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Probleme auf kanten-gewichtete Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

I Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

I Finde den kürzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

„Minimal“ und „kürzester“ beziehen sich hierbei auf die besuchten
Gewichte. Die Gewichte können als Kosten für die Benutzung der Kante
aufgefasst werden.

Diese Probleme können durch greedy Algorithmen gelöst werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/21

http://www-i2.rwth-aachen.de/i2/dsal10/


Minimale Spannbäume Minimale Spannbäume

Greedy Algorithmen
Eine Lösungstechnik:

Greedy-Algorithmen („gierig“)

I Treffe in jedem Schritt eine Entscheidung, die bezüglich eines
„kurzfristigen“ Kriteriums optimal ist.

I Dieses Kriterium sollte günstig (→ Komplexität) auswertbar sein.
I Nachdem eine Wahl getroffen wurde, kann sie nicht mehr rückgängig

gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Lösung
gefunden wird, denn

I immer das lokale Optimum zu nehmen, führt nicht automatisch auch
zum globalen Optimum.

I In einigen Fällen, wie dem minimalen Spannbaum und dem
Kürzesten-Wege-Problem, wird aber immer die optimale Lösung
gefunden.
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Greedy?

Beispiel
Greedy kann beliebig schlecht werden:

I Traveling Salesman Problem (TSP)
Greedy kann gut sein:

I Bin Packing (6 2x Optimum)
Greedy kann optimal sein:

I Minimaler Spannbaum, Kürzester-Weg-Problem.

Wann ist eine greedy Lösungsstrategie optimal?
I Optimale Lösung setzt sich aus optimalen Teilproblemen zusammen
I Unabhängigkeit von anderen Teillösungen
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Was ist ein minimaler Spannbaum?
Spannbaum
Ein Spannbaum eines ungerichteten, zusammenhängenden Graphen G ist

I ein Teilgraph von G , der ein ungerichteter Baum ist und alle Knoten
von G enthält.

Gewicht eines Graphen
Das Gewicht W (G ′) eines Teilgraphen G ′ = (V ′,E ′) vom gewichteten
Graph G ist:

I W (G ′) =
∑

(u,v)∈E ′

W (u, v).

Minimaler Spannbaum
Ein Spannbaum mit minimalem Gewicht heißt Minimaler Spannbaum
(minimum spanning tree), MST.
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Anwendungen

Problem
Finde einen MST eines gewichteten, ungerichteten, zusammenhängenden
Graphen.

Beispiel

I Finde den kostengünstigsten Weg, um eine Menge von
Flughafenterminals, Städten, . . . zu verbinden.

I Grundlage für viele andere Probleme, etwa Routing-Probleme
(„Wegfindung“).

I Bestandteil von Approximationsalgorithmen für das TSP Problem.
I Verdrahtung von Schaltungen mit geringsten Energieverbrauch.
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Minimaler Spannbaum – Beispiel
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Was ist ein minimale Spannbaum?
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Minimaler Spannbaum – Beispiel
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Das ist ein minimale Spannbaum (mit Gesamtgewicht 46).
In diesem Fall ist es auch der einzige.
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Tiefen- oder Breitensuche?
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Tiefensuchbaum (von A gestartet)
Gesamtgewicht: 55
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Breitensuchbaum (von A gestartet)
Gesamtgewicht: 67

Der Tiefensuchbaum und der Breitensuchbaum sind zwar Spannbäume,
aber nicht notwendigerweise MSTs.
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Der Algorithmus von Prim – Übersicht
Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger

Knoten des Graphens ausgewählt wird.
I Finde die günstigste Kante (d. h. mit minimalem Gewicht), die den

bisherigen Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Ist das korrekt? Und wenn, was ist die Komplexität?
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Prim’s Algorithmus – Grundgerüst

1 // ungerichteter Graph G mit n Knoten
2 void primMST(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);
4 wähle irgendeinen Knoten s und markiere ihn mit Baum (BLACK);
5 reklassifiziere alle zu s adjazenten Knoten als Rand (GRAY);
6 while (es gibt Randknoten) {
7 wähle von allen Kante zwischen einem Baumknoten t und
8 einem Randknoten v die billigste;
9 reklassifiziere v als Baum (BLACK);

10 füge Kante tv zum Baum hinzu;
11 reklassifiziere alle zu v adjazenten ungesehenen Knoten
12 als Rand (GRAY);
13 }
14 }
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Prim’s Algorithmus – Beispiel
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Die MST-Eigenschaft
MST-Eigenschaft auf G
Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G , wenn
1. jede Kante (u, v) ∈ G − T einen Zyklus in T erzeugen würde, und
2. in diesem Zyklus die Kante mit maximalem Gewicht ist.
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Spannbaum, der die MST-Eigenschaft hat
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Spannbaum, der die MST-Eigenschaft verletzt
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Spannbäume mit gleichem Gewicht
Lemma
Wenn zwei Spannbäume T1 und T2 die MST-Eigenschaft auf G haben,
dann ist W (T1) = W (T2).

Beweis.
Induktion über die Anzahl k an Kanten in T1 − T2.
Induktionsanfang:

k = 0, T1 und T2 sind gleich, daher ist W (T1) = W (T2).
Induktionsschritt:

k > 0, Angenommen das Lemma gilt für Spannbäume, die sich nur in
j < k Kanten unterscheiden.

I T1 und T2 unterscheiden sich nun um k Kanten.
I Betrachte die günstigste Kante (u, v) aus T2 − T1.
I Der Pfad von u nach v in T1 (mit Länge > 2) muss eine Kante

(w , x) 6∈ T2 enthalten. Es gilt W (w , x) = W (u, v), denn: →
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Spannbäume mit gleichem Gewicht – Beweis

Beweis. (Forts.)

I Der Pfad von u nach v in T1 (mit Länge > 2) muss eine Kante
(w , x) 6∈ T2 enthalten. Es gilt W (w , x) = W (u, v), denn:
◦ Wegen der MST-Eigenschaft von T1 gilt W (w , x) 6 W (u, v).
◦ Wegen der MST-Eigenschaft von T2 gilt W (u, v) 6 W (w , x).
⇒ W (w , x) = W (u, v).

I Füge (u, v) zu T1 hinzu und entferne (w , x);
Wir erhalten T ′1 mit W (T1) = W (T ′1).

I Bemerke, daß T ′1 die MST-Eigenschaft hat, da T1 die hatte.
I Da T ′1 die MST-Eigenschaft hat und T ′1 und T2 sich nur noch um

k−1 Kanten unterscheiden:
⇒ mit Induktionsannahme folgt, dass W (T ′1) = W (T2) und damit

W (T1) = W (T2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/21

Minimale Spannbäume Minimale Spannbäume

Theorem

Theorem
Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.
(⇒) Durch Widerspruch. Sei T ein MST von G . Nehme an, daß T die
MST-Eigenschaft verletzt, d. h., das Hinzufügen von der Kante (u, v) 6∈ T
zu T erzeugt einen Zyklus, so dass für (x , y) ∈ T aus dem Zyklus
W (u, v) < W (x , y). Das Ersetzen von (x , y) durch (u, v) in T liefert den
Spannbaum T ′ mit W (T ′) < W (T ). Also kann T kein MST gewesen
sein. Widerspruch.
(⇐) Angenommen T hat die MST-Eigenschaft. Sei T ′ ein MST von G .
Wegen ⇒ hat dann T ′ die MST-Eigenschaft. Mit dem vorigen Lemma
haben Spannbäume mit MST-Eigenschaft das selbe Gewicht, also:
W (T ) = W (T ′). Also ist auch T ein MST.
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Korrektheit von Prim’s Algorithmus

Theorem
Der vom Prim’s Algorithmus erzeugte Spannbaum Tk mit k > 0 Knoten
(k = 1, . . . , n) hat die MST-Eigenschaft auf dem durch die Knoten in Tk
induzierten Teilgraph Gk (d. h. (u, v) ist eine Kante in Gk wenn (u, v) eine
Kante in G ist, und u und v sind in Tk).

Beweis.
Induktion nach k.
Induktionsanfang:

k = 1, T1 und G1 enthalten nur Knoten und keine Kanten. T1 hat
damit die MST-Eigenschaft in G1. →
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Korrektheit von Prim’s Algorithmus – Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen Tj hat die MST-Eigenschaft auf Gj für j < k.

I Sei v ∈ Tk − Tk−1 die k-te Knote die hinzugefügt wurde und
I (u1, v), . . . , (um, v) die Kanten zwischen Knoten in Tk−1 und v .
I Sei (u1, v) die günstigste dieser Kanten die in Tk gewählt wurde.
I Betrachte die Kante (x , y) ∈ Gk − Tk .

1. Sei x 6= v und y 6= v . Dann (x , y) ∈ Gk−1 − Tk−1. Hinzufügen von
(x , y) zu Tk− liefert einen Zyklus, mit (nach Ind. Annahme) (x , y)
maximalem Gewicht auf dem Zyklus. Dies ist jedoch der Zykel den
es auch in Tk gibt. Deswegen hat Tk die MST-Eigenschaft auf Gk .

2. siehe nächste Folie. →
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Korrektheit von Prim’s Algorithmus – Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x , y) ∈ {(u2, v), . . . , (um, v)} mit m > 2. Betrachte den Pfad von

v nach ui (1 < i 6 m) in Tk : v w1︸︷︷︸
=u1

w2 . . . w`︸︷︷︸
=ui

. Nimm an, daß

(wj ,wj+1) die erste Kante auf diesem Pfad ist mit
W (wi ,wi+1) > W (ui , v). Sei (wp−1,wp) die letzte Kante auf dem
Pfad mit W (wp−1,wp) > W (ui , v). (Möglicherweise gilt
p = j+1.) Wir zeigen, dass wj und wp nicht in Tk−1 existieren
können. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad
w1 . . . w` ein größeres Gewicht als W (ui , v), und damit auch nicht
größer als W (u1, v). Also, hat Tk die MST-Eigenschaft.
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Korrektheit

Korrektheit
Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Beweis.
Sei G = (V ,E ) und |V | = n Anzahl der Knoten.

I Sei Tn der durch Prim berechnete Baum. Dann ist Gn = G , und es
folgt – siehe letztes Theorem – dass Tn die MST-Eigenschaft hat.

I Da Tn die MST-Eigenschaft hat gdw. es ein MST ist, folgt: Tn ist ein
MST.
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ADT zum Vorhalten der Randknoten (I)
Die benötigten Operationen für den Algorithmus von Prim sind:

I Wähle eine billigste Kante zu einem Randknoten (Kantenkandidat).
I Reklassifiziere einen Randknoten als Baumknoten (füge den

Kantenkandidat zum Baum hinzu).
I Ändere die Kosten (Randgewicht) eines Randknotens, wenn ein

günstigerer Kantenkandidat gefunden wird.
Idee: Ordne die Randknoten nach ihrer Priorität (= Randgewicht).

Prioritätswarteschlange (priority queue)

I PriorityQueue pq;

I pq.insert(int e, int k), int pq.getMin(), pq.delMin()

I void pq.decrKey(int e, int k) setzt den Schlüssel von Element e
auf k; k muss kleiner als der bisherige Schlüssel von e sein.

⇒ Wir entscheiden uns für die Prioritätswarteschlange als Datenstruktur
für die Randknoten.
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Vorläufige Komplexitätsanalyse

Im Worst-Case:
I Jeder Knoten muss zur Prioritätswarteschlange hinzugefügt werden.
I Auf jeden Knoten muss auch wieder zugegriffen werden und er muss

gelöscht werden.
I Die Priorität eines Randknotens muss nach jeder gefundenen Kante

angepasst werden.
Bei einem Graph mit n Knoten und m Kanten ergibt sich:

T (n,m) ∈ O (n·T (insert)+n·T (getMin)+n·T (delMin)+m·T (decrKey))

I Welche Implementierung der Prioritätswarteschlange ist dafür gut
geeignet?
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Drei Prioritätswarteschlangenimplementierungen
T (n,m) ∈ O (n·T (insert)+n·T (getMin)+n·T (delMin)+m·T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap

isEmpty(pq) Θ(1) Θ(1) Θ(1)
insert(pq,e,k) Θ(1) Θ(n) Θ(log n)
getMin(pq) Θ(n) Θ(1) Θ(1)
delMin(pq) Θ(n) Θ(1) Θ(log n)
getElt(pq,k) Θ(n) Θ(log n) Θ(n)
decrKey(pq,e,k) Θ(n) Θ(1) Θ(log n) Θ(log n)

Prim O(n2 + m·n)
O(n2 + m)

O(n2
+ m log n)

O(n log n
+ m log n)

I Leider kann m ∈ Θ(n2) sein, wodurch Prim schlechter als O(n2) wird.
I Können wir vielleicht decrKey schneller machen? – Ja.
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Prioritätswarteschlange, die Vierte (I)
Wie erhalten wir Θ(1) für decrKey?
⇒ Indem wir die Priorität direkt bei den Knoten speichern.
I Wir kennen das bereits von color bei DFS und BFS.
I Gleichzeitig können wir so direkt die verwendete Kante (→ Ergebnis)

speichern (als Vorgängerbaum, vgl. Kritische-Pfad-Analyse):
1 struct VertexState {
2 int color;
3 int parent;
4 float curWeight;
5 }

7 VertexState state[n]; // enthält color[n]

I Das entspricht der Prioritätswarteschlangenimplementierung auf
unsortierten Arrays, allerdings mit „Löchern“.

I Nur die Einträge mit color == GRAY (Randknoten) sind in der
Warteschlange gesetzt und zwar mit Priorität curWeight.
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Prioritätswarteschlange, die Vierte (II)
I Die Implementierung operiert direkt auf state.

1 // man könnte das etwa so schreiben:
2 VertexState state[n];
3 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);

I In pq.decrKey(int elem, VertexState &newkey) muss nur
state[elem] mit newkey überschrieben werden (außer color).

⇒ Θ(1)

I Zum Einfügen (pq.insert(int elem, VertexState &key)) wird
color = GRAY gesetzt und der Rest von key übernommen. Θ(1)

I Löschen (pq.delMin()) setzt einen Knoten auf color = BLACK.
I Als Elemente halten wir also die Nummer des entsprechenden

Randknotens (int); als Schlüssel sozusagen VertexState, wobei
curWeight daraus als Priorität verwendet wird.

I Wir ergänzen außerdem noch zwei Operationen:
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Prioritätswarteschlange, die Vierte (III)

Prioritätswarteschlange

I bool pq.isEmpty() Θ(n)

I void pq.insert(int elem, VertexState &key) Θ(1)

I float pq.getMin() Θ(n)

I void pq.delMin() Θ(n)

I void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlüssel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schlüssel von elem sein. Θ(1)

I int pq.getColor(int elem) gibt color von elem zurück.
elem muss dazu nicht in der Warteschlange sein. Θ(1)

I float pq.getWeight(int elem) gibt curWeight von elem zurück.
elem muss dazu nicht in der Warteschlange sein. Θ(1)
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Der Algorithmus von Prim – Implementierung (I)

1 // Ergebnis als Vorgängerbaum in .parent:
2 // ∀v ∈ V : (x , v) ∈ MST (V ,E ) gdw. x = state[v].parent, x 6= −1
3 VertexState[n] primMST(List adjLst[n], int n, int start) {
4 VertexState state[n] = // (eigentlich im Konstruktor von pq)
5 { color: WHITE, parent: -1, curWeight: +inf };
6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7

8 pq.insert(start, {parent: -1, curWeight: 0});
9 while (!pq.isEmpty()) { // solange es Randknoten gibt

10 int v = pq.getMin(); // günstigste Kante, bzw. Randknoten
11 pq.delMin(); // setzt auch Farbe auf BLACK
12 updateFringe(pq, adjList, v); // update den Rand
13 }
14 return state;
15 }
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Der Algorithmus von Prim – Implementierung (II)

1 void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
2 foreach (edge in adjLst[v]) {
3 // berechnet MST.
4 float newWeight = edge.weight;
5

6 if (pq.getColor(edge.w) == WHITE) { // -> GRAY
7 pq.insert(edge.w, {parent: v, curWeight: newWeight});
8 } else if (pq.getColor(edge.w) == GRAY) {
9 if (newWeight < pq.getWeight(edge.w)) {

10 // Randknoten-update: Kante von v aus ist besser
11 pq.decrKey(edge.w, {parent: v, curWeight: newWeight});
12 }
13 }
14 }
15 }
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Komplexitätsanalyse

T (n,m) ∈ O (n·T (insert)+n·T (getMin)+n·T (delMin)+m·T (decrKey))

I Die Schleife in primMST wird n mal ausgeführt.
⇒ isEmpty, getMin, delMin und updateFringe wird n mal ausgeführt.
I Beachte, dass getMin eine Komplexität von Θ(n) hat.

I Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.
⇒ insert, getColor, getWeight und decrKey werden m mal

ausgeführt und sind Θ(1).
I Der zusätzliche Speicherbedarf ist Θ(n).
I Die untere Schranke der Zeitkomplexität ist Ω(m), da jede Kante des

Graphen untersucht werden muss, um einen MST zu konstruieren.
⇒ Insgesamt: Worst-Case-Komplexität O(n2 + m) = O(n2).
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