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Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:
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Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schlissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.
» Die Blatter befinden sich damit alle auf einer, héchstens zwei, Ebenen.

» Die Blatter der untersten Ebene sind linksbiindig angeordnet.
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Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Binarbaum aufgefasst:

» Die Wurzel liegt in a[0].

01 2 3 45 6 7 8 9
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Arrayeinbettung eines Heaps
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Heapsort Heaps

Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Bindrbaum aufgefasst:

» Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

» Das rechte Kind von a[i] liegt

neEriE

01 2 3 45 6 7 8 9

» Durch die moglichst vollstandige Fillung der Ebenen werden ,,Locher”
im Array vermieden.
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Arrayeinbettung eines Heaps

Das Array a wird wie folgt als
Bindrbaum aufgefasst:

> Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inal2 * i + 1].

» Das rechte Kind von a[i] liegt

nemriE

01 2 3 45 6 7 8 9

» Durch die moglichst vollstandige Fiillung der Ebenen werden ,,Locher”
im Array vermieden.

» VergroBert man den Baum um ein Element, so wird das Array gerade
um ein Element langer.
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Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.
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Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.

Lemma

Jedes Array ist ein Heap ab Position |7 |.

» Ein Heap hat | 7] innere Knoten.
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Naiver Heapaufbau

() (10
) W E
© ® ®

[2]7]10[3]14]8]16[9]4]15|

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.
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Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.
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Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und
» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.
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Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}
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Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10}

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2k -1 = k=logn|

» Damit kostet jedes Einfligen k =~ log n Vergleiche.

= Zum Aufbau eines Heaps mit n Elementen benétigt man ©(n - log n)
Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]
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Heapify — Strategie

Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.
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bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

> Ist E[i] bereits das groBte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

» Andernfalls tausche E[i] mit dem groBten Element und fiihre Heapify
in diesem Unterbaum weiter aus.
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Heapify — Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;

3 while (next < n) {

4 if (next + 1 < n &&

5 E[next + 1] > E[next]) {
6 next = next + 1;

7

8

9

}
if (E[pos] > El[next]) {
break;

10 }
11 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
4}
15 ¢
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Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen

Heap um. A

1 void buildHeap(int E[]) {

2 for (int 1 = E.length / 2 - 1; 1 >= 0; i--) {
3 sink(E, E.length, i);
4 7
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...,
E.length - 1 schon Wurzeln von Heaps.
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Heapsort — Algorithmus und Beispiel
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1 void heapSort(int E[]) {
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for (int i = E.length - 1; 1 > 0; i—-) {
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sink(E, i, 0);

}
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Folie)
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W(n) = (Z 2-|logn|)+n < 2-/ (loge)Inxdx+n<2-n-logn+c-n
i=1 1

= W(n) € O(n - log n)

» Es wird kein zusatzlicher Speicherplatz benétigt.
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Heapsort — Heapeigenschaften

Lemma

Ein n-elementiger Heap hat die Héhe |lgn|.

Lemma

Ein Heap hat maximal [n/2"*1] Knoten in der Héhe h.

Beweise siehe Ubung 2.
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Heapsort - Zusammenfassung

» Heapsort sortiert in O(n- log n)
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Heapsort - Zusammenfassung

» Heapsort sortiert in O(n- log n)
» Heapsort ist ein in-place Algorithmus.

» Heapsort ist nicht stabil.
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Erinnerung: Die Prioritatswarteschlange (1)

v

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

Jeder Schliissel sei hochstens an einem Element vergeben.

Schliissel werden als Prioritat betrachtet.

v

Die Elemente werden nach ihrer Prioritat sortiert.

v
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Erinnerung: Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.
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Prioritatswarteschlange (priority queue)

» void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlissel zuriick; bendtigt nicht-leere pq.

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

> void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schlissel von e sein.

Mit Heaps ist eine effiziente Implementierung moglich.
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Drei Prioritatswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) (1) O(1) (1)
insert(pq,e,k) (1) O(n)* O(log n)
getMin(pq) ©(n) O(1) ©(1)
delMin(pq) O(n)* o(1) O(log n)
getElt (pq,k) ©(n) O(logn)t  ©(n)
decrKey(pq,e,k) ©(n) O(logn)t  O(logn)

*Beinhaltet das Verschieben aller Elemente , rechts” von k.

TMittels binarer Suche.
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