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Divide-and-Conquer
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in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
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Beispiel: Mergesort (s. Vorlesung 7).
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Quicksort — Idee

Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.
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Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.

Bei Quicksort werden die Elemente zuerst auf die richtige Seite (,,Halfte")
des Arrays gebracht, dann wird jeweils rekursiv sortiert.

Quicksort wurde 1961 von Tony Hoare (GroBbritanien) entwickelt.
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Quicksort — Strategie
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Teile Wahle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:

1. Kleiner als das Pivotelement, sowie
2. mindestens so groB wie das Pivotelement.

Beherrsche: Sortiere die Teile rekursiv und setze dann das Pivotelement
zwischen die sortierten Teile.
Verbinde: Da die Teilfelder in-place sortiert werden ist keine Arbeit
nétig, um sie zu verbinden.
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Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:
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Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

v

Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

v

Schiebe die rechte Grenze nach links, solange das zusaztliche Element
> Pivot ist.

v

Tausche das links gefundene mit dem rechts gefundenen Element.

v

Fahre fort, bis sich die Grenzen treffen.
(Es gibt auch andere Verfahren.)

Das obige Schema ist dhnlich zu Dijkstra’s Dutch National Flag Problem.
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Partitionierung (I1)
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Partitionierung — Algorithmus

1 int partition(int E[], int left, int right) {

2 // Wiéhle einfaches Pivotelement

3 int ppos = right, pivot = E[ppos];

4 right--; // Pivot ausgenommen

5 while (true) {

6 // Bilineare Suche

7 while (left < right &% E[left] < pivot) left++;

8 while (left < right &% E[right] >= pivot) right--;

9 if (left >= right) {

10 break;

11 }

12 swap(E[left], El[right]);

13}

14 if (E[left] < pivot) { // nur bei (left==ppos-1) méglich
15 return ppos;

6}

17 swap(E[left], E[ppos]);

18 return left; // gib neue Pivotposition als Splitpunkt zurick
19 }
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Quicksort — Algorithmus und Animation
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1 void quickSort(int E[], int left, int right) {
2 if (left < right) {
3 int i = partition(E, left, right);
4 // i ist Position des Split-punktes (Pivot)
5 quickSort(E, left, i - 1); // sortiere den linken Teil
6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8}
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> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

» Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

» Man kann den Platzbedarf aber auf ©(log n) reduzieren
(sieche Aufgabe 7-4 im Buch).

» Hauptidee: sortiere nur das groBte Teilarray rekursiv, die kleineren
iterativ.

Die Platzkomplexitat von Quicksort ist in ©(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20



Quicksort — Worst-Case Analyse

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n

» Man erhalt: W(n) = Z(l ~1)=
i=1

(n—1)
f S e(nz)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n
(h—1
» Man erhalt: W(n) = Z(I —-1)= n-(n=1) € 0(n?)
i=1 2

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n

> Man erhalt: W(n) = (i—1) = 2_1) € 0(n?)
i=1

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

» Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort
nur O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.

> Man erhalt: W(n) =S (i—1) = ”(”2—1)
i=1

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

n

€ 0(n?)

» Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort
nur O(n).

Die Worst-Case Laufzeit von Quicksort ist in ©(n?).
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Die Ausbalanciertheit der beiden Halften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.

Fazit: Wenn man eine Aufgabe zerlegt, ist es am Besten, in gleich groBe
Teile zu teilen.

Die best-case Laufzeit von Quicksort ist in ©(n-log n).
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» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

» Betrachte z. B. eine Zerlegung im Verhéltnis 9:1. Dann erhalt man fiir
n> 1
T(n) < T(9n/10) + T(n/10) + c'n

» Rekursionsbaumanalyse liefert: T(n) € O(n-logn).

> Diese 9:1 “unbalancierte” Zerlegung liefert asymptotisch die gleiche
Zeit wie bei einer Aufteilung zu gleichen Teilen!

» Eine Aufteilung im Verhaltnis 99:1 liefert ebenso: T(n) € O(n-log n).
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» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden
= Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

» Partitionierung eines Arrays mit n—1 Elemente fordert n—1 Vergleiche
> Wir erhalten damit fiir n > 1 folgende Rekursionsgleichung:

n—1
A(n) =n—1+ Z Pr{Pivot endet an Stelle i} - (A(i) + A(n—i—1))
i=0

wobei A(0) = A(1) = 0.
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Quicksort — Average-Case-Analyse (I1)

nfll
A(n):n—l—i—gg-(A(i)—i—A(n—i—l))
| Sy An—i—1) = A(n—1) + A(n—2) + ...+ A(0)

n—12
=n-—1 — < A(V).
n +;n (1)
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Quicksort — Average—Case Analyse (1)

A(n n—l—i—z i)+ A(n—i—1))

| Z::o (n—i—1)=A(n—1)+A(n—2) + ...+ A0)

n—12
—n-1 SAG
n +;n (1)

Intermezzo: wir wollen Y~; A(i) loswerden; folgender Trick hilft:
n-An)—(n—1)-Aln—1)=2-An—1)+2-(n—1)
| teile durch n- (n+ 1) und setze A'(n) = A(n)/(n+ 1)
2-(n—1)
/ Y v o = =7
A(n)=A(n-1)+ n (1)
1)

=2 (i—
_;i.(iﬂ)

mit A’'(0) =1 | Umformen
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Quicksort — Average-Case-Analyse (l11)

Al(n) = ; m | calculus
"1 4 1
:2-i:1m—2-;m | calculus
:2-i1—2+i—2-i 1 | harmonische Reihe
= n+1 —i(i+1)
§2-|nn—ﬂ | A'(n) = A(n)/(n+1)
n+1
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Quicksort — Average-Case-Analyse (l11)

Al(n) = ; m | calculus
1 1 1
=2. i:1i+71 —2.;71_‘(1_4_1) | calculus
:2-i1—2+i—2-i L | harmonische Reihe
~n n+1 —i(i+1)
§2-Inn—ﬂ | A'(n) = A(n)/(n+1)
n+1

Da die Best-Case Laufzeit in Q(n- log n) liegt, folgt folgender Satz:

Die mittlere Laufzeit von Quicksort ist in ©(n-log n).
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Ubersicht

@ Vergleich der Sortieralgorithmen
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Komplexitdat von Sortieralgorithmen

Worst-Case Average-Case Platzbedarf  Stabil

Insertionsort ~ ©(n?) O(n?) in-place J
Selectionsort ~ ©(n?) O(n?) in-place N*
Quicksort O(n?) O(n - logn) ©(log n) N*
Mergesort ©(n-logn)  ©(n-logn) ©(n) J
Heapsort ©(n-logn)  ©(n-logn) in-place N

* es gibt Varianten die stabil sind.
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Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben.
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» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.
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> Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und
benutzt dann Heapsort.
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Eingaben.

» Einige Variationen:

> Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und
benutzt dann Heapsort.

» Smoothsort: (komplizierte) Variation von Heapsort die fast O(n)
braucht fir fast sortierten Eingaben.
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