

3

0

6

26

19 12

34

17

4 2

17

13 8

41 69 34 25 26 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
69

41

25

3

0

6

26

19 12

34

17

4 2

17

13 8

69 41 34 25 26 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
69

41

25

3

0

6

26

19 12

34

17

4 2

17

13 8

69 41 34 25 26 17 17 3 6 19 12 4 2 13 8 0

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

41

25

3 6

26

19 12

34

17

4 2

17

13 8

0 41 34 25 26 17 17 3 6 19 12 4 2 13 8 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

0

25

3 6

26

19 12

34

17

4 2

17

13 8

41 0 34 25 26 17 17 3 6 19 12 4 2 13 8 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3 6

0

19 12

34

17

4 2

17

13 8

41 26 34 25 0 17 17 3 6 19 12 4 2 13 8 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3 6

19

0 12

34

17

4 2

17

13 8

41 26 34 25 19 17 17 3 6 0 12 4 2 13 8 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
41

26

25

3 6

19

0 12

34

17

4 2

17

13 8

41 26 34 25 19 17 17 3 6 0 12 4 2 13 8 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
8

26

25

3 6

19

0 12

34

17

4 2

17

13

8 26 34 25 19 17 17 3 6 0 12 4 2 13 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
34

26

25

3 6

19

0 12

8

17

4 2

17

13

34 26 8 25 19 17 17 3 6 0 12 4 2 13 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
34

26

25

3 6

19

0 12

17

8

4 2

17

13

34 26 17 25 19 8 17 3 6 0 12 4 2 13 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
34

26

25

3 6

19

0 12

17

8

4 2

17

13

34 26 17 25 19 8 17 3 6 0 12 4 2 13 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
13

26

25

3 6

19

0 12

17

8

4 2

17

13 26 17 25 19 8 17 3 6 0 12 4 2 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
26

13

25

3 6

19

0 12

17

8

4 2

17

26 13 17 25 19 8 17 3 6 0 12 4 2 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
26

25

13

3 6

19

0 12

17

8

4 2

17

26 25 17 13 19 8 17 3 6 0 12 4 2 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
26

25

13

3 6

19

0 12

17

8

4 2

17

26 25 17 13 19 8 17 3 6 0 12 4 2 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
2

25

13

3 6

19

0 12

17

8

4

17

2 25 17 13 19 8 17 3 6 0 12 4 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
25

2

13

3 6

19

0 12

17

8

4

17

25 2 17 13 19 8 17 3 6 0 12 4 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
25

19

13

3 6

2

0 12

17

8

4

17

25 19 17 13 2 8 17 3 6 0 12 4 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
25

19

13

3 6

12

0 2

17

8

4

17

25 19 17 13 12 8 17 3 6 0 2 4 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
25

19

13

3 6

12

0 2

17

8

4

17

25 19 17 13 12 8 17 3 6 0 2 4 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
4

19

13

3 6

12

0 2

17

8 17

4 19 17 13 12 8 17 3 6 0 2 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
19

4

13

3 6

12

0 2

17

8 17

19 4 17 13 12 8 17 3 6 0 2 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
19

13

4

3 6

12

0 2

17

8 17

19 13 17 4 12 8 17 3 6 0 2 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
19

13

6

3 4

12

0 2

17

8 17

19 13 17 6 12 8 17 3 4 0 2 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
19

13

6

3 4

12

0 2

17

8 17

19 13 17 6 12 8 17 3 4 0 2 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
2

13

6

3 4

12

0

17

8 17

2 13 17 6 12 8 17 3 4 0 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

0

2

8 17

17 13 2 6 12 8 17 3 4 0 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

0

17

8 2

17 13 17 6 12 8 2 3 4 0 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

0

17

8 2

17 13 17 6 12 8 2 3 4 0 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

13

6

3 4

12

17

8 2

0 13 17 6 12 8 2 3 4 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

0

8 2

17 13 0 6 12 8 2 3 4 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

8

0 2

17 13 8 6 12 0 2 3 4 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
17

13

6

3 4

12

8

0 2

17 13 8 6 12 0 2 3 4 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
4

13

6

3

12

8

0 2

4 13 8 6 12 0 2 3 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
13

4

6

3

12

8

0 2

13 4 8 6 12 0 2 3 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
13

12

6

3

4

8

0 2

13 12 8 6 4 0 2 3 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
13

12

6

3

4

8

0 2

13 12 8 6 4 0 2 3 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
3

12

6 4

8

0 2

3 12 8 6 4 0 2 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
12

3

6 4

8

0 2

12 3 8 6 4 0 2 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
12

6

3 4

8

0 2

12 6 8 3 4 0 2 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
12

6

3 4

8

0 2

12 6 8 3 4 0 2 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
2

6

3 4

8

0

2 6 8 3 4 0 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
8

6

3 4

2

0

8 6 2 3 4 0 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
8

6

3 4

2

0

8 6 2 3 4 0 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

6

3 4

2

0 6 2 3 4 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
6

0

3 4

2

6 0 2 3 4 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
6

4

3 0

2

6 4 2 3 0 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
6

4

3 0

2

6 4 2 3 0 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

4

3

2

0 4 2 3 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
4

0

3

2

4 0 2 3 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
4

3

0

2

4 3 2 0 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
4

3

0

2

4 3 2 0 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

3 2

0 3 2 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
3

0 2

3 0 2 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
3

0 2

3 0 2 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
2

0

2 0 3 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
2

0

2 0 3 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Algorithmus und Beispiel
0

0 2 3 4 6 8 12 13 17 17 19 25 26 34 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 sink(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case

I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste
Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n

6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n

6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Analysis

I Die Worst-Case Komplexität von Heapify ist maximal b2· log nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für den Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2·blog nc)+n 6 2·
∫ n

1
(log e) ln xdx+n 6 2 · n · log n + c · n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20



Heapsort Heaps

Heapsort – Heapeigenschaften

Lemma
Ein n-elementiger Heap hat die Höhe blg nc.

Lemma
Ein Heap hat maximal dn/2h+1e Knoten in der Höhe h.

Beweise siehe Übung 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20



Heapsort Heaps

Heapsort – Heapeigenschaften

Lemma
Ein n-elementiger Heap hat die Höhe blg nc.

Lemma
Ein Heap hat maximal dn/2h+1e Knoten in der Höhe h.

Beweise siehe Übung 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20



Heapsort Heaps

Heapsort – Heapeigenschaften

Lemma
Ein n-elementiger Heap hat die Höhe blg nc.

Lemma
Ein Heap hat maximal dn/2h+1e Knoten in der Höhe h.

Beweise siehe Übung 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).

I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h)

= O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h



|
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)

= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e =Anzahl der Knoten in Höhe h. Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n
blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(

n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Heapsort Heaps

Heapsort - Zusammenfassung

I Heapsort sortiert in O(n· log n)

I Heapsort ist ein in-place Algorithmus.
I Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20



Heapsort Heaps

Heapsort - Zusammenfassung

I Heapsort sortiert in O(n· log n)

I Heapsort ist ein in-place Algorithmus.

I Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20



Heapsort Heaps

Heapsort - Zusammenfassung

I Heapsort sortiert in O(n· log n)

I Heapsort ist ein in-place Algorithmus.
I Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (I)

I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.

I Jeder Schlüssel sei höchstens an einem Element vergeben.
I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (I)

I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an einem Element vergeben.

I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (I)

I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an einem Element vergeben.
I Schlüssel werden als Priorität betrachtet.

I Die Elemente werden nach ihrer Priorität sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (I)

I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an einem Element vergeben.
I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20



Heapsort Heaps

Drei Prioritätswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array Heap

isEmpty(pq) Θ(1) Θ(1) Θ(1)
insert(pq,e,k) Θ(1) Θ(n)∗ Θ(log n)
getMin(pq) Θ(n) Θ(1) Θ(1)
delMin(pq) Θ(n)∗ Θ(1) Θ(log n)
getElt(pq,k) Θ(n) Θ(log n)† Θ(n)
decrKey(pq,e,k) Θ(n) Θ(log n)† Θ(log n)

∗Beinhaltet das Verschieben aller Elemente „rechts“ von k.
†Mittels binärer Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20


	Heaps
	Heapaufbau
	Heapsort
	Anwendung: Prioritätswarteschlangen


