Datenstrukturen und Algorithmen

Vorlesung 8: Heapsort (K6)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

11. Mai 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

http://www-i2.rwth-aachen.de/i2/dsal10/

Ubersicht

@ Heaps
o Heapaufbau
@ Heapsort
@ Anwendung: Prioritatswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Ubersicht

@ Heaps
o Heapaufbau
@ Heapsort
@ Anwendung: Prioritatswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schlissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schlissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Heaps

Heap (Haufen)
Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schlissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.

» Die Blatter befinden sich damit alle auf einer, héchstens zwei, Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schlissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.
» Die Blatter befinden sich damit alle auf einer, héchstens zwei, Ebenen.

» Die Blatter der untersten Ebene sind linksbiindig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Binarbaum aufgefasst:

» Die Wurzel liegt in a[0].

01 2 3 45 6 7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Binarbaum aufgefasst:

» Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

01 2 3 45 6 7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Heapsort Heaps

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Binarbaum aufgefasst:

» Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

» Das rechte Kind von a[i] liegt

neErir

01 2 3 45 6 7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Heapsort Heaps

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Bindrbaum aufgefasst:

» Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

» Das rechte Kind von a[i] liegt

neEriE

01 2 3 45 6 7 8 9

» Durch die moglichst vollstandige Fillung der Ebenen werden ,,Locher”
im Array vermieden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Bindrbaum aufgefasst:

> Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

» Das rechte Kind von a[i] liegt

nemriE

01 2 3 45 6 7 8 9

» Durch die moglichst vollstandige Fiillung der Ebenen werden ,,Locher”
im Array vermieden.

» VergroBert man den Baum um ein Element, so wird das Array gerade
um ein Element langer.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.

Lemma

Jedes Array ist ein Heap ab Position |7 |.

» Ein Heap hat | 7] innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Naiver Heapaufbau

() (10
) W E
© ® ®

[2]7]10[3]14]8]16[9]4]15|

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort Heaps

Naiver Heapaufbau

E 110] 3]14] 816/ 9|4 15|

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

(10
) W E
© ® ®

[7]2]10[3]14]8]16[9]4]15|

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort Heaps

Naiver Heapaufbau

T
Z wd
RO

Eo| 314/ 8116/ 9] 415

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

) W E
© ® ®

[10[2]7]314[816[9415

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort Heaps

Naiver Heapaufbau

@ @@
® @ @)

Eﬁ [14[8]16[9] 4[15]

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

W &
ONORD

[0[3[7]2]14[8 [16[94 15]

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort Heaps

Naiver Heapaufbau

¥
Q

W ©®
ONORD

Eﬁ 816/9] 415

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort
Naiver Heapaufbau

© ® w
6/9]4]1

[8]16[9]4[15

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort
Naiver Heapaufbau

@ ®
® @ ®

8[16[9]4 15
S

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort
Naiver Heapaufbau

© ® w
6/9]4]1

16[9 [4 15|

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

[y
()]
]
[
&l

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

ORORD
(9]4]
I

)

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

it

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

©|
|
5

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

it

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

it

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

£

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

x??\

4

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau

til

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2k -1 = k=logn|

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2k -1 = k=logn|

> Damit kostet jedes Einfligen k = log n Vergleiche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2k -1 = k=logn|

» Damit kostet jedes Einfligen k =~ log n Vergleiche.

= Zum Aufbau eines Heaps mit n Elementen benétigt man ©(n - log n)
Vergleiche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2k -1 = k=logn|

» Damit kostet jedes Einfligen k =~ log n Vergleiche.

= Zum Aufbau eines Heaps mit n Elementen benétigt man ©(n - log n)
Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Heapify — Strategie

Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

> Ist E[i] bereits das groBte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

> Ist E[i] bereits das groBte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

» Andernfalls tausche E[i] mit dem groBten Element und fiihre Heapify
in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapify — Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;

3 while (next < n) {

4 if (next + 1 < n &&

5 E[next + 1] > E[next]) {
6 next = next + 1;

7

8

9

}
if (E[pos] > El[next]) {
break;

10 }
11 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
4}
15 ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Heapify — Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;

3 while (next < n) {

4 if (next + 1 < n &&

5 E[next + 1] > E[next]) {
6 next = next + 1;

7

8

9

}
if (E[pos] > El[next]) {
break;

10 }
11 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
4}
15 ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Heapify — Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;

3 while (next < n) {

4 if (next + 1 < n &&

5 E[next + 1] > E[next]) {
6 next = next + 1;

7

8

9

}
if (E[pos] > El[next]) {
break;

10 }
11 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
4}
15 ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Heapsort Heaps

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

> In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

> In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

= Bedingung fiir den Aufruf von sink ist erfllt.

» Dekrementierung von i stellt Schleifeninvariante wieder her.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

> In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

= Bedingung fiir den Aufruf von sink ist erfllt.
» Dekrementierung von i stellt Schleifeninvariante wieder her.

» Terminierung: Bei i = 0 ist gemaB Schleifeninvariante jeder Knoten
1,2,...,n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Heapsort — Algorithmus und Beispiel

R

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

i)

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

‘,'

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

i)

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

R

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

19
©)
69)

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

i)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

Eai)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

S

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

i)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

69
S

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

i)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

Fai)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

o

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
(0)
(a1
b 4

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

©
29)
0
I

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

19
0]

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[41]26[34]25[19[17[17[3[6 [0 [12[4 [2 [13[8 [69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
(®
(3
S

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

8
S

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[342617]25[19] 8 [17[3] 6] 0[12] 4 [2 [13[41[69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

(25)

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[26[25]17]13[19[8 [17[3[6] 012] 4 [2 [34[41[69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
b 4

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

(2)
19
I

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[25[19117[13[12[8 [17[3[6] 0] 2] 4 [26[34[41[69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

13)

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[1913[17] 6 [12[8 [17[3] 4] 0] 2 [25[26[34[41[69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

S

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[17[13[17] 6 [12[8 [2[3] 4] 0 [19]25[26[34[41]69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

(0)

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[17[13] 86 [12[0 [23] 4 [17]19]25[26[34[41]69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

S

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel
[13[128]6]4 [0[2[3 [17[17]19]25[26[3441]69

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

sink(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

"o o6

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

e o

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

*e o
S E——

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

*e o

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

*e o
e

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

0[6]
b 1
1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

‘.f\

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

.)f\
101 B

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

./\

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

./\
NERRRm——

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

o e

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

o e

F

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

./.

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort Heaps

Heapsort — Algorithmus und Beispiel

./.

P

1 void heapSort(int E[]) {

buildHeap(E) ;

for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);

}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Algorithmus und Beispiel

1 void heapSort(int E[]) {
buildHeap(E) ;
for (int i = E.length - 1; 1 > 0; i—-) {
swap(E[0], E[i]);
sink(E, i, 0);
}
}

N o g &~ w N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fir den Heapsort erhalten wir somit:

n—1

W(n) = (D> _2:-[logn])+n

i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fir den Heapsort erhalten wir somit:

n—1

W(n) = (Z 2:-|log n])+n < 2-/1n(|og e) In xdx+n
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fir den Heapsort erhalten wir somit:

n—1 n
W(n) = (Z 2-|logn|)+n < 2-/ (loge)Inxdx+n<2-n-logn+c-n
i=1 1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fir den Heapsort erhalten wir somit:

n—1 n
W(n) = (Z 2-|logn|)+n < 2-/ (loge)Inxdx+n<2-n-logn+c-n
i=1 1

= W(n) € O(n - log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Analysis

» Die Worst-Case Komplexitit von Heapify ist maximal [2-log n| fiir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fir den Heapsort erhalten wir somit:

n—1 n
W(n) = (Z 2-|logn|)+n < 2-/ (loge)Inxdx+n<2-n-logn+c-n
i=1 1

= W(n) € O(n - log n)

» Es wird kein zusatzlicher Speicherplatz benétigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort — Heapeigenschaften

Lemma

Ein n-elementiger Heap hat die Héhe |lgn|.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Heapsort — Heapeigenschaften

Lemma

Ein n-elementiger Heap hat die Héhe |lgn|.

Lemma

Ein Heap hat maximal [n/2"*1] Knoten in der Héhe h.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Heapsort — Heapeigenschaften

Lemma

Ein n-elementiger Heap hat die Héhe |lgn|.

Lemma

Ein Heap hat maximal [n/2"*1] Knoten in der Héhe h.

Beweise siehe Ubung 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

llgn]

8] e

h=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

llgn] n llgn] h
> [QHJO(h) = 0 nzﬁ
h=0 h=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

lgn) - Lgn] p © p 1/2
;[WWO(M = o(nhz_%y) > =i =2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

lgn) - Lgn] p © p 1/2
;[WWO(M = o(nhz_%y) > =i =2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fir einen Knoten der Hohe h ist in O(h).
» [n/2h+1] =Anzahl der Knoten in Héhe h. Daraus folgt fiir buildHeap:

llgn] n llgn] h © p 1/2
;[WWO(M = o(nhz_%y) > =i =2
> h
= Ol|n —

3%

= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort - Zusammenfassung

» Heapsort sortiert in O(n- log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Heapsort - Zusammenfassung

» Heapsort sortiert in O(n- log n)

» Heapsort ist ein in-place Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Heapsort - Zusammenfassung

» Heapsort sortiert in O(n- log n)
» Heapsort ist ein in-place Algorithmus.

» Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Erinnerung: Die Prioritatswarteschlange (1)

> Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Erinnerung: Die Prioritatswarteschlange (1)

> Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

> Jeder Schliissel sei héchstens an einem Element vergeben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Erinnerung: Die Prioritatswarteschlange (1)

> Betrachte Elemente, die mit einem Schliissel (key) versehen sind.
> Jeder Schliissel sei héchstens an einem Element vergeben.

» Schllssel werden als Prioritat betrachtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Erinnerung: Die Prioritatswarteschlange (1)

v

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

Jeder Schliissel sei hochstens an einem Element vergeben.

Schliissel werden als Prioritat betrachtet.

v

Die Elemente werden nach ihrer Prioritat sortiert.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Heapsort Heaps

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlissel; bendtigt nicht-leere pq.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

> void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schlissel von e sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

> void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schlissel von e sein.

Mit Heaps ist eine effiziente Implementierung moglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Drei Prioritatswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) (1) O(1) (1)
insert(pq,e,k) (1) O(n)* O(log n)
getMin(pq) ©(n) O(1) ©(1)
delMin(pq) O(n)* o(1) O(log n)
getElt (pq,k) ©(n) O(logn)t ©(n)
decrKey(pq,e,k) ©(n) O(logn)t O(logn)

*Beinhaltet das Verschieben aller Elemente , rechts” von k.

TMittels binarer Suche.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Heaps
	Heapaufbau
	Heapsort
	Anwendung: Prioritätswarteschlangen

