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Algorithmische Geometrie Algorithmische Geometrie

Einführung

I Allgemein: Geometrische Probleme im n-dimensionale Raum IRn.

I Z. B. Schneiden sich zwei Geraden? etc.
I Wir betrachten hier Probleme im zweidimensionalen Raum, also

n = 2.
I Dazu nutzen wir Konzepte aus der Linearen Algebra.
I Anwendungen: Computergraphik, CAD, Robotertechnik, usw.
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Algorithmische Geometrie Algorithmische Geometrie

Mathematische Hilfsmittel

Vektor, Skalarprodukt, Betrag, Determinante

I Vektor (im IRn, insbesondere n = 2): ~x =

x1
...

xn

 =

[
x1
x2

]
.

I Skalarprodukt (Dot Product) von ~x und ~y :

~x · ~y =
n∑

i=1
xi · yi = x1y1 + x2y2.

I Betrag (Länge) von ~x : |~x | =
√
~x · ~x =

√
x2
1 + x2

2 .

I Determinante für [~x ,~y ] =

[
x1 y1
x2 y2

]
=: A:

detA = det(~x ,~y) = x1y2 − x2y1.
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Algorithmische Geometrie Algorithmische Geometrie

Geometrische Interpretation

x1

x2

α
·

|~y | cos(α)

~x
~y

x1

x2

~y
~x
| det(~x ,~y)|

I Es gilt: ~x · ~y = |~x ||~y | cos(α). („Länge der Projektion“).

I Die Fläche (allgemein: Volumen) des durch ~x und ~y aufgespannten
Parallelogramms ist gerade der Absolutwert der Determinanten.
Oder: Die Determinante liefert eine vorzeichenbehaftete Fläche.
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Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (I)
Problem
Liegt ein Vektor ~y links oder rechts von einem gegeben Vektor ~x?

x1

x2

~y ′

~y

~x

I Wir betrachten zunächst ~y .
I Konstruiere ~z , den zu ~x im mathematisch positiven Sinn

(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.
I Projeziere ~y auf ~z . Da ~y rechts von ~x liegt und damit von ~z wegzeigt,

ist ~z ·~y negativ.
I ~y ′ dagegen liegt links von ~x , daher ist ~z ·~y ′ positiv.
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Winkelbestimmung (II)

Wie berechnet sich aber ~z aus ~x?

x1

x2

(0.9, 0.5)
(−0.5, 0.9)

·

~z

~x

I Für ~x = (x1, x2) ist ~z gerade (−x2, x1).

I Insgesamt ist damit ~z · ~y = z1y1 + z2y2 = −x2y1 + x1y2

= det(~x ,~y).

I Ist det(~x ,~y) = 0, dann sind ~x und ~y parallel (bzw. antiparallel).
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Strecken
Punkt, Strecke, Polygon

I Punkte aus dem IR2: p =

[
p1
p2

]
= (p1, p2).

I Der Punkt (0,0) heißt Ursprung.
I Mit dem Vektor ~dpq = q− p kommt man dann von p nach q.
I Die (ungerichtete) Strecke pq ist die Menge alle Punkte zwischen den

beiden Endpunkten p und q (Konvexkombination):
pq = { (1− α) · p + α · q | 0 6 α 6 1 } = {p + α · ~d | 0 6 α 6 1 }.

I Fasst man −→pq als gerichtete Strecke auf, so ist ~dpq die Richtung.
I Eine Streckenzug ist eine Folge von Punkten (p1, . . . ,pn), die durch

Strecken miteinander verbunden sind: p1p2,p2p3, . . . ,pn−1pn.
I Ein Polygon mit den Ecken p1, . . . ,pn hat als Rand gerade den

geschlossenen Streckenzug (p1, . . . ,pn,p1).
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beiden Endpunkten p und q (Konvexkombination):
pq = { (1− α) · p + α · q | 0 6 α 6 1 } = {p + α · ~d | 0 6 α 6 1 }.

I Fasst man −→pq als gerichtete Strecke auf, so ist ~dpq die Richtung.
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Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (III)
Problem
Gegeben der Streckenzug (p,q, r). Wird bei q nach links oder rechts
abgebogen? Oder: Ist der Winkel ]pqr > 180◦ oder < 180◦?

pq

qr

p

q

r

I Wir verwenden wieder die Determinante.
I Dazu berechnen wir ~a = ~dpq = q− p und ~b = ~dqr = r − q.
I det(~a,~b) > 0, falls der Knick nach links geht (]pqr > 180◦, α > 0).
I Wenn r auf (der Verlängerung von) pq liegt, dann ist det(~a,~b) = 0

(]pqr = 0◦ oder = 180◦).
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Schnitt zweier Strecken
Problem
Gegeben zwei Strecken pq und rs. Schneiden sich diese?

p

q

r

s

I Wir sind nicht an der Position des Schnittpunktes interessiert.
I Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten

von pq liegen.

Ebenso für p und q bezüglich rs.

I Sonderfall: det = 0. Der Endpunkt, etwa x, liegt also auf der
Verlängerung von pq (bzw. rs).
Es bleibt zu prüfen, ob x auch zwischen p und q liegt.
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Schnitt zweier Strecken – Algorithmus (I)
1 float det(float a[2], float b[2]) {
2 return a[0]*b[1] - a[1]*b[0];
3 }

5 // Richtung des Knicks zwischen pq und qr?
6 float direction(float p[2], float q[2], float r[2]) {
7 float a[2] = {q[0]-p[0], q[1]-p[1]}; // q-p
8 float b[2] = {r[0]-q[0], r[1]-q[1]}; // r-q
9 return det(a,b);

10 }

12 // Vorbedingung: x liegt auf (der Verlängerung von) pq.
13 // Teste, ob x auch zwischen p und q liegt.
14 bool onSegment(float p[2], float q[2], float x[2]) {
15 float topright[2] = {max(p[0],q[0]), max(p[1],q[1])};
16 float botleft[2] = {min(p[0],q[0]), min(p[1],q[1])};
17 // return (botleft <= x <= topright);
18 return (x[0] <= topright[0])&&(x[1] <= topright[1])&&
19 (botleft[0] <= x[0])&&(botleft[1] <= x[1]);
20 }
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Schnitt zweier Strecken – Algorithmus (II)
1 // Testet, ob pq und rs sich schneiden
2 bool segIntersect(float p[2], float q[2],
3 float r[2], float s[2]) {
4 float d1 = direction(p,q,r), d2 = direction(p,q,s);
5 // liegt r bzw. s auf pq?
6 if (d1 == 0 && onSegment(p,q,r)) return true;
7 if (d2 == 0 && onSegment(p,q,s)) return true;
8 // r und s auf der selben Seite von pq?
9 if ((d1 > 0 && d2 > 0) || (d1 < 0 && d2 < 0)) return false;

10

11 float d3 = direction(r,s,p), d4 = direction(r,s,q);
12 // liegt p bzw. q auf rs?
13 if (d3 == 0 && onSegment(r,s,p)) return true;
14 if (d4 == 0 && onSegment(r,s,q)) return true;
15 // p und q auf der selben Seite von rs?
16 if ((d3 > 0 && d4 > 0) || (d3 < 0 && d4 < 0)) return false;
17 return true;
18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Übersicht

1 Algorithmische Geometrie
Winkelbestimmung
Schnitt zweier Strecken

2 Schnitt eines beliebigen Streckenpaares
Ordnen von Strecken
Sweepline

3 Konvexe Hülle
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares

a

b

c

de

f

Problem
Gegeben seinen n Strecken. Gibt es einen Schnitt zwischen zwei dieser
Strecken?

Lässt sich die Frage schneller als O(n2) beantworten?

Annahmen
I Wir lassen keine vertikalen Strecken zu.
I Es schneiden sich nicht mehr als zwei Strecken im selben Punkt.
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Ordnen von Strecken

r
a

b

c

de

f

Beispiel

I e >r f; sowie f mit a nicht
vergleichbar bei r (usw.).

I b >s a, e >s a, b >s e.
I b >t a, e >t a, e >t b.

(Der Schnitt vertauscht die
Reihenfolge von e und b).

Vergleichbarkeit

Zwei Strecken s1 und s2 heißen vergleichbar an der Stelle r , wenn beide die
vertikale Linie mit x1-Koordinate = r schneiden.

I Wenn s1 an der Stelle r über s2 liegt schreiben wir s1 >r s2,
sonst s2 >r s1, bzw. s1 =r s2.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Wie ordnet man Strecken? (I)

r
a

b

c

de

f

I Für beliebige r : Gar nicht . . . .

Allerdings:
I Beobachtung 1: Die Ordnung kann sich nur ändern, wenn eine

Strecke hinzukommt (vergleichbar wird) bzw. herausfällt, oder wenn
sich zwei Strecken schneiden.

I Beobachtung 2: Für den linken Endpunkt einer hinzukommenden
Strecke lässt sich mit der Determinante bestimmen, ob er über oder
unter einer an dieser Stelle vergleichbaren Strecke liegt.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Wie ordnet man Strecken? (II)
I Insbesondere lässt sich so ein Endpunkt, und damit die Strecke, in

eine gegebenen Ordnung von Strecken einsortieren.

I Hält man die Ordnung in einem balanciertem Binärbaum vor (Details
später), dann benötigt man bei n Strecken Θ(n log n) Operationen.

Das führt zur Idee der Sweepline:
I Wir wandern von links nach rechts über die Ebene und fügen die

Strecken unserer Ordnung hinzu, bzw. entfernen sie beim Passieren
der jeweiligen Endpunkte.

I So können wir für jede Position die Ordnung angeben, solange wir
Schnitte erkennen.

I Da sich schneidende Linien immer zunächst in der Ordnung
benachbart sind, brauchen wir nun, für eine hinzukommende oder
verlassende Strecke, nur die beiden benachbarten Strecken direkt
ober- und unterhalb unseres Endpunktes auf etwaige Schnitte testen.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Sweepline-Algorithmen

Ein Sweepline-Algorithmus verwaltet gewöhnlich zwei Datenmengen:

Sweepline-Status:
Gibt die Beziehung zwischen den von der Sweepline geschnittenen
Objekten an.

Ereignisliste:
Eine Liste, in der die Ereignispunkte sortiert aufgelistet sind.
Nur an diesen hält die Sweepline an, da sich der Status nur an solchen
ändern kann.

I Je nach Anwendung kann die Ereignisliste schon im voraus bestimmt
(und sortiert) werden (statische Ereignisliste), oder aber sie entsteht
erst beim Durchlauf (dynamische Ereignisliste).

I Dynamische Ereignisliste können z. B. mit binären Suchbäumen
effizient implementiert werden.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Sweepline
Für den Schnitt eines beliebigen Streckenpaares heißt das:

Sweepline-Status:
⇒ Die Ordnung der Strecken an der aktuellen Position der Sweepline.
I In die Ordnung müssen hinzukommende Strecken eingefügt

werden, verlassende Strecken gelöscht werden.
I Außerdem benötigen wir Operationen, um die direkt über und

unter einer Strecke liegende Strecke zu erhalten, da (nur)
zwischen solchen auf Schnitt geprüft wird.

I Etwa RBTs implementieren diesen dynamischen, sortierten ADT.
I „Unter“ und „Über“ entspricht dem Nachfolger (bstSucc) und

dem Vorgänger (analog: bstPred).
Ereignisliste:

I Ereignispunkte sind alle Endpunkte der Strecken.
Diese sind bereits im Vorfeld bekannt.

I Dazu kommen – beim Durchlauf – ggf. gefundene Schnittpunkte,
da sich die Ordnung der beteiligten Linien vertauscht.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

f
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I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
f

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
f
a

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
b
f
a

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
b
a

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
a

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.

I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

e
a
c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.

I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

d
e
a
c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.

I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

d
a
e
c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

a
e
c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

a
c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

c

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – Beispiel

a

b

c

d
e

f

I Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
I Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt

getauscht werden (mit einer speziellen ADT-Operation).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt, beliebiges Streckenpaar – Algorithmus (I)
1 typedef float[2] Point; // wir schreiben Point für float[2]

3 // Wir übergeben die n Strecken in einem Array von Punkten:
4 // Point linept[2*n]; wobei linept[0]–linept[1],
5 // linept[2]–linept[3], ..., linept[2*(n-1)]–linept[2*(n-1)+1]

7 // 1. Tausche ggf. [2*i] und [2*i+1], so dass [2*i] links ist.
8 // 2. Sortiere die Punkte von links nach rechts; vergleiche x2
9 // bei gleichem x1. Tausche nun aber nicht die Punkte, sondern

10 // bestimme die Permutation (tausche auf einem Index-Array).
11 int[2*n] sortLeftRight(Point &points[2*n]) { ... selbst ... }

13 // Schnitt lines[i]–lines[i+1] und lines[j]–lines[j+1]?
14 bool Intersect(Point lines[], int i, int j) {
15 if (i == -1 || j == -1) // Strecke i oder j nicht gefunden
16 return false;
17 return segIntersect(lines[i],lines[i+1],lines[j],lines[j+1]);
18 }
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Schnitt, beliebiges Streckenpaar – Algorithmus (II)
1 bool anyIntersect(Point linept[2*n], int n) {
2 int sortMap[2*n] = sortLeftRight(linept);
3

4 Tree order; // speichere linken Endpunkt als Repräsentant
5 for (int i = 0; i < 2*n; i++) { // Sweepline
6 int line = sortMap[i]; // Originalindex des i-ten Punktes
7 if (line mod 2 == 0) { // linker Endpunkt
8 order.Insert(linept, line);
9 int above = order.Pred(line), below = order.Succ(line);

10 if (Intersect(linept, line, above)) return true;
11 if (Intersect(linept, line, below)) return true;
12 } else { // rechter Endpunkt
13 line--; // Repräsentant ist aber der linke Punkt
14 int above = order.Pred(line), below = order.Succ(line);
15 if (Intersect(linept, above, below)) return true;
16 order.Delete(linept, line);
17 }
18 }
19 return false;
20 }
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares – ADT
Wie kann man aber binäre Suchbäume für Strecken mit zwei Endpunkten
verwenden?

– Erinnerung:
1 void bstIns(Tree t, Node node) // Füge node in den Baum t ein
2 // Suche freien Platz [...]
3 if (node.key < root.key) {
4 root = root.left;
5 } else {
6 root = root.right;
7 }
8 // [...] Einfügen [...]

I Wir müssen einen geeigneten Vergleich verwenden.
I Im Algorithmus haben wir Strecken über ihren linken Endpunkt

eindeutig identifiziert.
I Wir speichern also als Schlüssel nur den Index des linken Endpunktes.

1 void Tree::Insert(Point linp[], int i) // [...]
2 if (direction(linp[root.key+1], linp[root.key], linp[i]) < 0)
3 // [...]
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares –
Komplexität
Zeitkomplexität
Die Worst-Case Zeitkomplexität, zu bestimmen op sich zwei beliebige
Strecken aus einer Menge von n Strecken schneiden, ist O(n log n).

Beweis.
I Der Test, ob sich zwei Strecken schneiden geht in O(1).
I Zum Sortieren der Ereignispunkte können wir auf bekannte

Sortierverfahren mit O(n log n) zurückgreifen.
I Wir iterieren über die 2·n Endpunkte, wobei wir O(log n)-Operationen

der RBTs verwenden. Somit: O(n log n).
⇒ Im Worst-Case benötigt anyIntersect O(n log n) Zeit.
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Algorithmische Geometrie Konvexe Hülle

Übersicht

1 Algorithmische Geometrie
Winkelbestimmung
Schnitt zweier Strecken

2 Schnitt eines beliebigen Streckenpaares
Ordnen von Strecken
Sweepline

3 Konvexe Hülle
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Algorithmische Geometrie Konvexe Hülle

Polygone

nicht einfach

nicht konvex konvex, einfach

einfach
Ein Polygon heißt einfach, wenn es sich nicht selbst schneidet.

konvex
Ein Polygon heißt konvex, wenn jede Verbindung (Konvexkombination)
zweier Punkte des Polygons nie außerhalb des Polygons liegt.
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Algorithmische Geometrie Konvexe Hülle

Konvexe Hülle

p0

p1

p2
p3

p4
p5

p6

p7

p8
p9

p10

p11

p12

Konvexe Hülle
Die konvexe Hülle einer Menge Q von Punkten ist das kleinste konvexe
Polygon P, für das sich jeder Punkt in Q entweder auf dem Rand von P
oder in seinem Inneren befindet.

I Betrachte jeden Punkt als Nagel, der aus einem Brett herausragt.
I Die konvexe Hülle hat dann die Form, die durch ein straffes

Gummiband gebildet wird, das alle Nägel umschließt.
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Algorithmische Geometrie Konvexe Hülle

Konvexe Hülle – Graham-Scan – Idee

I Wir ziehen ein Gummiband Punkt für Punkt weiter.
I Ausgehend von einem ausgezeichnetem Punkt, der auf der Hülle liegt:

I Der Punkt mit der geringsten x2-Koordinate, bei Mehrdeutigkeiten
außerdem geringsten x1-Koordinate, ist geeignet.

I Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

I Das entspricht einer rotierenden Sweepline.
Dann gilt:

I Entweder das Gummiband liegt weiterhin an, oder der neue Punkt
hebt das Gummiband vom vorigen Punkt weg.
Dann ist der vorige Punkt sicherlich nicht Teil der konvexen Hülle.
Überprüfe in dem Fall nun den „neuen“ vorigen Punkt (usw.).

I Bemerke, dass auch (neben dem Startpunkt) der Punkt mit dem
geringsten Polarwinkel sicher auf der Hülle liegt.

I Gleiches gilt für den Punkt mit größtem Polarwinkel.
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I Der Punkt mit der geringsten x2-Koordinate, bei Mehrdeutigkeiten
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I Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

I Das entspricht einer rotierenden Sweepline.
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Überprüfe in dem Fall nun den „neuen“ vorigen Punkt (usw.).
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Konvexe Hülle – Graham-Scan – Beispiel
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Algorithmische Geometrie Konvexe Hülle

Konvexe Hülle – Graham-Scan – Algorithmus
1 // gibt index der Punkte auf der Hülle zurück
2 int[] grahamScan(Point poly[n], int n) {
3 // Finde Index des Punktes mit minimaler x1 Koordinate
4 int refPnt = findRef(poly);
5 // Sortiere Punkte nach aufsteigendem Polarwinkel bezüglich
6 // refPnt, setze dabei refPnt an Position 0. Lösche alle
7 // bis auf den äußersten, bei mehreren mit gleichem Winkel.
8 inverseMap = polarSort(poly, refPnt);
9

10 Stack hull; // Punkte, die bis jetzt auf der Hülle sind.
11 for (int i = 0; i < n; i++) {
12 if (i > 2)
13 while (direction(poly[hull[-2]], poly[hull[-1]],poly[i])
14 < 0) // die oberen beiden Punkte vom Stack
15 hull.pop();
16

17 hull.push(i);
18 }
19 return inverseMap(hull); // macht die Umsortierung rückgängig
20 }
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Algorithmische Geometrie Konvexe Hülle

Graham-Scan – Korrektheit

Korrektheit
Wenn grahamScan auf einer Punktemenge Q läuft, dann gilt bei
Terminierung, dass der Stapel hull von unten nach oben die Eckpunkte
der konvexen Hüllen von Q enthält in der dem Uhrzeigersinn
entgegengesetzten Reihenfolge.

Beweis.
(Skizze). Die Schleifeninvariante ist: zu Beginn der i-ten Iteration besteht
der Stapel hull von unten nach oben genau aus den Eckpunkten von der
konvexen Hülle der Punktenmenge {p0, . . . ,pi−1 }.
Wir verzichten hier auf weitere Details.
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Algorithmische Geometrie Konvexe Hülle

Graham-Scan – Komplexität
Zeitkomplexität
Die Worst-Case Zeitkomplexität von grahamScan für eine Menge mit n
Punkten ist Θ(n log n).

Beweis.
I direction ∈ Θ(1).
I findRef benötigt einen Durchlauf über die Punkte, also Θ(n).
I Sortieren: polarSort ∈ Θ(n log n).
I n Schleifendurchläufe mit, von der while-Schleife abgesehen, Θ(1).
I Da im while nur Punkte von Stack genommen werden, die vorher

durch die for-Schleife hinzugefügt wurden, können alle Iterationen
der while-Schleife in der Analyse jeweils zum jeweiligen push
gerechnet werden.
Somit bleibt es bei insgesamt Θ(n) für alle Schleifen.
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