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Maximaler Fluss Flussnetzwerke

Flussnetzwerk

Flussnetzwerk

Ein Flussnetzwerk G ist ein Tripel G = (V, E, ¢), wobei:
» (V, E) ein gerichteter Graph ist,
» c: E — IR*% die Kapazitatsfunktion und

» s,t € V Quelle s und Senke t des Flussnetzwerkes.
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Fluss in einem Flussnetzwerk
Definition (Fluss)
Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:

Beschrankung: Fiir u,v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fiir u,v € V gilt f(u, v) = —f(v, u).

Flusserhaltung: Firr u € V — {s, t} gilt: Z f(u,v)=0.
veV
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Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:

Beschrankung: Fiir u,v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fiir u,v € V gilt f(u, v) = —f(v, u).

Flusserhaltung: Firr u € V — {s, t} gilt: Z f(u,v)=0.
veV

Definition (Wert eines Flusses)

Der Wert |f| eines Flusses ist der Gesamtfluss aus der Quelle s:

If] = Z f(s,u).

ueVv
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Darstellung von Fliissen

» Jeder Knoten liegt auf einem Pfad von der Quelle s zur Senke t.
» Fir (u,v) & E ist ¢(u, v) = 0.
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» Jeder Knoten liegt auf einem Pfad von der Quelle s zur Senke t.
» Fir (u,v) € E ist c(u,v) =0.
» Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.
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Jeder Knoten liegt auf einem Pfad von der Quelle s zur Senke t.
Fir (u,v) & E ist c¢(u, v) = 0.
Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.

Negative Flisse f(u, v) < 0 werden nicht explizit angegeben.

v

v

v

v

Der eingezeichnete Fluss f hat den Wert |f| = 9.
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Maximaler Fluss Flussnetzwerke

Maximale Fliisse

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk.

Beispiel (Anwendungen)

» Wie groB ist der maximale Datendurchsatz zwischen zwei Computern
in einem Netzwerk?

> Wie kann der Verkehr in einem StraBennetz so geleitet werden, dass
moglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

» Wie viele Leitungen miissen zerstort sein, damit zwei Computer nicht
mehr miteinander kommunizieren kénnen?
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Ein maximaler Fluss
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Ein maximaler Fluss
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» Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.
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Ein maximaler Fluss
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» Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.

» Es kann mehrere maximale Flisse geben.
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Mehrere Quellen und Senken

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.
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Maximaler Fluss Flussnetzwerke

Mehrere Quellen und Senken

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.

» Sie konnen durch eine neue ,,Superquelle” und , Supersenke” in ein
Standard-Flussnetzwerk tberfiihrt werden.
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Maximaler Fluss Flussnetzwerke

Fliisse zwischen Knotenmengen

f(x,Y) =

f(X.y) =

Joost-Pieter Katoen

> f(xy) fir Y C V
yey
Zf(x,y) fur X C V
xeX
Y3 flxy) firX,ycVv
xeXyeY
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Maximaler Fluss Flussnetzwerke

Fliisse zwischen Knotenmengen

fx,Y) = Y f(xy) fir Y C V
yey

f(X,y) = Zf(x,y) fir X C V
xeX

X Y) = > Y flxy) firX,ycv
xeXyeY

Eigenschaften von Fliissen zwischen Mengen

Falls f ein Fluss fir G = (V, E, ¢) ist, dann gilt:
1. f(X,X)=0 fur X C V

2 FIX,Y) = —f(Y,X) fir X,Y C V
3. f(XUY,Z)=f(X,2)+f(Y.Z) firX,Y,ZCV:XNnY=0
4. F(ZXUY)=Ff(ZX)+f(ZY) firX,Y.ZCV:XNY=0
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Beweis: (X, X) =0

Beh.: £(X,X) =0

(X, X) = <Z dSflax)+ Y > f(xl,xz))

x1EX xp€X x1EX xpeX

x1EX xp€X x1EX xo€X

= = Z Z( X1, X2 +f(X2,X1)>
X1€XX2€X

=0
L]

Fiir den Beweis bendtigen wir lediglich die Eigenschaft der Asymmetrie.
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke

Wie groB ist der an der Senke eingehende Fluss?

Aufgrund der Flusserhaltung ist zu erwarten, dass er dem austretenden
Fluss an der Quelle entspricht:

f(s,V)=1f(V,t)
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke
Wie groB ist der an der Senke eingehende Fluss?
Aufgrund der Flusserhaltung ist zu erwarten, dass er dem austretenden
Fluss an der Quelle entspricht:
f(s,V)=1(V,t)

Beweis:

f(s,V)=1f(V,V)-f(V—-{s},V)
= —F(V {5}, V)
= f(V,V — {s})

=f(V,t)+f(V,V—{s t}) | Flusserhaltung
=f(V,t)
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode — ldee
12/12

Suche einen Pfad p von s nach t.

Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.
Suche einen Pfad p von s nach t, aus Kanten mit freier Kapazitat.
Erganze den Fluss der Kanten in p um die kleinste Restkapazitat in p.
Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.

ARSI
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Restnetzwerke

. Netzwerk minus Fluss = Restnetzwerk"
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Restnetzwerke

. Netzwerk minus Fluss = Restnetzwerk"

Definition (Restnetzwerk Gr)

Gegeben sei das Flussnetzwerk G = (V/, E, ¢) und ein Fluss f, dann ist
Gr = (V, Ef, ¢r) das Restnetzwerk (auch: Residualnetzwerk) zu G und f
mit:

Er={(uv)eVxXxV|c(uv)>0},

und
cr(u,v) = c(u,v) — f(u,v),

¢r die Restkapazitat von G.
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Augmentierende Pfade

Flussnetzwerk G
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

» Ein s-t-Pfad p in G¢ heiBt augmentierender Pfad
(vergroBernder Pfad).
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» Ein s-t-Pfad p in G¢ heiBt augmentierender Pfad
(vergroBernder Pfad).
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

» Ein s-t-Pfad p in G¢ heiBt augmentierender Pfad
(vergroBernder Pfad).

> c¢r(p) = min{ cr(u,v) | (u,v) € p} heiBt Restkapazitat von p.

Der Pfad im obigen Beispiel hat die Restkapazitat 4.
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

Entlang p lasst sich in Gf der Fluss f,(u, v) konstruieren mit:

cr(p)  falls (u,v) auf p
fo(u,v) =S —cr(p) falls (v, u) auf p

0 sonst
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Theorem

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie f' ein
Fluss in Gy.

Dann ist f + f' ein Fluss in G.
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Ford-Fulkerson-Theorem

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie f' ein
Fluss in Gy.

Dann ist f + f' ein Fluss in G.

Beweis.

Wir miissen zeigen, dass f + f’ beschrankt, asymmetrisch und
flusserhaltend ist (nachste Folie). O
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Maximaler Fluss Ford-Fulkerson-Methode

1. Asymmetrie:

(f—i—f’)(u, v) = f(y, v)—i—f’(u, v)
= —f(v,u)—f(v,u)
= —(f(v,u)+ f'(v,uv))
= —(f+f)(v,u)
2. Flusserhaltung:

(f+f)u,V) = f(u,V)+f(u,V)=0 |Yue V —{s, t}

3. Beschrankung:

(f+f)u,v) = f(uv)+Ff(uv)
< f(uv)+cr(u, v
= f(u,v)+ (c(u,v)—f(u,v))
= c(u,v)
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Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode

Algorithmus

Initialisiere Fluss f zu 0

while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p  // f:=f+1,

return f

Flussnetzwerk G Restnetzwerk Gr
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Implementierung Ford-Fulkerson-Methode

1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {

2 int flow([n,n] = 0, pathl[];

s int cfp; // Restkapazitit des Pfades

4

5 while (true) {

6 // Finde augmentierenden Pfad und dessen Restkapazitdt
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);

8 if (cfp == 0) { // kein Pfad gefunden

9 return flow;

10 }

11

12 // addiere Restkapazitdt entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {

14 int u = pfad[i-1], v = pfadl[il;

15 flu,v] = f[lu,v] + cfp;

16 flv,ul = -flu,v];

17 }

18}

19 }
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Maximaler Fluss Ford-Fulkerson-Methode

Laufzeit der Ford-Fulkerson-Methode

Ein Flussproblem ist integral, wenn alle Kapazitidten ganzzahlig sind.

Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).
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Korollar
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Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhdht.
Er ist anfangs 0 und am Ende f*. O

Korollar
Bei rationalen Kapazitaten terminiert die Ford—Fulkerson—Methode.
Briiche kénnen durch Multiplikation aufgehoben werden.
» Fir ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f, sodass jedes f(u, v) ganzzahlig ist.
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Flussnetzwerken
Wir zeigen mittels Schnitten, dass ein maximaler Fluss berechnet wird:

Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, c) ist eine Partition
SUT=V,SNT=0mitseSundteT.
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Schnitte in Flussnetzwerken

Wir zeigen mittels Schnitten, dass ein maximaler Fluss berechnet wird:

Definition

Ein Schnitt (S, T) in einem Flussnetzwerk G =

(V, E, c) ist eine Partition
SUT=V,SNT=@mitseSundteT.
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Definition

Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, ¢) ist eine Partition
SUT=V,SNT=@mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss dber (S, T).
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Flussnetzwerken

Wir zeigen mittels Schnitten, dass ein maximaler Fluss berechnet wird:

Definition

Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, ¢) ist eine Partition
SUT=V,SNT=@mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss dber (S, T).
» Die Kapazitat von (S, T) ist ¢(S, T).

» Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazitat.
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken
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Ford-Fulkerson-Methode

Maximaler Fluss

Schnitte in Netzwerken
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken
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» Fir den Fluss tber einen Schnitt gilt: £(S, T) = |f|
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Schnitte in Netzwerken
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S c {s,vi, v} {s} {s,vi,v,wa}
T Atz e} {t,vi, v, v3, va} {t,v3}
Fluss : 19 19 19
Kapazitat : 26 29 23

» Fir den Fluss tber einen Schnitt gilt: (S, T) = |f| < (S, T).
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.
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Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Folgerungen

1. Die Kapazitat eines minimalen Schnittes ist gleich dem Wert eines
maximalen Flusses.

2. Falls die Ford—Fulkerson—Methode terminiert, berechnet sie einen
maximalen Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
|f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

1. = 2. (Widerspruchsbeweis).

Sei f ein maximaler Fluss und p einen augmentierender Pfad.
= f +f, ist ein Fluss in G mit |f + f,| > |f].

= Widerspruch! Denn f ist maximaler Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
f ist ein maximaler Fluss.

2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Es gibt keinen s-t-Pfad in Gf.

Sei S:={veV|Isv-Pfadin Gr} und T :=V — S, dann gilt:
1.VueS veTgiltcr(u,v)=0 = f(u,v)=c(u,v).
2. (S,T) ist ein Schnitt und somit gilt f(S, T) = |f].
= (S, T)=1(5T)=|f|
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
In G¢ gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Sei f’ ein beliebiger Fluss dann gilt:

F1=FST)=>_ > fluv)<D > cluv)=cS,T)

ueSveT ueSveT

Da|fl=¢(S, T) und V" : |f'| < c(S, T), folgt f ist maximal.
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Laufzeit der Ford-Fulkerson-Methode

Die Worst-Case-Laufzeit ist abhangig vom Wert eines maximalen Flusses.
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Ubersicht

e Edmonds-Karp-Algorithmus
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Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus

Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt wird als
Edmonds-Karp-Algorithmus bezeichnet. (O(V - E2))

Lemma

Wird der Edmonds-Karp-Algorithmus genutzt, so steigt fiir alle Knoten
v e V —{s,t} der Abstand des kiirzesten Pfades d¢(s, v) im Restnetzwerk
Gr monoton mit jeder Erweiterung des Flusses.

Die Gesamtzahl der Iterationen im Edmonds-Karp-Algorithmus fiir das
Flussnetzwerk G = (V, E, ¢) ist in O(V - E).
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