Datenstrukturen und Algorithmen

Heapsort

Vorlesung 8: Heapsort (K6)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.rwth-aachen.de/i2/dsal10/

11. Mai 2010
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

Ubersicht

© Heaps

@ Heapaufbau
@ Heapsort
@ Anwendung: Prioritatswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Heapsort

Ubersicht

@ Heaps
@ Heapaufbau
@ Heapsort
@ Anwendung: Prioritatswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20
Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schliisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schliissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.
> Die Blatter befinden sich damit alle auf einer, hochstens zwei, Ebenen.

> Die Blatter der untersten Ebene sind linksbiindig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

http://www-i2.rwth-aachen.de/i2/dsal10/

Heapsort Heaps

Arrayeinbettung eines Heaps

0

Das Array a wird wie folgt als
Bindrbaum aufgefasst:

> Die Wurzel liegt in a[0].

» Das linke Kind von a[i] liegt
inafl2 * i + 1].

» Das rechte Kind von ali] liegt
inal2 *x i + 2].

01 2 3 45 6 7 8 9

» Durch die moglichst vollstandige Fiillung der Ebenen werden ,,Lécher”
im Array vermieden.

> VergroBert man den Baum um ein Element, so wird das Array gerade
um ein Element langer.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Heapsort Heaps

Naiver Heapaufbau

X
)\

W ®
OROR®D

Etl 8[16[9[4]15

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem

> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein
Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Heapsort Heaps

Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.

Lemma

Jedes Array ist ein Heap ab Position |7].

» Ein Heap hat [7] innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Heapsort Heaps

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9

10 }

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2d -1 = k=logn]
» Damit kostet jedes Einfligen k ~ log n Vergleiche.

= Zum Aufbau eines Heaps mit n Elementen benétigt man ©(n - log n)
Vergleiche.

Es geht effizienter: sink (auch: heapify, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Heapsort Heaps

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

> Ist E[i] bereits das groBte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

» Andernfalls tausche E[i] mit dem groBten Element und fiihre Heapify
in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Heapsort Heaps

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

2

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
sink(E, E.length, i);

3
4 %
5

}

Nach jedem Aufruf von sink(E, E.length, i) sind die Knoten i, ...
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Heapify — Algorithmus und Beispiel

1 void sink(int E[], int n, int pos) {
2 int next = 2 * pos + 1;
3 while (mext < n) {
4 if (next + 1 < n &&
5 Elnext + 1] > E[next]) {
6 next = next + 1;
7 }
8 if (E[pos] > E[next]) {
9 break;
10 }
1 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 *x pos + 1;
W) F
15} S
Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Konstruktion eines Heaps

Lemma

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = |n/2]|, |n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

> In jeder lteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

= Bedingung fiir den Aufruf von sink ist erfillt.
» Dekrementierung von i stellt Schleifeninvariante wieder her.

» Terminierung: Bei i = 0 ist gemaB Schleifeninvariante jeder Knoten
1,2,..., n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Heapsort Heaps Heapsort Heaps

Heapsort — Algorithmus und Beispiel Heapsort — Analysis

» Die Worst-Case Komplexitat von Heapify ist maximal |2-logn| fir n
Knoten.

> fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nachste
Folie)

» Fiir den Heapsort erhalten wir somit:

E n—1 n
I W(n) = (D_2:|logn])+n < 2./ (loge)Inxdx+n<2-n-logn+c-n
: 1
i=1
1 void heapSort(int E[]) {
2 buildHeap(E); W
’ n n-logn
3 for (int i = E.length - 1; i > 0; i--) { = ()EO(o8)
4 swap(E[0], E[i]);
5 sink(E, i, 0); . : - . s
6 ¥ > Es wird kein zusatzlicher Speicherplatz benétigt.
7}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Heapsort Heaps Heapsort Heaps

Heapsort — Heapeigenschaften Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)

Beweis:
- Die Laufzit von Heapity fr inen Knoten der Hohe h st in O(1),
Ein n-elementiger Heap hat die Hohe |lg n]. » [n/2M1] =Anzahl der Knoten in Hohe h. Daraus folgt fiir buildHeap:
Llgn] Llg n] oo
) AR
Ein Heap hat maximal [n/2"*1] Knoten in der Héhe h. ,; 2h+1 (,; 2h ,;) 2h (1-1/2)?
. . " o0 h
B he Ub 2. _
eweise sieche Ubung - O (nhz 2h>
=0

= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Heapsort - Zusammenfassung Erinnerung: Die Prioritatswarteschlange (1)

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

» Heapsort sortiert in O(n- log n)
Jeder Schlissel sei hochstens an einem Element vergeben.

v

» Heapsort ist ein in-place Algorithmus.
Schliissel werden als Prioritat betrachtet.

v

» Heapsort ist nicht stabil.
Die Elemente werden nach ihrer Prioritat sortiert.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Heapsort Heaps Heapsort Heaps

Erinnerung: Die Prioritatswarteschlange (I1) Drei Prioritatswarteschlangenimplementierungen
Prioritatswarteschlange (priority queue)
void insert(PriorityQueue pq, int e, int k) fiigt das Element e Implementierung
i e Szl L 10 jge) €l Operation unsortiertes Array sortiertes Array Heap
> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten _
Schliissel zuriick; bendtigt nicht-leere pq. isEmpty (pq) o(1) o(1) o(1)
. insert(pq,e,k) o(1) O(n)* O(log n)
» void delMin(PriorityQueue pq) entfernt das Element mit dem etMin (o) o(n) o(1) o(1)
kleinsten Schliissel; bendtigt nicht-leere pq. ielMin(iz) o(n)* o(1) (log n)
> int getElt(PriorityQueue pq, int k) gibt das Element e mit dem getElt (pq,k) O(n) ©(logn)t ©(n)
Schliissel k aus pq zuriick; k muss in pq enthalten sein. decrKey (pq,e,k) o(n) O(logn)f O(logn)

» void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schliissel von e sein.

*Beinhaltet das Verschieben aller Elemente ,rechts" von k.
TMittels binirer Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen

Mit Heaps ist eine effiziente Implementierung méglich.

20/20

	Heaps

