Hashing Il

Datenstrukturen und Algorithmen

Vorlesung 13: Hashing Il

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.rwth-aachen.de/i2/dsal10/

11. Juni 2010
RWTH

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/22
Ubersicht
@ Offene Adressierung

@ Lineares Sondieren

@ Quadratisches Sondieren

@ Doppeltes Hashing

o Effizienz der offenen Adressierung
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/22

Hashing Il

Ubersicht

@ Offene Adressierung
@ Lineares Sondieren
@ Quadratisches Sondieren
@ Doppeltes Hashing
o Effizienz der offenen Adressierung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/22
Hashing Il Offene Adressierung

Kollisionsauflosung durch offene Adressierung
> Alle Elemente werden direkt in der Hashtabelle gespeichert (im
Gegensatz zur Verkettung).

= Hochstens n Schliissel kénnen gespeichert werden, d. h.
a(n,m) =1 < 1.

[Amdahl 1954]
» Man spart aber den Platz fiir die Pointer.

Einfiigen von Schliissel k

» Sondiere (to probe) die Positionen der Hashtabelle, bis ein leerer Slot
gefunden wurde.

» Die zu lberpriifenden Positionen sind vom einzufligenden Schliissel k
abgeleitet.

» Die Hashfunktion héngt also vom Schlissel k und der Nummer der
Sondierung ab:

h:Ux{0,1,..m—1}—{0,1,...m—1}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/22

http://www-i2.rwth-aachen.de/i2/dsal10/

Hashing Il Offene Adressierung

Einfiigen bei offener Adressierung

1 void hashInsert(int T[], int key) {

> for (int i = 0; i < T.length; i++) { // Teste ganze Tabelle
3 int pos = h(key, i); // Berechne t-te Sondierung
4 if (ITlposl) { // freier Platz
5 T[pos] = key;
6 return; // fertig
7 }
8
o throw "Uberlauf der Hashtabelle';
10 }
Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/22

Hashing Il Offene Adressierung

Loschen bei offener Adressierung

Problem
Léschen des Schliissels k aus Slot i durch T[i] = null ist ungeeignet:

» Wenn beim Einfiigen von k der Slot i besetzt war, kénnen wir k nicht
mehr abrufen.

LGsung

Markiere T[i1 mit dem speziellen \Wert DELETED (oder: ,veraltet”).
» hashInsert muss angepasst werden und solche Slots als leer
betrachten.

» hashSearch bleibt unverandert, solche Slots werden einfach
libergangen.

» Die Suchzeiten sind nun nicht mehr allein vom Fiillgrad o abhéngig.

= Wenn Schliissel geléscht werden sollen wird haufiger Verkettung
verwendet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/22

Hashing Il Offene Adressierung

Suche bei offener Adressierung

1 int hashSearch(int T[], int key) {
2 for (int i = 0; i < T.length; i++) {
3 int pos = h(key, 1); // Berechne i-te Sondierung
4 if (T[pos] == key) { // Schlissel k gefunden
5 return T[pos];
6 } else if (!T[posl) { // freier Platz, nicht gefunden
7 break;
8 X
o }
10 return -1; // "nicht gefunden”
1t
Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/22

Wie wahlt man die nachste Sondierung?
Wir bendtigen eine Sondierungssequenz fiir einen gegebenen Schliissel k:

(h(k,0), h(k, 1), .., h(k, m—1))

» Wenn es sich dabei um eine Permutation von (0, ... m — 1) handelt
ist garantiert, dass jeder Slot letztlich gepriift wird.

> Gleichverteiltes Hashing ware ideal, d. h. jede der m! Permutationen
ist als Sondierungssequenz gleich wahrscheinlich.

> In der Praxis ist das aber zu aufwandig und wird approximiert.

Sondierungsverfahren

» Wir behandeln Lineares Sondieren, Quadratisches Sondieren und
Doppeltes Hashing.

» Die Qualitat ist durch die Anzahl der verschiedenen
Sondierungssequenzen, die jeweils erzeugt werden, bestimmt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/22

Hashing Il Offene Adressierung Hashing Il Offene Adressierung

Lineares Sondieren Lineares Sondieren: Beispiel
0 0 0
1 1 1
. . . 2 2 2
Hashfunktion beim linearen Sondieren 3 3 3
h(k, i) = (K (k) + i) mod m (fur i < m). 4 4 4
. . ins (17) ins(17)
> k ist der Schlissel 5 ? 55— 5
- . . g L Son- 6 2. Son- 6
» j ist der Index im Sondierungssequenz dierung dierung
7 7 7
» h ist eine libliche Hashfunktion. 8 8 8
9 9 9
10 10 10
H(k) = k mod 11 h(k, i) = (W(k) + i) mod 11
Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22
Lineares Sondieren: Beispiel Lineares Sondieren

Hashfunktion beim linearen Sondieren

0 0 0 0 0) ,) —

1 1 1 1 1 h(k, i) = (W (k) + i) mod m (fir i < m).

2 2 2 2 2 » h' ist eine tibliche Hashfunktion.

3 3 3 3 3

4. 4. 4. 4. 4. » Die Verschiebung der nachfolgende Sondierungen ist linear von i

5 ins(17) 5 ins(17) 5 ins(59) 5 ins(59) 5 ins(59) abhangig.

6 1. Son- 6 2. Son- 6 1. Son- 6 2. Son- 6 3. Son-

7 dierung 7 dierung 7 dierung 7 dierung 7 dierung > Die erste Sondierung bestimmt bereits die gesamte Sequenz.

8 38 8 8 8 =- m verschiedene Sequenzen kdnnen erzeugt werden.

9 9 9 9 9 » Clustering, also lange Folgen von belegten Slots, fiihrt zu Problemen:
10 10 10 10 10 » h (k) bleibt konstant, aber der Offset wird jedes Mal um eins groBer.

» Ein leerer Slot, dem i volle Slots vorausgehen, wird als nachstes mit

h' (k) = k mod 11 h(k, i) = (K(k)+ i) mod 11 Wahrscheinlichkeit = gefiillt.

= Lange Folgen tendieren dazu langer zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/22

Hashing Il Offene Adressierung Hashing Il Offene Adressierung

Quadratisches Sondieren Quadratisches Sondieren: Beispiel
0 0 0 0 0
1 1 1 1 1
Hashfunktion beim quadratischen Sondieren 2 2 2 2 2
h(k,i) = (H(K) + c1 - i + ¢ - 2) mod m (fiir i < m). 3 3 3 3 i
» k ist der Schliissel 5 insS(17z 5 insS(17z 5 insS(17= 5 insS(17z 5
» | ist der Index im Sondierungssequenz 6 Lo 6 2 oM 6 S oo 6 & >on 6
dierung dierung dierung dierung

» K ist eine lbliche Hashfunktion, und / 7 7 7 I
. 0 Konstant 8 8 8 8 8
ca, o # onstanten. 9 9 9 9 9

10 10 10 10 10

x-

W (k) = k mod 11 h(

i) = (W(k) + i+ 3i%) mod 11

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/22
Hashing Il Offene Adressierung Hashing 1l Offene Adressierung
Quadratisches Sondieren Doppeltes Hashing

Hashfunktion beim quadratischen Sondieren
h(k,i) = (W (k) +c1-i+ co-i?) mod m (fir i < m).

» H ist eine tbliche Hashfunktion, ¢1, ¢, # 0 Konstanten.

» Die Verschiebung der nachfolgende Sondierungen ist quadratisch Hashfunktion beim doppelten Hashing
von i abhangig. h(k, i) = (hi(k) +i- ho(k)) mod m (fir i < m).
> Die erste Sondierung bestimmt bereits die gesamte Sequenz. > h1, ho sind lbliche Hashfunktionen.

= Auch hier kénnen m verschiedene Sequenzen erzeugt werden (wenn
c1, ¢y geeignet gewahlt wurden).

» Das Clustering von linearem Sondieren wird vermieden.

» Jedoch tritt sekundéres Clustering immer noch auf:

h(k,0) = h(k',0) verursacht h(k, i) = h(k', i) fir alle i.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

Doppeltes Hashing: Beispiel Doppeltes Hashing

Hashfunktion beim doppelten Hashing

(1) ? (1) (1) (1) h(k, i) = (hi(k) +i- ha(k)) mod m (fir i < m).

2 2 2 2 2 > hy1, hy sind iibliche Hashfunktionen.

3 3 3 3 3

;1 ilnss(;:_i gr iznss(i:_; ;1 i;SS(j:_i EA'; irss(i:j ;1 > E)I;Eé\rﬁegrisgc.hlebung der nachfolgende Sondierungen ist von hy(k)
? di.erung 673 di.erung ? di.erung g di.erung ? > Die erste Sondierung bestimmt nicht die gesamte Sequenz.

8 8 8 8 8 = Bessere Verteilung der Schliissel in der Hashtabelle.

9 9 9 9 9 = Approximiert das gleichverteilte Hashing.

10 10 10 10 10

> Sind hy und m relativ prim, wird die gesamte Hashtabelle abgesucht.
hi(k) = k mod 11 » Wahle z. B. m = 2¥ und h, so, dass sie nur ungerade Zahlen erzeugt.

ho(K) = 1+ k mod 10| |1k 7) = (m(K) +i- ho(k)) mod 11

» Jedes mogliche Paar hi(k) und ha(k) erzeugt eine andere Sequenz.
2

= Daher kénnen m*“ verschiedene Permutationen erzeugt werden.

Praktische Effizienz von Doppeltem Hashing Effizienz der offenen Adressierung

» Hashtabelle mit 538 051 Eintragen (Endfiillgrad 99,95%) 99,5 % -> 358 Unter der Annahme von gleichverteiltem Hashing gilt:

» Mittlere Anzahl Kollisionen 7 pro Einfiigen in die Hashtabelle: Erfolglose Suche

Die erfolglose Suche bendtigt O (ﬁ) Zeit im Average-Case.

14 | — Lineares Sondieren 1
12 +— nggg?géicﬁzssa%rédleren - » Bei 50% Fillung sind durchschnittlich 2 Sondierungen nétig.
10 L i » Bei 90% Fillung sind durchschnittlich 10 Sondierungen nétig.
8 - Erfolgreiche Suche
n

6 iy Die erfolgreiche Suche benétigt O (é In ﬁ) im Average-Case.

4 | i

2 | | » Bei 50% Fillung sind durchschnittlich 1,39 Sondierungen nétig.
0 » Bei 90% Fillung sind durchschnittlich 2,56 Sondierungen nétig.

0 10 20 30 40 50 60 70 80 90 100
Fillgrad der Hashtabelle (in %) O
Bei der Verkettung hatten wir ©(1 + «) in beiden Fallen erhalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/22

Analyse der erfolglosen Suche (1) Analyse der erfolglosen Suche (Il)

Erfolglose Suche
e —— Eine Suche i J i rfalglos wenn Fir 7 alle/SIats (k. D)L - h(k) i1)

» Betrachte eine zufillig erzeugte Sondierungssequenz fiir Schliissel k. belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

» Annahme: jede mogliche Sondierungssequenz hat eine gleiche

Wahrscheinlichkeit, d. h. % da es m! mogliche Permutationen von

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden

o . ist:
den Positionen 0, ..., m—1 gibt. X = min{i€N:h(k,i) ist unbelegt }.

» Bemerkung: dies ist nicht unrealistisch, da im Idealfall die
Sondierungssequenz fiir k moglichst unabhangig ist von der
Sondierungssequenz fir k', k # k'.

> Wir nehmen (wie vorher) an, dass die Berechung von Hashwerten in

O(1) liegt. E[X] =

Sei E[X] der Erwartungswert von X.
Dann: die Average-Case Komplexitat einer erfolglosen Suche ist 1 + E[X].

n
m—n+1-

Beweis: in der Vorlesung. Damit: 1+ E[X] =1+ -5 = 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/22
Hashing Il Offene Adressierung

Analyse der erfolgeichen Suche (1)

> Sei Schliissel k; der i-te eingefiigte Schliissel in der Hashtabelle.

v

Betrachte eine erfolgreiche Suche fiir Schlissel k1.

v

Sei X; die Anzahl der Sondierungen beim Einfiigen vom Schlissel k;.
Im Schnitt, braucht eine erfolgreiche Suche fiir k;, E[X;] Zeiteinheiten.

v

v

Die Average-Case Zeitkomplexitat fiir eine erfolgreiche Suche ist:

1 n—1
=3 EXizl-
nizo

Lemma

Ly EXa] € 0 (L),

Beweis: in der Vorlesung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/22

	Offene Adressierung
	Lineares Sondieren
	Quadratisches Sondieren
	Doppeltes Hashing
	Effizienz der offenen Adressierung

