Datenstrukturen und Algorithmen

Vorlesung 9: Quicksort (K7)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

18. Mai 2010

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

http://www-i2.rwth-aachen.de/i2/dsal10/

Ubersicht

@ Quicksort

@ Das Divide-and-Conquer Paradigma
o Partitionierung

@ Quicksort Algorithmus

o Komplexitatsanalyse

@ Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Ubersicht

@ Quicksort

@ Das Divide-and-Conquer Paradigma
o Partitionierung

@ Quicksort Algorithmus

o Komplexitatsanalyse

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem

in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem

in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Verbinde die Lésungen der Teilprobleme zur Lésung des
Ausgangsproblems.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ahneln, jedoch von
kleinerer GroBe sind.

Sie 16sen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Losung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Lésen. Hinreichend kleine
Teilprobleme werden direkt geldst.

Verbinde die Lésungen der Teilprobleme zur Lésung des
Ausgangsproblems.

Beispiel: Mergesort (s. Vorlesung 7).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

Quicksort — Idee

Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Quicksort Quicksort

Quicksort — ldee

Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.

Bei Quicksort werden die Elemente zuerst auf die richtige Seite (,,Halfte")
des Arrays gebracht, dann wird jeweils rekursiv sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Quicksort — Idee

Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.

Bei Quicksort werden die Elemente zuerst auf die richtige Seite (,,Halfte")
des Arrays gebracht, dann wird jeweils rekursiv sortiert.

Quicksort wurde 1961 von Tony Hoare (GroBbritanien) entwickelt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Quicksort — Strategie

Pivot i Partitionierung

[<l
> <

< Pivot > Pivot

A
\

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort — Strategie
141|26|17]25]19]17/ 8 [3| 6 [69]12 4| 2[13(34| 0|
A

Pivot l Partitionierung

[8[3]6]12[4]213[0[17[41]26[17]69]25[19[34

-+
< Pivot > Pivot

Teile Wahle ein Pivotelement aus dem zu sortierenden Array

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort — Strategie
141|26|17]25]19]17/ 8 [3| 6 [69]12 4| 2[13(34| 0|
A

Pivot l Partitionierung

[8[3]6]12[4]213[0[17[41]26[17]69]25[19[34

- ————————
< Pivot > Pivot

Teile Wahle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort — Strategie
141|26|17]25]19]17/ 8 [3| 6 [69]12 4| 2[13(34| 0|
A

Pivot l Partitionierung

[8[3]6]12[4]213[0[17[41]26[17]69]25[19[34

- ————————
< Pivot > Pivot

Teile Wahle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:

1. Kleiner als das Pivotelement, sowie
2. mindestens so groB wie das Pivotelement.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort — Strategie
141|26|17]25]19]17/ 8 [3| 6 [69]12 4| 2[13(34| 0|
A

Pivot l Partitionierung

[8[3]6]12[4]213[0[17[41]26[17]69]25[19[34

- ————————
< Pivot > Pivot

Teile Wahle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:

1. Kleiner als das Pivotelement, sowie
2. mindestens so groB wie das Pivotelement.

Beherrsche: Sortiere die Teile rekursiv und setze dann das Pivotelement
zwischen die sortierten Teile.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort — Strategie
141|26|17]25]19]17/ 8 [3| 6 [69]12 4| 2[13(34| 0|
A

Pivot l Partitionierung

[8[3]6]12[4]213[0[17[41]26[17]69]25[19[34

- ————————
< Pivot > Pivot

Teile Wahle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:

1. Kleiner als das Pivotelement, sowie
2. mindestens so groB wie das Pivotelement.

Beherrsche: Sortiere die Teile rekursiv und setze dann das Pivotelement
zwischen die sortierten Teile.
Verbinde: Da die Teilfelder in-place sortiert werden ist keine Arbeit
nétig, um sie zu verbinden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

» Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

» Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

> Schiebe die rechte Grenze nach links, solange das zuséztliche Element
> Pivot ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

v

Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

v

Schiebe die rechte Grenze nach links, solange das zusaztliche Element
> Pivot ist.

v

Tausche das links gefundene mit dem rechts gefundenen Element.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

» Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

> Schiebe die rechte Grenze nach links, solange das zuséztliche Element
> Pivot ist.

» Tausche das links gefundene mit dem rechts gefundenen Element.

» Fahre fort, bis sich die Grenzen treffen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Quicksort Quicksort

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

» Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

> Schiebe die rechte Grenze nach links, solange das zuséztliche Element
> Pivot ist.

» Tausche das links gefundene mit dem rechts gefundenen Element.
» Fahre fort, bis sich die Grenzen treffen.
(Es gibt auch andere Verfahren.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (1)

Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaBen:

> Arbeite mit drei Bereichen: , < Pivot"”, , > Pivot" und ,ungeprift".

v

Schiebe die linke Grenze nach rechts, solange das zusatzliche Element
< Pivot ist.

v

Schiebe die rechte Grenze nach links, solange das zusaztliche Element
> Pivot ist.

v

Tausche das links gefundene mit dem rechts gefundenen Element.

v

Fahre fort, bis sich die Grenzen treffen.
(Es gibt auch andere Verfahren.)

Das obige Schema ist dhnlich zu Dijkstra’s Dutch National Flag Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Partitionierung (I1)

1816 17]25]19] 0| 4 [3 [13] 2 [12]26]69]41]|34]|17]
A

left right }
l Suche Pivot
[816[17[25]19] 0] 4 [3[13] 2 [12[26]60[41[34] 17
<t+—> A t+—>
< Pivot |left right > Pivot

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Partitionierung (I1)

1816 17]25]19] 0| 4 [3 [13] 2 [12]26]69]41]|34]|17]
A

left right }
l Suche Pivot
[816[17[25]19] 0] 4 [3[13] 2 [12[26]60[41[34] 17
<> _ -« »
< Pivot !left l right > Pivot
Tausch

[816[12[25]19[0] 4 [3[13] 2 [17]26]69[41[34] 17
t4+—>

< Pivot !left right > Pivot

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Partitionierung (I1)

1816 17]25]19] 0| 4 [3 [13] 2 [12]26]69]41]|34]|17]
A

left right }
l Suche Pivot
[816[17[25]19] 0] 4 [3[13] 2 [12[26]60[41[34] 17
t+—> . t+— >
< Pivot !left l right > Pivot
Tausch

[816[12[25]19[0] 4 [3[13] 2 [17]26]69[41[34] 17
t—>

. 3 .
< Pivot !left right > Pivot
Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Partitionierung — Algorithmus

1 int partition(int E[], int left, int right) {

2 // Wiéhle einfaches Pivotelement

3 int ppos = right, pivot = E[ppos];

4 right--; // Pivot ausgenommen

5 while (true) {

6 // Bilineare Suche

7 while (left < right &% E[left] < pivot) left++;

8 while (left < right &% E[right] >= pivot) right--;

9 if (left >= right) {

10 break;

11 }

12 swap(E[left], El[right]);

13}

14 if (E[left] < pivot) { // nur bei (left==ppos-1) méglich
15 return ppos;

6}

17 swap(E[left], E[ppos]);

18 return left; // gib neue Pivotposition als Splitpunkt zurick
19 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Quicksort — Algorithmus und Animation

18]6/17/25]19] 0 | 4 | 3]13] 2 [12]26]69]41|34/17]
4 4

left right
1 void quickSort(int E[], int left, int right) {
2 if (left < right) {
3 int i = partition(E, left, right);
4 // i ist Position des Split-punktes (Pivot)
5 quickSort(E, left, i - 1); // sortiere den linken Teil
6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

18]6/17/25]19] 0| 4 | 3 13| 2 [12]26]69]41]34/17|
4 4

left right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]617[25[19] 0] 43][13[2 [12[26]69[41[34[17
: .

left right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8[612[25[19[0] 4]3]13[2 [17[26]6941[34[17
: .

left right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]612[25[19] 0] 4]3]13[2 [17[26]69[41[34[17
: :

left right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]612[2[19] 0] 4]3]13[25[17[26]6941[34[17
: .

left right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]6]12[2]19] 0] 4] 3]13[25[17[26]69[41]34]17]
3 3

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]6]12[2[13[0]4]3]19][25[17[26]69[41]34]17]
3 3

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]6]12[2[13[0]4]3]19[25[17[26]69[41]34]17]
A

left
right

1 void quickSort(int E[], int left, int right) {

2 if (left < right) {

3 int i = partition(E, left, right);

4 // i ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[8]612[2[13[0] 4]3]17[25[17[26]69[41[34[19
A

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

govPEBB®S ™Mt
' ¥

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

pgovPEL®: ™°™—MAOT
' ¥

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

poeep g, . o0ooo
; '

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

o
; :

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[0]2]3]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0]2]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[0]2]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[0]2]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

_Quicksort IO
Quicksort — Algorithmus und Animation

[6]4]8]12)

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[6]4]8]

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[6]4]8]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[6]4]8]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

6]4]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[6]4]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

[6]4]

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

d25|17l26l69l41|34|19\
: :

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0

d25|17|26l69l41|34|19\
§ s

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // © ist Posttion des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

_Quicksort IO
Quicksort — Algorithmus und Animation

26]69]41(34[25

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

_Quicksort IO
Quicksort — Algorithmus und Animation

26]69]41[34[25

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

_Quicksort IO
Quicksort — Algorithmus und Animation

69]41[34]26]

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

_Quicksort IO
Quicksort — Algorithmus und Animation

69]41[34]26]

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0 12
69)
left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0 123
left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

41/34]69)

left right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

41]34]69)

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

41[34]69)

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0 1235 4

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

0 1235 4

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

left
right

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Algorithmus und Animation

1 void quickSort(int E[], int left, int right) {

> if (left < right) {

3 int i = partition(E, left, right);

4 // % ist Position des Split-punktes (Pivot)

5 quickSort(E, left, i - 1); // sortiere den linken Teil

6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7}
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

» Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

» Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

» Man kann den Platzbedarf aber auf ©(log n) reduzieren
(sieche Aufgabe 7-4 im Buch).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort Quicksort

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:
> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.
» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

» Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

» Man kann den Platzbedarf aber auf ©(log n) reduzieren
(sieche Aufgabe 7-4 im Buch).

» Hauptidee: sortiere nur das groBte Teilarray rekursiv, die kleineren
iterativ.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

11/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

> Die rekursiven Aufrufe bendtigen Speicherplatz fiir alle 1eft und
right Parameter.

» Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

» Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

» Man kann den Platzbedarf aber auf ©(log n) reduzieren
(sieche Aufgabe 7-4 im Buch).

» Hauptidee: sortiere nur das groBte Teilarray rekursiv, die kleineren
iterativ.

Die Platzkomplexitat von Quicksort ist in ©(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort — Worst-Case Analyse

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n

» Man erhalt: W(n) = Z(l ~1)=
i=1

(n—1)
f S e(nz)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n
(h—1
» Man erhalt: W(n) = Z(I —-1)= n-(n=1) € 0(n?)
i=1 2

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.
n

> Man erhalt: W(n) = (i—1) = 2_1) € 0(n?)
i=1

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

» Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort
nur O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element
im Array genommen.

» Dadurch ist das Partitionieren maximal unbalanciert:

» Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

» Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

= Der Rekursionsbaum fiir Quicksort enthalt n—1 Ebenen.

> Man erhalt: W(n) =S (i—1) = ”(”2—1)
i=1

> Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

n

€ 0(n?)

» Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort
nur O(n).

Die Worst-Case Laufzeit von Quicksort ist in ©(n?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort Quicksort

Quicksort — Best-Case Analyse
» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

» Man erhdlt: T(n) =2-T(n/2) + c-n fiurn>1mit T(1) = 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

v

Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

Man erhilt: T(n) =2-T(n/2) + c-n fir n > 1 mit T(1) = 1.
Anwendung des Mastertheorems liefert: T(n) € ©(n-log n).

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

» Man erhdlt: T(n) =2-T(n/2) + c-n fiurn>1mit T(1) = 1.
» Anwendung des Mastertheorems liefert: T(n) € ©(n-log n).

Die Ausbalanciertheit der beiden Halften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

» Man erhdlt: T(n) =2-T(n/2) + c-n fiurn>1mit T(1) = 1.
» Anwendung des Mastertheorems liefert: T(n) € ©(n-log n).

Die Ausbalanciertheit der beiden Halften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.

Fazit: Wenn man eine Aufgabe zerlegt, ist es am Besten, in gleich groBe
Teile zu teilen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.
» Man erhdlt: T(n) =2-T(n/2) + c-n fiurn>1mit T(1) = 1.
» Anwendung des Mastertheorems liefert: T(n) € ©(n-log n).
Die Ausbalanciertheit der beiden Halften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.

Fazit: Wenn man eine Aufgabe zerlegt, ist es am Besten, in gleich groBe
Teile zu teilen.

Die best-case Laufzeit von Quicksort ist in ©(n-log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.
» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?
» Betrachte z. B. eine Zerlegung im Verhéltnis 9:1. Dann erhalt man fiir
n> 1
T(n) < T(9n/10) + T(n/10) + c'n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

» Betrachte z. B. eine Zerlegung im Verhéltnis 9:1. Dann erhalt man fiir
n> 1
T(n) < T(9n/10) + T(n/10) + c'n

» Rekursionsbaumanalyse liefert: T(n) € O(n-logn).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

» Betrachte z. B. eine Zerlegung im Verhéltnis 9:1. Dann erhalt man fiir
n> 1
T(n) < T(9n/10) + T(n/10) + c'n

» Rekursionsbaumanalyse liefert: T(n) € O(n-logn).

> Diese 9:1 “unbalancierte” Zerlegung liefert asymptotisch die gleiche
Zeit wie bei einer Aufteilung zu gleichen Teilen!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

» Schliissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

» Betrachte z. B. eine Zerlegung im Verhéltnis 9:1. Dann erhalt man fiir
n> 1
T(n) < T(9n/10) + T(n/10) + c'n

» Rekursionsbaumanalyse liefert: T(n) € O(n-logn).

> Diese 9:1 “unbalancierte” Zerlegung liefert asymptotisch die gleiche
Zeit wie bei einer Aufteilung zu gleichen Teilen!

» Eine Aufteilung im Verhaltnis 99:1 liefert ebenso: T(n) € O(n-log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:
1. das Pivotelement kann in O(1) Zeit gewahlt werden

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden
= Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden
= Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

» Partitionierung eines Arrays mit n—1 Elemente fordert n—1 Vergleiche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (1)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden
= Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

» Partitionierung eines Arrays mit n—1 Elemente fordert n—1 Vergleiche
> Wir erhalten damit fiir n > 1 folgende Rekursionsgleichung:

n—1
A(n) =n—1+ Z Pr{Pivot endet an Stelle i} - (A(i) + A(n—i—1))
i=0

wobei A(0) = A(1) = 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Average-Case-Analyse (I1)

nfll
A(n):n—l—i—gg-(A(i)—i—A(n—i—l))
| Sy An—i—1) = A(n—1) + A(n—2) + ...+ A(0)

n—12
=n-—1 — < A(V).
n +;n (1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Quicksort — Average—Case Analyse (1)

A(n n—l—i—z i)+ A(n—i—1))

| Z::o (n—i—1)=A(n—1)+A(n—2) + ...+ A0)

n—12
—n-1 SAG
n +;n (1)

Intermezzo: wir wollen Y~; A(i) loswerden; folgender Trick hilft:
n-An)—(n—1)-Aln—1)=2-An—1)+2-(n—1)
| teile durch n- (n+ 1) und setze A'(n) = A(n)/(n+ 1)
2-(n—1)
/ Y v o = =7
A(n)=A(n-1)+ n (1)
1)

=2 (i—
_;i.(iﬂ)

mit A’'(0) =1 | Umformen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Quicksort — Average-Case-Analyse (l11)

Al(n) = ; m | calculus
"1 4 1
:2-i:1m—2-;m | calculus
:2-i1—2+i—2-i 1 | harmonische Reihe
= n+1 —i(i+1)
§2-|nn—ﬂ | A'(n) = A(n)/(n+1)
n+1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Quicksort — Average-Case-Analyse (l11)

Al(n) = ; m | calculus
1 1 1
=2. i:1i+71 —2.;71_‘(1_4_1) | calculus
:2-i1—2+i—2-i L | harmonische Reihe
~n n+1 —i(i+1)
§2-Inn—ﬂ | A'(n) = A(n)/(n+1)
n+1

Da die Best-Case Laufzeit in Q(n- log n) liegt, folgt folgender Satz:

Die mittlere Laufzeit von Quicksort ist in ©(n-log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Ubersicht

@ Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Komplexitdat von Sortieralgorithmen

Worst-Case Average-Case Platzbedarf Stabil

Insertionsort ~ ©(n?) O(n?) in-place J
Selectionsort ~ ©(n?) O(n?) in-place N*
Quicksort O(n?) O(n - logn) ©(log n) N*
Mergesort ©(n-logn) ©(n-logn) ©(n) J
Heapsort ©(n-logn) ©(n-logn) in-place N

* es gibt Varianten die stabil sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen
> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.
» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

» Einige Variationen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

» Einige Variationen:

> Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und
benutzt dann Heapsort.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

» Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und
ist stabil.

> Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fiir fast
sortierte Eingaben.

» Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

» Einige Variationen:

> Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und
benutzt dann Heapsort.

» Smoothsort: (komplizierte) Variation von Heapsort die fast O(n)
braucht fir fast sortierten Eingaben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Quicksort
	Das Divide-and-Conquer Paradigma
	Partitionierung
	Quicksort Algorithmus
	Komplexitätsanalyse

	Vergleich der Sortieralgorithmen

