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Probleme auf kanten-gewichtete Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

»Minimal* und , kiirzester" beziehen sich hierbei auf die besuchten
Gewichte. Die Gewichte konnen als Kosten fiir die Benutzung der Kante
aufgefasst werden.

Diese Probleme kénnen durch greedy Algorithmen gelost werden.
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Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

> Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
~kurzfristigen* Kriteriums optimal ist.

» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Lésung
gefunden wird, denn
» immer das lokale Optimum zu nehmen, fiihrt nicht automatisch auch
zum globalen Optimum.
> In einigen Féllen, wie dem minimalen Spannbaum und dem
Kiirzesten-Wege-Problem, wird aber immer die optimale Losung

gefunden.
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Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist

» ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.

Gewicht eines Graphen

Das Gewicht W(G’) eines Teilgraphen G’ = (V/, E’) vom gewichteten
Graph G ist:

» W(G') = Z W(u, v).

(u,v)EE’

Minimaler Spannbaum

Ein Spannbaum mit minimalem Gewicht heiBt Minimaler Spannbaum
(minimum spanning tree), MST.
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Greedy?

Greedy kann beliebig schlecht werden:

» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)
Greedy kann optimal sein:

» Minimaler Spannbaum, Kiirzester-Weg-Problem.

Wann ist eine greedy Losungsstrategie optimal?
» Optimale Losung setzt sich aus optimalen Teilproblemen zusammen

» Unabhangigkeit von anderen Teilldsungen
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Anwendungen

Problem

Finde einen MST eines gewichteten, ungerichteten, zusammenhingenden
Graphen.

Beispiel

> Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

» Grundlage fiir viele andere Probleme, etwa Routing-Probleme
(,Wegfindung").
> Bestandteil von Approximationsalgorithmen fiir das TSP Problem.

» Verdrahtung von Schaltungen mit geringsten Energieverbrauch.
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Minimaler Spannbaum — Beispiel
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Minimaler Spannbaum — Beispiel

Was ist ein minimale Spannbaum?
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Tiefen- oder Breitensuche?

Breitensuchbaum (von A gestartet)
Gesamtgewicht: 55 Gesamtgewicht: 67

Tiefensuchbaum (von A gestartet)

Der Tiefensuchbaum und der Breitensuchbaum sind zwar Spannbaume,
aber nicht notwendigerweise MSTs.
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Das ist ein minimale Spannbaum (mit Gesamtgewicht 46).
In diesem Fall ist es auch der einzige.
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Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
» Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

» Fige den lber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Ist das korrekt? Und wenn, was ist die Komplexitat?
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Prim’s Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten

2 void primMST(Graph G, int n) {

3 initialisiere alle Knoten als ungesehen (WHITE);

4 wédhle irgendeinen Knoten s und markiere ihn mit Baum (BLACK);

5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;

6 while (es gibt Randknoten) {

7 wéhle von allen Kante zwischen einem Baumknoten t und

8 einem Randknoten v die billigste;

9 reklassifiziere v als Baum (BLACK);

10 fiige Kante tv zum Baum hinzu;

11 reklassifiziere alle zu v adjazenten ungesehenen Knoten

12 als (GRAY) ;

13}

14 }
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Die MST-Eigenschaft
MST-Eigenschaft auf G

Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G, wenn
1. jede Kante (u,v) € G — T einen Zyklus in T erzeugen wiirde, und

2. in diesem Zyklus die Kante mit maximalem Gewicht ist.

Spannbaum, der die MST-Eigenschaft hat

Spannbaum, der die MST-Eigenschaft verletzt
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Prim’s Algorithmus — Beispiel
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Spannbdaume mit gleichem Gewicht

Wenn zwei Spannbdume T1 und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(Ty).

Beweis.

Induktion iiber die Anzahl k an Kanten in T — T>.

Induktionsanfang:
k =0, T1 und T, sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.
» T7 und T> unterscheiden sich nun um k Kanten.
» Betrachte die giinstigste Kante (u, v) aus T — Tj.
» Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante

(w, x) & T, enthalten. Es gilt W(w, x) = W(u, v), denn: .
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Spannbaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) & T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T gilt W(u, v) < W(w, x).
= W(w,x)= W(u,v).
» Fuge (u, v) zu T1 hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(Tj).
» Bemerke, daB T, die MST-Eigenschaft hat, da T; die hatte.
» Da T die MST-Eigenschaft hat und T7 und T3 sich nur noch um
k—1 Kanten unterscheiden:

= mit Induktionsannahme folgt, dass W(T;) = W(T) und damit

W(T1) = W(T>). O
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Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in Ty
induzierten Teilgraph Gy (d. h. (u, v) ist eine Kante in G, wenn (u, v) eine
Kante in G ist, und u und v sind in Ty).

Beweis.
Induktion nach k.

Induktionsanfang:
k =1, T; und Gj enthalten nur Knoten und keine Kanten. 77 hat
damit die MST-Eigenschaft in G;.
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Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x, y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T') < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

(<) Angenommen T hat die MST-Eigenschaft. Sei T’ ein MST von G.
Wegen = hat dann T’ die MST-Eigenschaft. Mit dem vorigen Lemma
haben Spannbdume mit MST-Eigenschaft das selbe Gewicht, also:

W(T) = W(T'). Also ist auch T ein MST. O
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Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.

> Sei v € Ty — Tx_1 die k-te Knote die hinzugefiigt wurde und
(u1,v),..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (u1, v) die giinstigste dieser Kanten die in T, gewahlt wurde.
Betrachte die Kante (x,y) € Gk — Tk.

1. Sei x 2 v und y # v. Dann (x,y) € Gx_1 — Tx_1. Hinzufligen von
(x,y) zu Ty_ liefert einen Zyklus, mit (nach Ind. Annahme) (x, y)
maximalem Gewicht auf dem Zyklus. Dies ist jedoch der Zykel den
es auch in Ty gibt. Deswegen hat T, die MST-Eigenschaft auf Gy.

2. siehe nachste Folie.

vYvyy

%
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Beweis. (Forts.)
Induktionsschritt: orrektheit

2 (7)) @ L, W) [ ) it 0> 2, Bimddive don 2 e Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

vnachuj (L<i<m)in Te: v wi wo... wp. Nimm an, daB .
< B < i) 0 T ¥ 0 Wpoce W0

=uj =uj i
(wj, wj41) die erste Kante auf diesem Pfad ist mit Sei G = (V, E) und |V| = n Anzahl der Knoten.
W(w;, wir1) > W(ui, v). Sei (wp—1, wp) die letzte Kante auf dem » Sei T, der durch Prim berechnete Baum. Dann ist G, = G, und es
Pfad mit W(wp_1, wp) > W(uj, v). (Méglicherweise gilt folgt — siehe letztes Theorem — dass T, die MST-Eigenschaft hat.

p = j+1.) Wir zeigen, dass w; und w nicht in T,_; existieren » Da T, die MST-Eigenschaft hat gdw. es ein MST ist, folgt: T, ist ein
kénnen. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad MST.

wi ... wp ein groBeres Gewicht als W(uj, v), und damit auch nicht

- . . L]
groBer als W(u1, v). Also, hat Ty die MST-Eigenschaft.
L]
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ADT zum Vorhalten der Randknoten (1) Vorlaufige Komplexitatsanalyse
Die bendtigten Operationen fiir den Algorithmus von Prim sind:

» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat). Im Worst-Case:

> Reklassifiziere einen Randknoten als Baumknoten (fiige den » Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

Kantenkandidat zum Baum hinzu).
» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
giinstigerer Kantenkandidat gefunden wird.

> Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geloscht werden.

> Die Prioritat eines Randknotens muss nach jeder gefundenen Kante
|dee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht). angepasst werden.

Prioritatswarteschlange (priority queue) Bei einem Graph mit n Knoten und m Kanten ergibt sich:

> PriorityQueue pq; T(n,m) € O(n-T(insert)+n-T(getMin)+n- T (delMin)+m- T (decrKey))
> pq.insert(int e, int k), int pq.getMin(), pq.delMin()
> void pq.decrKey(int e, int k) setzt den Schlissel von Element e
auf k; k muss kleiner als der bisherige Schliissel von e sein. » Welche Implementierung der Prioritatswarteschlange ist dafiir gut
geeignet?
= Wir entscheiden uns fiir die Prioritatswarteschlange als Datenstruktur
fir die Randknoten.
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Drei Prioritatswarteschlangenimplementierungen Prioritatswarteschlange, die Vierte (I)
Wie erhalten wir ©(1) fir decrKey?

T(n,m) € O(n-T(insert)+n-T (getMin)+n- T (delMin)+m- T (decrKey)) )
= Indem wir die Prioritat direkt bei den Knoten speichern.

Implementierung » Wir kennen das bereits von color bei DFS und BFS.

» Gleichzeitig kdnnen wir so direkt die verwendete Kante (— Ergebnis)

Operation unsortiertes Array sortiertes Array Heap
speichern (als Vorgangerbaum, vgl. Kritische-Pfad-Analyse):
isEmpty (pq) o(1) (1) (1)
) 1 struct VertexState {
insert(pq,e,k) ©(1) ©(n) O(log n) . )
] 2 int color;
getMin(pq) O(n) o(1) o(1) 3 int parent;
delMin(pq) ©(n) O(1) O(log n) 4+ float curWeight;
getElt (pq, k) ©(n) O(log n) O©(n) 5 }
decrKey(pq,e,k) @(n) @(1) G(Iog n) @(|Og n) 7 VertexState statelnl; // enthalt color/[n]
Prim O(n? + m-n) O(n? O(nlogn ] o ] _
O(n? + m) + mlog n) + mlog n) » Das entspricht der Prioritdtswarteschlangenimplementierung auf
unsortierten Arrays, allerdings mit ,,Lochern®.
» Leider kann m € ©(n?) sein, wodurch Prim schlechter als O(n?) wird. » Nur die Eintrdge mit color == GRAY (Randknoten) sind in der
» Konnen wir vielleicht decrKey schneller machen? — Ja. Warteschlange gesetzt und zwar mit Prioritat curWeight.
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» Die Implementierung operiert direkt auf state. e oA

1 // man kénnte das etwa so schreiben:

2 VertexState statel[n]; > bool pq.isEmpty() O(n)
o _ o Vs,  ht> . ‘ . .
3 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state); el B T G lem, Temtesiae e o(1)
> In pq.decrKey(int elem, VertexState &newkey) muss nur > float pq.getMin() ©(n)
state[elem] mit newkey lberschrieben werden (auBer color). > void pq.delMin() O(n)
= O(1) > void pq.decrKey(int elem, VertexState &newkey) setzt den

» Zum Einfiigen (pq.insert(int elem, VertexState &key)) wird Schliissel von elem auf newkey; newkey.curWeight muss kleiner als
color = GRAY gesetzt und der Rest von key ibernommen. O(1) beim bisherigen Schliissel von elem sein. 0(1)

» Loschen (pq.delMin()) setzt einen Knoten auf color = BLACK. > int pq.getColor(int elem) gibt color von elem zuriick.

» Als Elemente halten wir also die Nummer des entsprechenden elem muss dazu nicht in der Warteschlange sein. ©(1)
Randknotens (int); als Schlissel sozusagen VertexState, wobei » float pq.getWeight (int elem) gibt curWeight von elem zuriick.
curWeight daraus als Prioritat verwendet wird. elem muss dazu nicht in der Warteschlange sein. ©(1)

» Wir erganzen auBerdem noch zwei Operationen:
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1 // Ergebnis als Vorgdngerbaum in .parent: 1 void updateFringe (PriorityQueue &pq, List adjLst[], int v) {
2 //VveV:(x,v)e MST(V,E) gdw. x = state[v].parent, x # —1 foreach (edge in adjLst[v]) {

3 VertexState[n] primMST(List adjLst([n], int n, int start) { // berechnet MST.

4 VertexState statel[n] = // (eigentlich im Konstruktor wvon pq) float newWeight = edge.weight;

2
3
4
5

PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state); 6 if (pq.getColor(edge.w) == WHITE) { // -> GRAY
7
8
9

5 { color: WHITE, parent: -1, curWeight: +inf };

6

7 pq.insert(edge.w, {parent: v, curWeight: newWeight});

8 pq.insert(start, {parent: -1, curWeight: 0}); } else if (pq.getColor(edge.w) == GRAY) {

9 while (!pq.isEmpty()) { // solange es Randknoten gibt if (newWeight < pq.getWeight(edge.w)) {

10 int v = pq.getMin(); // ginstigste Kante, bzw. Randknoten 10 // Randknoten-update: Kante von v aus tst besser

1 pq.delMin(); // setzt auch Farbe auf BLACK 1 pq.-decrKey(edge.w, {parent: v, curWeight: newWeight});
12 updateFringe(pq, adjList, v); // update den Rand 12 }

13} 13 }

14 return state; 14}

15 } 15 ¢
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Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n- T (delMin)+m- T (decrKey))

v

Die Schleife in primMST wird n mal ausgefiihrt.

= isEmpty, getMin, delMin und updateFringe wird n mal ausgefiihrt.
» Beachte, dass getMin eine Komplexitat von ©(n) hat.

v

Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.

= insert, getColor, getWeight und decrKey werden m mal
ausgefiithrt und sind ©(1).

» Der zusatzliche Speicherbedarf ist ©(n).

v

Die untere Schranke der Zeitkomplexitat ist Q(m), da jede Kante des
Graphen untersucht werden muss, um einen MST zu konstruieren.

= Insgesamt: Worst-Case-Komplexitat O(n? + m) = O(n?).
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