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Flussnetzwerk

Flussnetzwerk

Ein Flussnetzwerk G ist ein Tripel G = (V, E, ¢), wobei:
» (V, E) ein gerichteter Graph ist,
» ¢: E — R*? die Kapazitatsfunktion und

> s, t € V Quelle s und Senke t des Flussnetzwerkes.

» Kanten kénnen als Wasserrohre interpretiert werden.
» Die Kapazitat gibt die maximale Durchsatzrate (//s) an.
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Fluss in einem Flussnetzwerk

Definition (Fluss)

Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:

Beschrankung: Fiir u,v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fir u,v € V gilt f(u,v) = —f(v, u).

Flusserhaltung: Fir u € V —{s, t} gilt: Z f(u,v)=0.
veV

Definition (Wert eines Flusses)

Der Wert |f| eines Flusses ist der Gesamtfluss aus der Quelle s:

=Y (s, u).

ueV
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Maximale Fliisse

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk.

Beispiel (Anwendungen)
» Wie groB ist der maximale Datendurchsatz zwischen zwei Computern

in einem Netzwerk?

» Wie kann der Verkehr in einem StraBennetz so geleitet werden, dass
moglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

> Wie viele Leitungen miissen zerstort sein, damit zwei Computer nicht
mehr miteinander kommunizieren kdnnen?
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Darstellung von Fliissen
2/12

7/14

v

Jeder Knoten liegt auf einem Pfad von der Quelle s zur Senke t.
Fir (u,v) & E ist c(u, v) = 0.

Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.
Negative Fliisse f(u, v) < 0 werden nicht explizit angegeben.

» Der eingezeichnete Fluss f hat den Wert |f| = 9.

v

v

v
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Ein maximaler Fluss
12/12

11/14
» Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.

» Es kann mehrere maximale Fliisse geben.
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Mehrere Quellen und Senken Fliisse zwischen Knotenmengen

10 5

flx,Y) = Zf(x,y) far Y C V
yey

fFXy) = Y flxy) fir X C V
xeX

FX,Y) = > > flxy) firX,ycv
xeXyeY

Eigenschaften von Fliissen zwischen Mengen

Falls f ein Fluss fir G = (V, E, ¢) ist, dann gilt:
1. f(X,X)=0 fur X C V
_ U -
» Sie konnen durch eine neue ,Superquelle” und ,,Supersenke” in ein 2 ARG Y) =~V f?r Xyev
Standard-Flussnetzwerk Uberfiihrt werden. 3. f(XUY,2)=1f(X,2)+1f(Y,2) firX, Y. ZCV:XNY=0
4. f(Z,XUY)=1f(Z,X)+f(Z,Y) furX, Y, ZCV:XNY=0

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.
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Beweis: f(X,X) =0 Eingehender Fluss in der Senke

Wie groB ist der an der Senke eingehende Fluss?
Beh.: f(X,X)=0

Aufgrund der Flusserhaltung ist zu erwarten, dass er dem austretenden

f(X,X) = ( Z Z f(x1, x0) + Z Z f(x1, X0 ) Fluss an der Quelle entspricht:

x1EX xp€X x1EX xo€X

f(s,V)=1f(V,t)
= ( Z Z f(x1,x2) Z Z f(szxl))
x1EX xo€X x1EX xpeX Beweis:
= 5 Z;; %{(f()ﬁ x2) + f(x. 1)) f(s, V) = F(V, V) — F(V — {s}, V)
_ 0 = —f(V—{s}V)
=f(V,V —{s})
u =f(V,t)+f(V,V —{s,t}) | Flusserhaltung
=f(V,t)

Fiir den Beweis bendtigen wir lediglich die Eigenschaft der Asymmetrie.
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Ubersicht Ford-Fulkerson-Methode — Idee
12/12

© Ford-Fulkerson-Methode
@ Restnetzwerke
@ Algorithmus

@ Schnitte 14

1. Suche einen Pfad p von s nach t.
2. Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.
3. Suche einen Pfad p von s nach t, aus Kanten mit freier Kapazitat.
4. Erganze den Fluss der Kanten in p um die kleinste Restkapazitat in p.
5. Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.
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Restnetzwerke Augmentierende Pfade

- " 16
., Netzwerk minus Fluss = Restnetzwerk
O
Definition (Restnetzwerk Gr)
13

Gegeben sei das Flussnetzwerk G = (V/, E, ¢) und ein Fluss £, dann ist
Gr = (V, Ef, ¢r) das Restnetzwerk (auch: Residualnetzwerk) zu G und f
mit: Flussnetzwerk G Restnetzwerk Gy
Ef ={(u,v)eVxV]|c(uv)>0},

> Ein s-t-Pfad p in G¢ heiBt augmentierender Pfad

und
(vergroBernder Pfad).

cr(u, v) = c(u,v) — f(u, v),
> = mi , V) € heiBt Restk itat i
¢r die Restkapazitat von G. cr(p) = min{cs(u,v) [ (u,v) € p} heiBt Restkapazitat von p

Der Pfad im obigen Beispiel hat die Restkapazitat 4.
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Augmentierende Pfade

16

Restnetzwerk Gf

Flussnetzwerk G

Entlang p lasst sich in Gf der Fluss f,(u, v) konstruieren mit:

cr(p)  falls (u,v) auf p

fo(u,v) = ¢ —cr(p) falls (v, u) auf p
0 sonst
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1. Asymmetrie:
(f+f)u,v) = f(u,v)+Ff(u,v)
= —f(v,u)—f'(v,u)
= —(f(v,u) + f'(v,u))
=+ )0)

2. Flusserhaltung:

(f +f)(u,V) = f(u,V)+f(u,V)=0 |Vue V—{s t}

3. Beschrankung:
(F+F)uv) = Fluv)+F(uv)
< f(u,v)+cr(u, v)
= f(u,v)+ (c(u,v) = f(u,v))

= c¢(u,v)
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Ford-Fulkerson-Theorem

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie ' ein
Fluss in Gf.

Dann ist f + f" ein Fluss in G.

Beweis.

Wir missen zeigen, dass f + f’ beschrankt, asymmetrisch und

flusserhaltend ist (nachste Folie). O
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Die Ford-Fulkerson-Methode

Algorithmus

Initialisiere Fluss f zu 0

while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p  // f:=f 41,

return f

Restnetzwerk Gr

Flussnetzwerk G
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Maximaler Fluss Ford-Fulkerson-Methode

Implementierung Ford-Fulkerson-Methode

1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {

2 int flow[n,n] = 0, pathl[];

3 int cfp; // Restkapazitdit des Pfades

4

5 while (true) {

6 // Finde augmentierenden Pfad und dessen Restkapazitdt
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);

8 if (cfp == 0) { // kein Pfad gefunden

9 return flow;

10 }

1

12 // addiere Restkapazitdt entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {

14 int u = pfad[i-1], v = pfadl[il;

15 flu,v] = flu,v] + cfp;

16 flv,ul = -flu,vl;

17 }

18}

19}

Schnitte in Flussnetzwerken
Wir zeigen mittels Schnitten, dass ein maximaler Fluss berechnet wird:
Definition
Ein Schnitt (S, T) in einem Flussnetzwerk G = (V, E, ¢) ist eine Partition
SUT=V,SNT=20mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss tber (S, T).

» Die Kapazitat von (S, T) ist ¢(S, T).

» Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazitat.

12/12
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Laufzeit der Ford-Fulkerson-Methode

Ein Flussproblem ist integral, wenn alle Kapazitaten ganzzahlig sind.

Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhoht.
Er ist anfangs 0 und am Ende f*. ]

Korollar
Bei rationalen Kapazitaten terminiert die Ford—Fulkerson—Methode.
Briiche konnen durch Multiplikation aufgehoben werden.
> Fiir ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f, sodass jedes f(u, v) ganzzahlig ist.
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Schnitte in Netzwerken
12[12

11/14
S o s, vi, »} {s} {s,v1,v2,va}
T : {t, V3,V4} {t, V1,V2,V3,V4} {t, V3}
Fluss : 19 19 19
Kapazitat : 26 29 23

» Fir den Fluss iiber einen Schnitt gilt: £(S, T) = |f| < ¢(S, T).
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In G¢ gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S,T) ist minimal.

Folgerungen
1. Die Kapazitat eines minimalen Schnittes ist gleich dem Wert eines
maximalen Flusses.

2. Falls die Ford—Fulkerson—Methode terminiert, berechnet sie einen
maximalen Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
f ist ein maximaler Fluss.
2. In G¢ gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S,T) ist minimal.

Es gibt keinen s-t-Pfad in G¢.

Sei S:={veV|Isv-Pfadin Gr} und T := V — S, dann gilt:
1.VueS, ve Tgilt: ¢r(u,v) =0 = f(u,v)=c(uv).
2. (S,T) ist ein Schnitt und somit gilt (S, T) = |f|.
= ¢(5, T)=1(5T)=]|f]
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In G¢ gibt es keinen augmentierenden Pfad.
|f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S,T) ist minimal.

1. = 2. (Widerspruchsbeweis).

Sei f ein maximaler Fluss und p einen augmentierender Pfad.
= f + f, ist ein Fluss in G mit |f + f,| > |f].

= Widerspruch! Denn f ist maximaler Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S,T) ist minimal.

3. = 1.
Sei f' ein beliebiger Fluss dann gilt:

1 =FS T)=>_> fluv) <Y Y cluv)=c(S T)

ueSveT ueSveT

Da |[f|=¢(5, T) und Vf : |f'| <c(S, T), folgt f ist maximal.
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Laufzeit der Ford-Fulkerson-Methode Ubersicht

9 Edmonds-Karp-Algorithmus
Die Worst-Case-Laufzeit ist abhangig vom Wert eines maximalen Flusses.
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Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus

Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt wird als
Edmonds-Karp-Algorithmus bezeichnet. (O(V - E?))

Lemma

Wird der Edmonds-Karp-Algorithmus genutzt, so steigt fiir alle Knoten
v € V —{s, t} der Abstand des kiirzesten Pfades d¢(s, v) im Restnetzwerk
Gr monoton mit jeder Erweiterung des Flusses.

Die Gesamtzahl der Iterationen im Edmonds-Karp-Algorithmus fiir das
Flussnetzwerk G = (V, E, ¢) ist in O(V - E).
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