Binare Suchbidume

Datenstrukturen und Algorithmen

Vorlesung 10: Binare Suchbdume

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

21. Mai 2010
RWTH

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/27
Ubersicht
o Binare Suchbaume

@ Suche

o Einfiigen

o Einige Operationen (die das Loéschen vereinfachen)

@ Loschen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/27

Binare Suchbidume

Ubersicht

@ Binare Suchbiume
@ Suche
o Einfiigen
@ Einige Operationen (die das Loschen vereinfachen)
@ Loschen

© Rotationen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/27
Binare Suchbiume Binare Suchbaume
Motivation

Suchbdume unterstiitzen Operationen auf dynamische Mengen, wie:

» Suchen, Einfiigen, Léschen, Abfragen (z. B. Nachfolger oder
Minimales Element)

Die Basisoperationen auf bindre Suchbdume benétigen eine Laufzeit, die
proportional zur Hohe des Baums ist.

Fiir vollstandige bindre Baume mit n Elemente, liefert dies eine Laufzeit
O(log n) fir eine Basisoperation.

Fir ein Baum der einer linearen Kette entspricht, dies ist jedoch ©(n).

Wir werden spater bindre Suchbdume kennen lernen, deren Laufzeit immer
O(log n) ist (s. nachste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27

http://www-i2.rwth-aachen.de/i2/dsal10/

Binare Suchbidume Binare Suchbiume

Binare Suchbiume

Binare Suchbidume

Binare Suchbaume (1)

Binarer Suchbaum

Ein binarer Suchbaum (BST) ist ein Bindrbaum, der Elemente mit
Schlisseln enthélt, wobei der Schlissel jedes Knotens

> mindestens so groB ist, wie jeder Schliissel im linken Teilbaum und

» hochstens so groB ist, wie jeder Schliissel im rechten Teilbaum.

o

Zwei bindre Suchbdume, die jeweils
2, 3,5,6, 7,9 enthalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Binare Suchbiume Binare Suchbiume

Bindre Suchbaume (I11)

5/27

Beispiel (Bindrer Suchbaum in C/C++)

1 typedef struct _node* Node;

2 struct _node {

3 int key;

4 Node left, right;

5 Node parent;

6 // ... evutl. eigene Datenfelder
7};

9 struct _tree {
10 Node root;
1 };

2 typedef struct _treex Tree;

-

Joost-Pieter Katoen Datenstrukturen und Algorithmen

7/27

Binare Suchbaume (I1)

]
Knoten in einem binaren Suchbaum bestehen aus vier Feldern:

» Einem Schlissel — dem ,Wert" des Knotens,

» einem (moglicherweise leeren) linken und rechten Teilbaum (bzw.
Zeiger darauf), sowie

» einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).

null
i A T Vater/Mutter
Schlussel-______I>12 €l von B und C
I
N2 b
Linkes Kind B parent Rechtes Kind
vonA "mo--- 6 (@ C[® [225lq----""" von A
/P Q\ /ﬁ Q\
Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27

Sortieren in linearer Zeit?

Sortieren

Eine Inorder Traveriserung eines binaren Suchbaumes gibt alle Schliissel im
Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der
BST-Eigenschaft.

Beispiel Inorder Traversierung BST am Overheadprojektor.

Zeitkomplexitat

Da die Zeitkomplexitat einer Inorder Traversierung eines Baumes mit n
Knoten ©(n) ist, liefert uns dies einen Sortieralgorithmus in ©(n).

Dies setzt jedoch voraus, dass alle Daten als ein BST gespeichert sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27

Binare Suchbidume Binare Suchbiume

Binare Suchbidume

Binare Suchbiume

Suche nach Schlussel kK im BST — kK =10

1 Node bstSearch(Node root, int k) {
2 while (root) {

3 if (k < root.key) {

4 root = root.left;

5 } else if (k > root.key) {

6

7

8

9

root = root.right;
} else { // k == root.key

return root;
}
D ©

1 return null; // nicht gefunden

12}

Die Worst-Case Komplexitat ist linear in der Hohe h des Baumes: ©(h).
» Fir einen kettenartigen Baum mit n Knoten ergibt das ©(n).

> Ist der BST so balanciert wie méglich, erhalt man ©(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27
Binare Suchbidume Binare Suchbaume

Einfiigen eines Knotens mit Schliissel kK — Strategie

Man kann einen neuen Knoten mit Schliissel k in den BST ¢t einfiigen,

ohne die BST-Eigenschaft zu zerstéren:

Suche einen geeigneten, freien Platz:
Wie bei der reguldren Suche, auBer dass, selbst bei gefundenem
Schlissel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes
Kind erreicht ist.

Hange den neuen Knoten an:
Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

» Komplexitat: ©(h), wegen der Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27

Suche nach Schliissel k im BST — k = 18 (erfolglos)

1 Node bstSearch(Node root, int k) {
2 while (root) {

3 if (k < root.key) {

4 root = root.left;

5 } else if (k > root.key) {

6 root = root.right;

7 } else { // k == root.key

8 return root;

9 3

0}

1 return null; // nicht gefunden .
12}

Die Worst-Case Komplexitat ist linear in der Hohe h des Baumes: ©(h).
» Fir einen kettenartigen Baum mit n Knoten ergibt das ©(n).

> Ist der BST so balanciert wie méglich, erhalt man ©(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27
Binare Suchbidume Binare Suchbaume

Einfiigen von 18 in den BST t — Beispiel

Joost-Pieter Katoen

bstIns(t, Node(18))_

Datenstrukturen und Algorithmen

11/27

Binare Suchbidume Binare Suchbiume Binare Suchbidume Binare Suchbiume

Einfiigen in einen BST — Algorithmus Abfragen im BST: Minimum
1 void bstIns(Tree t, Node node) { // Fiige node in den Baum t ein
"7/ Siche freien ot
3 Node root = t.root, parent = null;
+ while (root) { Wir suchen den Knoten mit kleinstem Schliissel im durch root gegebenen
5 parent = root; (Té”—)Baunm
6 if (node.key < root.key) {
L e
8 } else { osung
13 } root = root.right; 1 Node bstMin(Node root) { // root != null
o 2 while (root.left) {
w1} /7 Einfugen 3 root = root.left;
12 node.parent = parent; .}
13 if (!parent) { // t war leer => neue Wurzel
5 return root;
14 t.root = node; }
15} else if (node.key < parent.key) { // richtige Seite ... o
16 parent.left = node;
17} else { . . i
. parent.Tight = node; » Komplexitat: ©(h) bei Baumhohe h.
v} » Analog kann das Maximum gefunden werden.
20 }
Abfragen im BST: Nachfolger (1) Abfragen im BST: Nachfolger (1)
Wir suchen den Nachfolger-Knoten von node, also den bei Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten. Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key. Dessen Schliissel ist mindestens so groB wie node.key.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27

Binare Suchbidume Binare Suchbiume

Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node . key.

Der rechte Teilbaum existiert:

node
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27

Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthilt.

» Komplexitat: ©(h) bei Baumhdohe h.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27

Binare Suchbidume Binare Suchbiume
Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node . key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthalt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27
Binare Suchbidume Binare Suchbaume

Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthilt.

» Komplexitat: ©(h) bei Baumhdohe h.
» Analog kann der Vorganger gefunden werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27

Binare Suchbidume Binare Suchbiume

Abfragen im BST: Nachfolger (II)

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Der Nachfolger ist der jiingste Vorfahre, dessen linker Teilbaum node
enthalt.

1 Node bstSucc(Node node) { // node != null

2 if (node.right) {

3 return bstMin(node.right);

a }

5 // Abbruch, wenn node nicht mehr rechtes Kind ist (also linkes!)
6 // oder node.parent leer ist (also kein Nachfolger existiert).

7 while (node.parent && node.parent.right == node) {
8 node = node.parent;
9

10 return node.parent;

1}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27
Binare Suchbidume Binare Suchbaume

Loschen im BST: Die beiden einfachen Fille

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27

Ersetzen von Knoten im BST

1 // Ersetzt old im Baum t durch node (ohne Sortierung!)

2 void bstReplace(Tree t, Node old, Node node) {

3 // node == null nur erlaubt, wenn old keine Kinder hatte
4 if (node) {

5 // dbernimm linken Teilbaum
6 node.left = old.left;

7 if (node.left) {
8

9

18 // fuge den Knoten ein
19 node.parent = old.parent;

node.left.parent = node; 2 if (lold.parent) {

}

21 // war die Wurzel
10
. 22 t.root = node;
1 // rechten Teilbaum x 7} else if
12 gode.rlght.= old.right; o (old == old.parent.left) {
13 if (node:rlght) { _ R // war linkes Kind
14 node.right.parent = node; o6 node.parent.left = node;
15 b 27 } else { // rechtes Kind
) 28 node.parent.right = node;
17 2w}
- 30 }

N _ o, " T TN P T =
Joost-Pieter Katoen Datenstrukturen und Algorithmen

Binare Suchbiume Binare Suchbiume

Loschen im BST: Der aufwandigere Fall

() ®..
N
@5 12) 20) @{.;/@ 20)

12
@ @D 19 @9 @ @Y

—_— >
Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27

Binare Suchbidume Binare Suchbiume

Loschen im BST — Strategie

Um Knoten node aus dem BST zu I6schen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.
» Der gesuchte Nachfolger hat kein linkes Kind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27

Binare Suchbiume Binare Suchbiume

Komplexitat der Operationen auf BSTs

Operation Zeit

bstSearch ©(h)
bstSucc ©(h)
bstMin ©(h)
bstIns ©(h)
bstDel ©(h)

> Alle Operationen sind linear in der Hohe h des BSTs.
» Die Hohe ist log n, wenn der Baum nicht zu ,,unbalanciert” ist.

» Man kann einen bindren Baum mittels Rotationen wieder balancieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/27

Binare Suchbidume Binare Suchbiume

Loschen im BST — Algorithmus

1 // Entfernt node aus dem Baum.

2 // Danach kann node ggf. auch aus dem Speticher entfernt werden.
3 void bstDel(Tree t, Node node) {

4 if (node.left && node.right) { // zwei Kinder

5 Node tmp = bstMin(node.right);

6 bstDel(t, tmp); // hichstens ein Kind, rechts

7 bstReplace(t, node, tmp);

8 } else if (node.left) { // ein Kind, links

9 bstReplace(t, node, node.left);

10 } else { // ein Kind, oder kein Kind (node.right == null)
11 bstReplace(t, node, node.right);

1}

13}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27
Binare Suchbiume Binare Suchbaume

Zufillig erzeugte binare Suchbaume

Zufdllig erzeugte BST

Ein zufallig erzeugter BST mit n Elementen ist ein BST, der durch das
Einfiigen von n (unterschiedliche) Schlissel in zufélliger Reihenfolge in
einem anfangs leeren Baum entsteht.

Annahme: jede der n! moglichen Einfligungsordnungen hat die gleiche
Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Hohe eines zufallig erzeugten BSTs mit n Elementen ist
O(log n).

Fazit: Im Schnitt verhélt sich eine bindre Suchbaum wie ein (fast)
balancierte Suchbaum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27

Binare Suchbidume Rotationen Binare Suchbidume Rotationen

Ubersicht leftRotate — Konzept und Beispiel
V SN
1" leftRotate(1)
_—>

rightRotate(2)
%

Beispiel
\ leftRotate(5)
© Rotationen S ’
Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27
Binare Suchbiume Rotationen Binare Suchbiume Rotationen
Rotationen: Eigenschaften und Komplexitat leftRotate — Algorithmus
1 void leftRotate(Tree t, Node nodel) { // analog: rightRotate()
A Node node2 = nodel.right;
. leftRotate(1) 2 ode node nodel.right; .
1 > 3 // Baum B wverschieben S » 1 SN
/ 4 nodel.right = node2.left;
v rightRotate(2) 5 nodel.right.parent = nodel; /
— 6 v
7 // node2 wieder einhdngen
8 node2.parent = nodel.parent;
9 if (!nodel.parent) { // nodel war die Wurzel
10 t.root = node2;
Lemma 11} else if (nodel == nodel.parent.left) { // war linkes Kind
) . . . 12 node2.parent.left = node2;
» Ein rotierter BST ist ein BST 13} else { // war rechtes Kind 2
» Die Inorder-Traversierung beider Bdume bleibt unverandert. 14) node2.parent.right = node2; 1
15
16
Zeitkomplexitat v // model einhdngen
18 node2.left = nodel;
Die Zeitkomplexitat von Links- oder Rechtsrotieren ist in ©(1). 19 nodel.parent = node2;
20 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/27

Rotationen — AVL-Baum

Bleibt die Frage, an welchen Knoten die Rotationen durchgefiihrt werden
muss.

AVL-Baum

» Bei AVL-Baumen wird die Hohe der Teilbaume der Knoten balanciert.

» Dazu wird (in einem zusatzlichem Datenfeld) an jedem Knoten iiber
die Hohe dieses Unterbaums Buch gefiihrt.

» Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.
Dies ist in ©(h) moglich!

» Dadurch bleibt stets h = ©(log n) und ©(log n) kann fiir die
Operationen auf dem BST garantiert werden.

> Eine andere Moglichkeit, um Baume zu balancieren sind
Rot-Schwarz-Baume (nachste Vorlesung am 4. Juni).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/27

	Binäre Suchbäume
	Suche
	Einfügen
	Einige Operationen (die das Löschen vereinfachen)
	Löschen

	Rotationen

