Kiirzeste Pfadalgorithmen

Datenstrukturen und Algorithmen

Vorlesung 17: Kiirzeste Pfadalgorithmen

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall10/

2. Juli 2010
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/25
Ubersicht
© Kiirzeste Pfade
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/25

Kiirzeste Pfadalgorithmen

Ubersicht

© Kiirzeste Pfade

e Bellman-Ford

© Dijkstra

Joost-Pieter Katoen

Kiirzeste Pfadalgorithmen

Datenstrukturen und Algorithmen

Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Joost-Pieter Katoen

yards

tomtom

0.30 10:1
33.“,.‘
Broadway

Datenstrukturen und Algorithmen

2/25

4/25

http://www-i2.informatik.rwth-aachen.de/i2/dsal10/

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/25

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Kirzeste Pfade

Es gibt verschiedene Varianten:

> Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zuruckfihren.

» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

» Kiirzeste Pfade fiir alle Knotenpaare.
All-Pairs Shortest Paths (nachste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/25

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Beispiel (kiirzester Weg)

Eingabe: 1. Eine StraBenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,
2. eine Startkreuzung s, und
3. eine Zielkreuzung t.

Ausgabe: Der kiirzeste Weg von s nach t.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/25

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G.

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/25

Ubersicht Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.

> Erlaubt negative Kantengewichte.

> Es zeigt an, ob es ein Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.

@ Bellman-Ford » Falls einen solchen Zyklus gefunden wird, gibt es keine Losung.
» da die Gewichte der kiirzesten Pfade nicht mehr wohldefiniert sind.

» Sonst, bestimmt der Algorithmus die kiirzeste Pfade mit ihre

Gewichte.

» Es berechnet (iterativ) Schatzungen d[v] fiir die Gewichte des
kiirzesten Pfades vom Startknoten nach v.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/25 Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/25
Bellman-Ford — Idee Bellman-Ford — Beispiel
» Wir wollen die Abstande aller Knoten v € V' zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.
» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):
» Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),
dann verbessere d [w] auf diesen Wert (Relaxierung).
» Wiederhole vorigen Schritt, bis sich nichts mehr andert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem

Wenn nach |V |—1 Wiederholungen noch Verbesserungen mdéglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthalt d[v] fiir alle v
den kiirzesten Abstand zum Startknoten.

Beweisidee:
» Ein Pfad in (V, E) kann hochstens die Lange |V|—1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/25 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/25

Kiirzeste Pfadalgorithmen Bellman-Ford Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/25 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/25
Kiirzeste Pfadalgorithmen Bellman-Ford Kiirzeste Pfadalgorithmen Bellman-Ford
Bellman-Ford — Beispiel Bellman-Ford — Implementierung

1 // Keine Zyklen mit negativem Gewicht?
2 bool bellFord(List adjLst[n], int n, int start) {

3 int d[n] = +inf;

4 d[start] = 0;

5 for (int i = 1; i < n; i++) // n-1 Durchldufe
6 for (int v = 0; v < n; v++) // alle Kanten
7 foreach (edge in adjLst[v])

8 if (d[edge.w] > d[v] + edge.weight) {
9 d[edge.w] = d[v] + edge.weight;

10 }

1u for (int v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst[v])

13 if (d[edge.w] > d[v] + edge.weight)

14 return false; // "noch kurzerer Weg"

15 return true;

16

» Erweiterbar durch Speichern des Vorgangers auf die Riickgabe der
kiirzesten Wege (Ubung).
» Komplexitat: O(|V|-|E|) = O(n- m) € O(n?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/25 Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/25

Kiirzeste Pfadalgorithmen Dijkstra
Ubersicht
© Dijkstra
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/25
Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.
» Finde die Kante mit kiirzestem Abstand von s, die den bisherigen
Baum verlasst.
» Fige den iiber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.
» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/25

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kirzeste Wege kdnnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
> Angenommen der kiirzeste Pfad von x nach z geht (iber Knoten y.

=- Dann ist der Teilpfad von x nach y auch ein kiirzester Pfad von x
nach y.

= Auch der Teilpfad von y nach z ist ein kiirzester Pfad von y nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/25
Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten
2 void dijkstraSP(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);

4+ markiere s als Baum (BLACK) und setze d(s,s)=0;
5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;
6 while (es gibt Randknoten) {
7 wéhle von allen Kante zwischen einem Baumknoten t und
8 einem Randknoten v die mit minimalem d(s,t)+ W(t, v);
9 reklassifiziere v als Baum (BLACK);
10 fiige Kante tv zum Baum hinzu;
11 setze d(s,v) =d(s, t)+ W(t,v);
12 reklassifiziere alle zu v adjazenten ungesehenen Knoten
13 mit (GRAY) ;
14}
15 }
Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/25

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/25
Kiirzeste Pfadalgorithmen Dijkstra
Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt".

Seinun P =s,zy,...,2, ...,z der kiirzeste Weg von s nach z, wobei z
der erste Knoten ¢ V/ ist.

» Wegen der Wahl von (y, z) gilt:
W(P)=d(s,y)+ W(y,z) < d(s, zxk—1) + W(zk_12x).

» Da s,z ...,z ein Prefix von P’ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(S,Zk_l) 4 W(Zk—lyzk) < W('D/)

= Daher ist W(P) < W(P'), d.h. P ist der kiirzeste Weg! O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/25

Theorem

Sei s € V/ C V mit kiirzestem Abstand d(s, y) von s nach y € V'.

Wenn (y, z) die Kante mit minimalem d(s, y) + W(y, z) tber alle Kanten
mit y € V/ und z € V' \ V' ist, dann ist der zusammengesetzte Weg
bestehend aus dem kiirzesten Weg von s nach y gefolgt von der Kante
(v, z) auch der kiirzeste Weg von s nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/25

Kiirzeste Pfadalgorithmen Dijkstra

Korrektheit

Theorem (Korrektheit)

Dijkstras kiirzeste-Wege-Algorithmus berechnet den kiirzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G.

Beweis.

Induktion nach der Sequenz von hinzugefiigte Knoten im SSSP-Baum.
(Ubung.) O]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/25

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus —
Implementierung (1)

1 // Wie Prim. Ergebnis als Vorgdngerliste(-baum) in .parent

2 // curWeight[v] enthdlt gerade d(s,v)

3 VertexState[n] dijkSP(List adjLst[n], int n, int start) {

VertexState state[n] = // (eigentlich im Konstruktor wvon pg)
{ color: WHITE, parent: -1, curWeight: +inf };

PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);

pq.insert(start, {parent: -1, curWeight: 0});

while (!pq.isEmpty()) { // solange es Randknoten gibt

10 int v = pq.getMin(); // gunstigste Kante, bzw. Randknoten
1 pq.delMin(); // setzt auch Farbe auf BLACK

12 updateFringe(pq, adjList, v); // update den Rand

13}

14 return state;

4
5
6
7
8
9

15 ¢
Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/25
Kiirzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

v

Kiirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

» Implementierung: Ahnlich dem Algorithmus von Prim.
Zeitkomplexitat im Worst-Case: O(|V/|?).

Untere Schranke der Komplexitat: Q(|E|).

» da im schlimmsten Fall alle Kanten iberprift werden missen.
Platzkomplexitat: O(|V/]).

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/25

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus —
Implementierung (I1)

1 void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
2 // kurzester Weg von s mach v

3 float ownWeight = pq.getWeight(v);

4 foreach (edge in adjLst([v]) {

5 // Distanz von s mach w uber v

6 float newWeight = edge.weight + ownWeight;

7
8
9

if (pq.getColor(edge.w) == WHITE) { // -> GRAY
pq.insert(edge.w, {parent: v, curWeight: newWeight});
10 } else if (pq.getColor(edge.w) == GRAY) {

11 if (newWeight < pq.getWeight(edge.w)) {
12 // Randknoten-update: Weg uber v ist besser
13 pq.decrKey(edge.w, {parent: v, curWeight: newWeight});
14
15 }
6 F
17
Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/25

Proseminar Datenstrukturen und Algorithmen

Wir veranstalten ein Proseminar Datenstrukturen und Algorithmen.

Wann? im WS 2010/11.

Themen:

Splay Trees, Fibonacci Heaps, Google's Pagerank Algorithm, AVL-Baume,
Huffman Kodierung, Cocktail Sort, B-Baume, Deutsch-Schorr-Waite
Baumtraversierung, Bit-State Hashing, Bindre Entscheidungsdiagramme,
k-Kiirzeste Pfad Problem, Amortisierte Komplexitat, Smoothed Analysis,
String Matching, Spielbdume (Minimax-Verfahren, a — § Pruning),
Lineare Programmierung.

Anmeldung: 26. Juni bis 10. Juli iiber die iibliche Webseiten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/25

	Kürzeste Pfade
	Bellman-Ford
	Dijkstra

