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Maximaler Fluss Flussnetzwerke

Flussnetzwerk
Flussnetzwerk
Ein Flussnetzwerk G ist ein Tripel G = (V ,E , c), wobei:

I (V ,E ) ein gerichteter Graph ist,
I c : E −→ IR>0 die Kapazitätsfunktion und
I s, t ∈ V Quelle s und Senke t des Flussnetzwerkes.
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I Kanten können als Wasserrohre interpretiert werden.
I Die Kapazität gibt die maximale Durchsatzrate (l/s) an.
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Maximaler Fluss Flussnetzwerke

Fluss in einem Flussnetzwerk

Definition (Fluss)

Ein Fluss ist eine Funktion f : V × V → IR, mit folgenden Eigenschaften:

Beschränkung: Für u, v ∈ V gilt f (u, v) 6 c(u, v).
Asymmetrie: Für u, v ∈ V gilt f (u, v) = −f (v , u).

Flusserhaltung: Für u ∈ V − {s, t} gilt:
∑
v∈V

f (u, v) = 0.

Definition (Wert eines Flusses)

Der Wert |f | eines Flusses ist der Gesamtfluss aus der Quelle s:

|f | =
∑
u∈V

f (s, u).
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Maximaler Fluss Flussnetzwerke

Darstellung von Flüssen
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I Jeder Knoten liegt auf einem Pfad von der Quelle s zur Senke t.
I Für (u, v) 6∈ E ist c(u, v) = 0.

I Wir beschriften Kanten mit f (u, v)/c(u, v), falls f (u, v) > 0.
I Negative Flüsse f (u, v) < 0 werden nicht explizit angegeben.
I Der eingezeichnete Fluss f hat den Wert |f | = 9.
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Maximaler Fluss Flussnetzwerke

Maximale Flüsse

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk.

Beispiel (Anwendungen)

I Wie groß ist der maximale Datendurchsatz zwischen zwei Computern
in einem Netzwerk?

I Wie kann der Verkehr in einem Straßennetz so geleitet werden, dass
möglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

I Wie viele Leitungen müssen zerstört sein, damit zwei Computer nicht
mehr miteinander kommunizieren können?
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Maximaler Fluss Flussnetzwerke

Ein maximaler Fluss
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I Ein maximaler Fluss in diesem Beispiel hat den Wert |f | = 24.
I Es kann mehrere maximale Flüsse geben.
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Maximaler Fluss Flussnetzwerke

Mehrere Quellen und Senken
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I Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.

I Sie können durch eine neue „Superquelle“ und „Supersenke“ in ein
Standard-Flussnetzwerk überführt werden.
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Maximaler Fluss Flussnetzwerke

Flüsse zwischen Knotenmengen
Notationen

f (x ,Y ) =
∑
y∈Y

f (x , y) für Y ⊆ V

f (X , y) =
∑
x∈X

f (x , y) für X ⊆ V

f (X ,Y ) =
∑
x∈X

∑
y∈Y

f (x , y) für X ,Y ⊆ V

Eigenschaften von Flüssen zwischen Mengen
Falls f ein Fluss für G = (V ,E , c) ist, dann gilt:
1. f (X ,X ) = 0 für X ⊆ V
2. f (X ,Y ) = −f (Y ,X ) für X ,Y ⊆ V
3. f (X ∪ Y ,Z ) = f (X ,Z ) + f (Y ,Z ) für X ,Y ,Z ⊆ V : X ∩ Y = ∅
4. f (Z ,X ∪ Y ) = f (Z ,X ) + f (Z ,Y ) für X ,Y ,Z ⊆ V : X ∩ Y = ∅
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Maximaler Fluss Flussnetzwerke

Beweis: f (X , X ) = 0

Beh.: f (X ,X ) = 0

f (X ,X ) =
1
2

( ∑
x1∈X

∑
x2∈X

f (x1, x2) +
∑

x1∈X

∑
x2∈X

f (x1, x2)
)

=
1
2

( ∑
x1∈X

∑
x2∈X

f (x1, x2) +
∑

x1∈X

∑
x2∈X

f (x2, x1)
)

=
1
2
∑

x1∈X

∑
x2∈X

(
f (x1, x2) + f (x2, x1)

)
= 0

Für den Beweis benötigen wir lediglich die Eigenschaft der Asymmetrie.
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke
Wie groß ist der an der Senke eingehende Fluss?

Aufgrund der Flusserhaltung ist zu erwarten, dass er dem austretenden
Fluss an der Quelle entspricht:

f (s,V ) = f (V , t)

Beweis:

f (s,V ) = f (V ,V )− f (V − {s},V )

= −f (V − {s},V )

= f (V ,V − {s})
= f (V , t) + f (V ,V − {s, t}) | Flusserhaltung
= f (V , t)
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode – Idee
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1. Suche einen Pfad p von s nach t.
2. Setze den Fluss der Kanten in p um die kleinste Kapazität in p.
3. Suche einen Pfad p von s nach t, aus Kanten mit freier Kapazität.
4. Ergänze den Fluss der Kanten in p um die kleinste Restkapazität in p.
5. Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.
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Maximaler Fluss Ford-Fulkerson-Methode

Restnetzwerke

„Netzwerk minus Fluss = Restnetzwerk“

Definition (Restnetzwerk Gf )

Gegeben sei das Flussnetzwerk G = (V ,E , c) und ein Fluss f , dann ist
Gf = (V ,Ef , cf ) das Restnetzwerk (auch: Residualnetzwerk) zu G und f
mit:

Ef = { (u, v) ∈ V × V | cf (u, v) > 0 },

und
cf (u, v) = c(u, v)− f (u, v),

cf die Restkapazität von G .
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade
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Flussnetzwerk G

Restnetzwerk Gf

I Ein s-t-Pfad p in Gf heißt augmentierender Pfad
(vergrößernder Pfad).

I cf (p) = min{ cf (u, v) | (u, v) ∈ p } heißt Restkapazität von p.

Der Pfad im obigen Beispiel hat die Restkapazität 4.
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Entlang p lässt sich in Gf der Fluss fp(u, v) konstruieren mit:

fp(u, v) =


cf (p) falls (u, v) auf p
−cf (p) falls (v , u) auf p
0 sonst
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Theorem

Theorem (Ford-Fulkerson)

Sei G = (V ,E , c) ein Flussnetzwerk und f ein Fluss in G, sowie f ′ ein
Fluss in Gf .

Dann ist f + f ′ ein Fluss in G.

Beweis.
Wir müssen zeigen, dass f + f ′ beschränkt, asymmetrisch und
flusserhaltend ist (nächste Folie).
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1. Asymmetrie:

(f + f ′)(u, v) = f (u, v) + f ′(u, v)
= −f (v , u)− f ′(v , u)
= −(f (v , u) + f ′(v , u))
= −(f + f ′)(v , u)

2. Flusserhaltung:

(f + f ′)(u,V ) = f (u,V ) + f ′(u,V ) = 0 | ∀u ∈ V − {s, t}

3. Beschränkung:

(f + f ′)(u, v) = f (u, v) + f ′(u, v)
6 f (u, v) + cf (u, v)
= f (u, v) + (c(u, v)− f (u, v))
= c(u, v)
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Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t

s

A

B

C

D

t

16

13

10

12

4

9

14

20

7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

16

13

10

12

4

9

14

20

7

4

16

13

10

12

4

9

14

20

7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

16

13

10

12

4

9

14

20

7

4

16

13

10

12

4

9

14

20

7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

16

7/13

10

12

4

9

7/14

7/20

7/7

4

16

13

10

12

4

9

14

20

7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

16

7/13

10

12

4

9

7/14

7/20

7/7

4

16

6
7

10

12

4

9
7

13

7

4

7

7

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

16

7/13

10

12

4

9

7/14

7/20

7/7

4

16

6
7

10

12

4

9
7

13

7

4

7

7

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

7/13

10

4/12

4

9

7/14

7/20

7-4/7

4/4

16

6
7

10

12

4

9
7

13

7

4

7

7

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

7/13

10

4/12

4

9

7/14

7/20

3/7

4/4

12

6

4 10

8

7

4

9
7

4 13

3

7

4
7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

7/13

10

4/12

4

9

7/14

7/20

3/7

4/4

12

6

4 10

8

7

4

9
7

4 13

3

7

4
7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

6+7/13

10

4/12

4

6/9

7/14

6+7/20

3/7

4/4

12

6

4 10

8

7

4

9
7

4 13

3

7

4
7

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

13/13

10

4/12

4

6/9

7/14

13/20

3/7

4/4

12
4 10

8

13

4

3

7

4

6

7

3

7

4
13

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

4/16

13/13

10

4/12

4

6/9

7/14

13/20

3/7

4/4

12
4 10

8

13

4

3

7

4

6

7

3

7

4
13

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

11/16

13/13

10

11/12

4

6/9

7/14

20/20

3/7

4/4

12
4 10

8

13

4

3

7

4

6

7

3

7

4
13

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

11/16

13/13

10

11/12

4

6/9

7/14

20/20

3/7

4/4

5
11 10

1

13

4

3

7

11

6

3

7

4
20

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f

s

A

B

C

D

t s

A

B

C

D

t

11/16

13/13

10

11/12

4

6/9

7/14

20/20

3/7

4/4

5
11 10

1

13

4

3

7

11

6

3

7

4
20

4

Flussnetzwerk G Restnetzwerk Gf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Maximaler Fluss Ford-Fulkerson-Methode

Implementierung Ford-Fulkerson-Methode
1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {
2 int flow[n,n] = 0, path[];
3 int cfp; // Restkapazität des Pfades
4

5 while (true) {
6 // Finde augmentierenden Pfad und dessen Restkapazität
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);
8 if (cfp == 0) { // kein Pfad gefunden
9 return flow;

10 }
11

12 // addiere Restkapazität entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {
14 int u = pfad[i-1], v = pfad[i];
15 f[u,v] = f[u,v] + cfp;
16 f[v,u] = -f[u,v];
17 }
18 }
19 }
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Laufzeit der Ford-Fulkerson-Methode
Ein Flussproblem ist integral, wenn alle Kapazitäten ganzzahlig sind.

Theorem
Sei f ∗ der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benötigt die Methode |f ∗| Iterationen und es
ergibt sich eine Laufzeit von O(E · |f ∗|).

Beweis.
In jeder Iteration wird der Wert des Flusses um cf (p) > 1 erhöht.
Er ist anfangs 0 und am Ende f ∗.

Korollar
Bei rationalen Kapazitäten terminiert die Ford–Fulkerson–Methode.
Brüche können durch Multiplikation aufgehoben werden.

I Für ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f , sodass jedes f (u, v) ganzzahlig ist.
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Flussnetzwerken
Wir zeigen mittels Schnitten, dass ein maximaler Fluss berechnet wird:

Definition
Ein Schnitt (S,T ) in einem Flussnetzwerk G = (V ,E , c) ist eine Partition
S ∪ T = V , S ∩ T = ∅ mit s ∈ S und t ∈ T .

I Wenn f ein Fluss in G ist, dann ist f (S,T ) der Fluss über (S,T ).
I Die Kapazität von (S,T ) ist c(S,T ).
I Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazität.

Datenstrukturen und Algorithmen (Folie 366, Seite 62 im Skript)

Schnitte in Netzwerken

s

v1

v2

v3

v4

ts

v1

v2

v3

v4

t

11/16

8/13

10 1/4

12/12

4/9

11/14

7/7

15/20

4/4

Der Fluß über (S ,T ) ist 19.

Die Kapazität von (S ,T ) ist 26.
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I Wenn f ein Fluss in G ist, dann ist f (S,T ) der Fluss über (S,T ).
I Die Kapazität von (S,T ) ist c(S,T ).

I Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazität.

Datenstrukturen und Algorithmen (Folie 366, Seite 62 im Skript)

Schnitte in Netzwerken

s

v1

v2

v3

v4

ts

v1

v2

v3

v4

t

11/16

8/13

10 1/4

12/12

4/9

11/14

7/7

15/20

4/4

Der Fluß über (S ,T ) ist 19.

Die Kapazität von (S ,T ) ist 26.
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6 c(S,T ).
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Maximaler Fluss Ford-Fulkerson-Methode

Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T) ist minimal.
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Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T) ist minimal.

Folgerungen
1. Die Kapazität eines minimalen Schnittes ist gleich dem Wert eines

maximalen Flusses.
2. Falls die Ford–Fulkerson–Methode terminiert, berechnet sie einen

maximalen Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T) ist minimal.

1. ⇒ 2. (Widerspruchsbeweis).

Sei f ein maximaler Fluss und p einen augmentierender Pfad.
⇒ f + fp ist ein Fluss in G mit |f + fp| > |f |.
⇒ Widerspruch! Denn f ist maximaler Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T) ist minimal.

2. ⇒ 3.
Es gibt keinen s-t-Pfad in Gf .
Sei S := { v ∈ V | ∃ s-v -Pfad in Gf } und T := V − S, dann gilt:
1. ∀u ∈ S, v ∈ T gilt: cf (u, v) = 0 ⇒ f (u, v) = c(u, v).
2. (S,T) ist ein Schnitt und somit gilt f (S,T ) = |f |.
⇒ c(S,T ) = f (S,T ) = |f |
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T) ist minimal.

3. ⇒ 1.
Sei f ′ ein beliebiger Fluss dann gilt:

|f ′| = f (S,T ) =
∑
u∈S

∑
v∈T

f ′(u, v) 6
∑
u∈S

∑
v∈T

c(u, v) = c(S,T )

Da |f | = c(S,T ) und ∀ f ′ : |f ′| 6 c(S,T ), folgt f ist maximal.
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Maximaler Fluss Ford-Fulkerson-Methode

Laufzeit der Ford-Fulkerson-Methode

s t

0/100

0/100

0/1

0/100

0/100

Die Worst-Case-Laufzeit ist abhängig vom Wert eines maximalen Flusses.
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Laufzeit der Ford-Fulkerson-Methode

s t

2/100

1/100

1/1

1/100

2/100

Die Worst-Case-Laufzeit ist abhängig vom Wert eines maximalen Flusses.
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Maximaler Fluss Edmonds-Karp-Algorithmus

Übersicht

1 Flussnetzwerke

2 Ford-Fulkerson-Methode
Restnetzwerke
Algorithmus
Schnitte

3 Edmonds-Karp-Algorithmus
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Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus
Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt wird als
Edmonds-Karp-Algorithmus bezeichnet. (O(V · E 2))

Lemma
Wird der Edmonds-Karp-Algorithmus genutzt, so steigt für alle Knoten
v ∈ V − {s, t} der Abstand des kürzesten Pfades δf (s, v) im Restnetzwerk
Gf monoton mit jeder Erweiterung des Flusses.

Theorem
Die Gesamtzahl der Iterationen im Edmonds-Karp-Algorithmus für das
Flussnetzwerk G = (V ,E , c) ist in O(V · E ).
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