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Wir betrachten hier Probleme im zweidimensionalen Raum, also
n=>2.

Dazu nutzen wir Konzepte aus der Linearen Algebra.

v
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Anwendungen: Computergraphik, CAD, Robotertechnik, usw.
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Mathematische Hilfsmittel

Vektor, Skalarprodukt, Betrag, Determinante
» Vektor (im IR", insbesondere n =2): X = | 1 | = [XI].

» Skalarprodukt (Dot Product) von X und y:

y= ZX:' Vi = X1y1 + Xey2.

i=1

» Betrag (Linge) von X: [X| = VX - X = \/x2 + x3.

» Determinante fir [X, y] = [f y ]
2 Y2

det A = det(X,y) = x1y2 — xoy1-
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Geometrische Interpretation

X2

y

» Es gilt: X -y = |X||y| cos(«). (,,Lange der Projektion").
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V7 | det(R, 7)|
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» Es gilt: X -y = |X||y| cos(«). (,,Lange der Projektion").
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Geometrische Interpretation

X2 X2
y

V7 | det(R, 7)|

X1

|

» Es gilt: X -y = |X||y| cos(«). (,,Lange der Projektion").

» Die Flache (allgemein: Volumen) des durch X und y aufgespannten
Parallelogramms ist gerade der Absolutwert der Determinanten.
Oder: Die Determinante liefert eine vorzeichenbehaftete Flache.
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Winkelbestimmung (1)

Problem

Liegt ein Vektor y links oder rechts von einem gegeben Vektor X7

X2
\

Ll
X1

yx X1
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Liegt ein Vektor y links oder rechts von einem gegeben Vektor X7

» Wir betrachten zunichst y.

X2

X1
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» Konstruiere Z, den zu X im mathematisch positiven Sinn
(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.

» Projeziere y auf Z. Da y rechts von X liegt und damit von Z wegzeigt,
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Winkelbestimmung (1)

Liegt ein Vektor y links oder rechts von einem gegeben Vektor X7

» Wir betrachten zunichst y.
» Konstruiere Z, den zu X im mathematisch positiven Sinn
(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.

» Projeziere y auf Z. Da y rechts von X liegt und damit von Z wegzeigt,
ist Z-y negativ.
> )7’ dagegen liegt links von X, daher ist 2’-)7’ positiv.
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Winkelbestimmung (1)

Wie berechnet sich aber Z aus X7
X2

(—0.5,0.9) Z
(0.9,0.5)
X

X1

> Fir X = (x1, x2) ist Z gerade (—x2, x1).
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Z
y
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> Fir X = (x1, x2) ist Z gerade (—x2, x1).
> Insgesamt ist damit Z- Y = z1y1 + 200 = —Xxoy1 + X1\
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Winkelbestimmung (1)

Wie berechnet sich aber Z aus X7

X2

Ny
N

X1

> Fir X = (x1, x2) ist Z gerade (—x2, x1).

> Insgesamt ist damit Z - y = z1y1 + zoy2 = —xoy1 + x1y2 = det(X, y).
> Ist det(X, y) = 0, dann sind X und y parallel (bzw. antiparallel).
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Strecken
Punkt, Strecke, Polygon
» Punkte aus dem R?: p = gl = (p1, P2).
2
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Strecken

Punkt, Strecke, Polygon

» Punkte aus dem R?: p = [Zj = (p1, P2)-

Der Punkt (0,0) heiBt Ursprung.

Mit dem Vektor Jpq = q — p kommt man dann von p nach q.

v

v

v

Die (ungerichtete) Strecke pq ist die Menge alle Punkte zwischen den
beiden Endpunkten p und q (Konvexkombination):
pa={(1-a)-pta-q[0<a<l}={p+a-d[0<a<l}
> Fasst man p—ﬁ als gerichtete Strecke auf, so ist 3pq die Richtung.
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Strecken

Punkt, Strecke, Polygon

» Punkte aus dem IR?: p = [Zj = (p1, P2)-

» Der Punkt (0,0) heiBt Ursprung.
» Mit dem Vektor Jpq = q — p kommt man dann von p nach q.

» Die (ungerichtete) Strecke pq ist die Menge alle Punkte zwischen den
beiden Endpunkten p und q (Konvexkombination):
pa={(1-a)-pta-q[0<a<l}={p+a-d[0<a<l}

> Fasst man p—ﬁ als gerichtete Strecke auf, so ist 3pq die Richtung.

» Eine Streckenzug ist eine Folge von Punkten (pg, ..., pn), die durch
Strecken miteinander verbunden sind: p1p2. P2P3. - - -, Pn—1Pn-
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Strecken

Punkt, Strecke, Polygon

» Punkte aus dem IR?: p = [Zj = (p1, P2)-

» Der Punkt (0,0) heiBt Ursprung.
» Mit dem Vektor Jpq = q — p kommt man dann von p nach q.

» Die (ungerichtete) Strecke pq ist die Menge alle Punkte zwischen den
beiden Endpunkten p und q (Konvexkombination):
pa={(1-a)-pta-q[0<a<l}={p+a-d[0<a<l}

> Fasst man p—ﬁ als gerichtete Strecke auf, so ist 3pq die Richtung.

» Eine Streckenzug ist eine Folge von Punkten (pg, ..., pn), die durch
Strecken miteinander verbunden sind: p1p2, P2P3, - - - » Pn_1Pn-

» Ein Polygon mit den Ecken p1, ..., pn hat als Rand gerade den
geschlossenen Streckenzug (p1, . . ., Pn, P1)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/33



Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (111)
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Winkelbestimmung (111)

Gegeben der Streckenzug (p, q,r). Wird bei q nach links oder rechts
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Winkelbestimmung (111)

Problem

Gegeben der Streckenzug (p, q,r). Wird bei q nach links oder rechts
abgebogen? Oder: Ist der Winkel £pqr > 180° oder < 180°7

X2

Apqr = 180°+«
X1

» Wir verwenden wieder die Determinante.
» Dazu berechnen wir 3=d,q=q—pund b=dg =r—q.
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Winkelbestimmung (111)

Problem

Gegeben der Streckenzug (p, q,r). Wird bei q nach links oder rechts
abgebogen? Oder: Ist der Winkel £pqr > 180° oder < 180°7

X2

Apqr = 180°+«
X1

» Wir verwenden wieder die Determinante.
» Dazu berechnen wir 3=d,q=q—pund b=dg =r—q.
» det(3, b) > 0, falls der Knick nach links geht (£pqr > 180°, a > 0).
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Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (111)

Problem

Gegeben der Streckenzug (p, q,r). Wird bei q nach links oder rechts
abgebogen? Oder: Ist der Winkel £pqr > 180° oder < 180°?

X2

X1

Wir verwenden wieder die Determinante.

Dazu berechnen wir 3 = Jpq =q—p und b= qu =r—q.

det(3, b) > 0, falls der Knick nach links geht (£pqr > 180°, a > 0).
Wenn r auf (der Verlangerung von) pq liegt, dann ist det(3, b) = 0
(4Lpqr = 0° oder = 180°).
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Schnitt zweier Strecken

Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?

q
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Schnitt zweier Strecken

Problem

Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?

» Wir sind nicht an der Position des Schnittpunktes interessiert.
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Algorithmische Geometrie Algorithmische Geometrie

Schnitt zweier Strecken

Problem
Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?

" 0"
par > 0"

»pgs < 0"

» Wir sind nicht an der Position des Schnittpunktes interessiert.

> ldee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen.
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» Wir sind nicht an der Position des Schnittpunktes interessiert.

> ldee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziglich ts.
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Algorithmische Geometrie Algorithmische Geometrie

Schnitt zweier Strecken

Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?

» Wir sind nicht an der Position des Schnittpunktes interessiert.

> ldee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziglich ts.

» Sonderfall: det = 0. Der Endpunkt, etwa x, liegt also auf der
Verlangerung von pq (bzw. s).
Es bleibt zu priifen, ob x auch zwischen p und q liegt.
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Schnitt zweier Strecken — Algorithmus (1)

1 float det(float a[2], float b[2]) {
2 return al[0]*b[1] - a[1]*b[0];
3}

5 // Richtung des Knicks zwischen pq und qr?

6 float direction(float p[2], float q[2], float r([2]) {
7 float al[2] = {q[0]-pl0], q[1]l-p[11}; // g-p

8 float b[2] = {r[0]-q[0], r[11-ql1l1}; // r—q

9 return det(a,b);

10 }

12 // Vorbedingung: z liegt auf (der Verldngerung wvon) pq.
13 // Teste, ob x auch zwischen p und q liegt.

14 bool onSegment(float p[2], float q[2], float x[2]) {

15 float topright[2] = {max(p[0],ql[0]), max(p[1]l,q[11)};
16 float botleft[2] = {min(p[0],q[0]), min(p[1],ql[11)};
17 // return (botleft <= z <= topright);

18 return (x[0] <= topright[0])&&(x[1] <= topright[1])&&
19 (botleft[0] <= x[0])&&(botleft[1] <= x[1]);

20 }
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Schnitt zweier Strecken — Algorithmus (I1)

1 // Testet, ob pq und rs sich schneiden
2 bool seglntersect(float p[2], float q[2],
float r[2], float s[2]) {
float d1 = direction(p,q,r), d2 = direction(p,q,s);
// liegt v bzw. s auf pqg?
if (d1 == 0 && onSegment(p,q,r)) return true;
if (d2 == 0 && onSegment(p,q,s)) return true;
// 7 und s auf der selben Seite von pq?
if ((d1 > 0 & d2 > 0) || (d1 < 0 && d2 < 0)) return false;

© ® N o U~ W

10

11 float d3 = direction(r,s,p), d4 = direction(r,s,q);

12 // liegt p bzw. q auf 7rs?

13 if (d3 == 0 && onSegment(r,s,p)) return true;

14 if (d4 == 0 && onSegment(r,s,q)) return true;

15 // p und q auf der selben Seite von rs?

16 if ((d3 > 0 && d4 > 0) || (d3 < 0 && d4 < 0)) return false;
17 return true;

18 }
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares
Ubersicht

© Schnitt eines beliebigen Streckenpaares
@ Ordnen von Strecken
@ Sweepline
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Schnitt eines beliebigen Streckenpaares

e b d

\

/ C
f a

Problem

Gegeben seinen n Strecken. Gibt es einen Schnitt zwischen zwei dieser
Strecken?
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Schnitt eines beliebigen Streckenpaares

e b d

\
/ C
f a

Problem

Gegeben seinen n Strecken. Gibt es einen Schnitt zwischen zwei dieser
Strecken? Lasst sich die Frage schneller als O(n?) beantworten?
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares

e b d

\

/ C
f a

Problem

Gegeben seinen n Strecken. Gibt es einen Schnitt zwischen zwei dieser
Strecken? Lasst sich die Frage schneller als O(n?) beantworten?

» Wir lassen keine vertikalen Strecken zu.

» Es schneiden sich nicht mehr als zwei Strecken im selben Punkt.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Ordnen von Strecken

&~ b

/ /_ C
f a

p
Vergleichbarkeit
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Algorithmische Geometrie

Schnitt eines beliebigen Streckenpaares

Ordnen von Strecken

e\

/ /_ C
f a

p
Vergleichbarkeit

Zwei Strecken s; und s, heien vergleichbar an der Stelle r, wenn beide die
vertikale Linie mit x;-Koordinate = r schneiden.

» Wenn s; an der Stelle r iiber s, liegt schreiben wir s; >, sp,

Joost-Pieter Katoen

sonst s, >, s1, bzw. s =, 5.
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Schnitt eines beliebigen Streckenpaares

Algorithmische Geometrie

Ordnen von Strecken

L v ,

» e >, f; sowie f mit a nicht
vergleichbar bei r (usw.).

/ I c
f

a

r

Vergleichbarkeit

Zwei Strecken s; und s, heien vergleichbar an der Stelle r, wenn beide die
vertikale Linie mit x;-Koordinate = r schneiden.
» Wenn s; an der Stelle r iiber s, liegt schreiben wir s; >, sp,
sonst s, >, s1, bzw. s =, 5.
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Schnitt eines beliebigen Streckenpaares

Algorithmische Geometrie

Ordnen von Strecken

» e >, f; sowie f mit a nicht

vergleichbar bei r (usw.).
»b>sa e>;a b>se

Vergleichbarkeit

Zwei Strecken s; und s, heien vergleichbar an der Stelle r, wenn beide die
vertikale Linie mit x;-Koordinate = r schneiden.

» Wenn s; an der Stelle r iiber s, liegt schreiben wir s; >, sp,
sonst s, >, s1, bzw. s =, 5.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Ordnen von Strecken

» e >, f; sowie f mit a nicht
vergleichbar bei r (usw.).

» b>;a e>sa b>se
\c » b>;a e>;a e>;b.

f (Der Schnitt vertauscht die
2 Reihenfolge von e und b).

Vergleichbarkeit

Zwei Strecken s; und s, heien vergleichbar an der Stelle r, wenn beide die
vertikale Linie mit x;-Koordinate = r schneiden.

» Wenn s; an der Stelle r iiber s, liegt schreiben wir s; >, sp,
sonst s, >, s1, bzw. s1 =, 5.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Wie ordnet man Strecken? (1)

» Fir beliebige r: Gar nicht . ...
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Strecken unserer Ordnung hinzu, bzw. entfernen sie beim Passieren
der jeweiligen Endpunkte.

> So kénnen wir fiir jede Position die Ordnung angeben, solange wir
Schnitte erkennen.

» Da sich schneidende Linien immer zunéchst in der Ordnung
benachbart sind, brauchen wir nun, fiir eine hinzukommende oder
verlassende Strecke, nur die beiden benachbarten Strecken direkt
ober- und unterhalb unseres Endpunktes auf etwaige Schnitte testen.
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Sweepline-Algorithmen

Ein Sweepline-Algorithmus verwaltet gewohnlich zwei Datenmengen:
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andern kann.

» Je nach Anwendung kann die Ereignisliste schon im voraus bestimmt
(und sortiert) werden (statische Ereignisliste), oder aber sie entsteht
erst beim Durchlauf (dynamische Ereignisliste).

» Dynamische Ereignisliste kdnnen z. B. mit bindren Suchbaumen
effizient implementiert werden.
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zwischen solchen auf Schnitt gepriift wird.

» Etwa RBTs implementieren diesen dynamischen, sortierten ADT.

» ,Unter” und ,,Uber” entspricht dem Nachfolger (bstSucc) und
dem Vorganger (analog: bstPred).

Ereignisliste:

» Ereignispunkte sind alle Endpunkte der Strecken.
Diese sind bereits im Vorfeld bekannt.

» Dazu kommen — beim Durchlauf — ggf. gefundene Schnittpunkte,
da sich die Ordnung der beteiligten Linien vertauscht.
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> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
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> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Beispiel

> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Beispiel

> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Beispiel

> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Beispiel

> Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/33



Schnitt, beliebiges Streckenpaar — Algorithmus (1)

1 typedef float[2] Point; // wir schreiben Point fur float[2]

3 // Wir ibergeben die n Strecken in einem Array von Punkten:
4 // Point linept[2#*n]; wobei linept[0]-linept[1],
5 // linept[2]-linept[3], ..., linept[2*(n-1)]-linept[2*(n-1)+1]

7// 1. Tausche ggf. [2%i] und [2*i+1], so dass [2*i] links ist.
8 // 2. Sortiere die Punkte wvon links nach rechts; wvergleiche x;
o // bei gleichem x;. Tausche nun aber nicht die Punkte, sondern
10 // bestimme die Permutation (tausche auf einem Index-Array).

11 int [2*n] sortLeftRight (Point &points[2#n]) { ... selbst ... }

13 // Schnitt lines[i]-lines[i+1] und lines[j]-lines[j+1]?

14 bool Intersect(Point lines[], int i, int j) {

15 if (i == -1 || j == -1) // Strecke i oder j nicht gefunden

16 return false;

17 return seglntersect(lines[i],lines[i+1],lines([j],lines[j+1]);

18 }
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Schnitt, beliebiges Streckenpaar — Algorithmus (11)

1 bool anyIntersect(Point linept[2*n], int n) {

2 int sortMap[2*n] = sortLeftRight(linept);

3

4+ Tree order; // speichere linken Endpunkt als Reprdsentant
5 for (int i = 0; i < 2%n; i++) { // Sweepline

6 int line = sortMaplil; // Originalindez des i-ten Punktes
7 if (line mod 2 == 0) { // linker Endpunkt

8 order.Insert(linept, line);

9 int above = order.Pred(line), below = order.Succ(line);
10 if (Intersect(linept, line, above)) return true;

1 if (Intersect(linept, line, below)) return true;

12 } else { // rechter Endpunkt

13 line--; // Reprdsentant ist aber der linke Punkt

14 int above = order.Pred(line), below = order.Succ(line);
15 if (Intersect(linept, above, below)) return true;

16 order.Delete(linept, line);

17 }

18}

19 return false;

20

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/33



Schnitt eines beliebigen Streckenpaares — ADT

Wie kann man aber bindre Suchb3dume fiir Strecken mit zwei Endpunkten
verwenden?
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Schnitt eines beliebigen Streckenpaares — ADT

Wie kann man aber bindre Suchb3dume fiir Strecken mit zwei Endpunkten
verwenden? — Erinnerung:

1 void bstIns(Tree t, Node node) // Fige node in den Baum t ein
// Suche freien Platz [...]
if (node.key < root.key) {
root root.left;
} else
root
}
// [...] Einfigen [...]
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root.right;
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root = root.right;

}
// [...] Einfigen [...]

> Wir missen einen geeigneten Vergleich verwenden.

> Im Algorithmus haben wir Strecken lber ihren linken Endpunkt
eindeutig identifiziert.

» Wir speichern also als Schliissel nur den Index des linken Endpunktes.

1 void Tree::Insert(Point linp[], int i) // [...]
2 if (direction(linp[root.key+1], linp[root.key], linp[i]) < 0)
s // ... ]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33



Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares —
Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat, zu bestimmen op sich zwei beliebige
Strecken aus einer Menge von n Strecken schneiden, ist O(nlog n).
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» Der Test, ob sich zwei Strecken schneiden geht in O(1).

» Zum Sortieren der Ereignispunkte kénnen wir auf bekannte
Sortierverfahren mit O(nlog n) zuriickgreifen.

» Wir iterieren Uber die 2-n Endpunkte, wobei wir O(log n)-Operationen
der RBTs verwenden.
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Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares —
Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat, zu bestimmen op sich zwei beliebige
Strecken aus einer Menge von n Strecken schneiden, ist O(nlog n).

Beweis.

» Der Test, ob sich zwei Strecken schneiden geht in O(1).

» Zum Sortieren der Ereignispunkte kénnen wir auf bekannte
Sortierverfahren mit O(nlog n) zuriickgreifen.

» Wir iterieren Uber die 2-n Endpunkte, wobei wir O(log n)-Operationen
der RBTs verwenden. Somit: O(nlog n).

= Im Worst-Case benétigt anyIntersect O(nlogn) Zeit.
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Ubersicht

© Konvexe Hiille
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Algorithmische Geometrie Konvexe Hiille

Polygone

nicht einfach

einfach

Ein Polygon heiBt einfach, wenn es sich nicht selbst schneidet.
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Algorithmische Geometrie Konvexe Hiille

Polygone

nicht einfach nicht konvex

einfach

Ein Polygon heiBt einfach, wenn es sich nicht selbst schneidet.

Ein Polygon heiBt konvex, wenn jede Verbindung (Konvexkombination)
zweier Punkte des Polygons nie auBerhalb des Polygons liegt.
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Algorithmische Geometrie Konvexe Hiille

Polygone

s

nicht einfach nicht konvex konvex, einfach

einfach

Ein Polygon heiBt einfach, wenn es sich nicht selbst schneidet.

Ein Polygon heiBt konvex, wenn jede Verbindung (Konvexkombination)
zweier Punkte des Polygons nie auBerhalb des Polygons liegt.
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Konvexe Hiille

P10
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Konvexe Hiille

Konvexe Hille

Die konvexe Hiille einer Menge @ von Punkten ist das kleinste konvexe
Polygon P, fiir das sich jeder Punkt in Q entweder auf dem Rand von P
oder in seinem Inneren befindet.
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Die konvexe Hiille einer Menge @ von Punkten ist das kleinste konvexe
Polygon P, fiir das sich jeder Punkt in Q entweder auf dem Rand von P
oder in seinem Inneren befindet.

» Betrachte jeden Punkt als Nagel, der aus einem Brett herausragt.
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Konvexe Hiille

Konvexe Hille

Die konvexe Hiille einer Menge @ von Punkten ist das kleinste konvexe
Polygon P, fiir das sich jeder Punkt in Q entweder auf dem Rand von P
oder in seinem Inneren befindet.

» Betrachte jeden Punkt als Nagel, der aus einem Brett herausragt.
> Die konvexe Hiille hat dann die Form, die durch ein straffes
Gummiband gebildet wird, das alle Nagel umschlieBt.
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Konvexe Hiille — Graham-Scan — ldee
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Konvexe Hiille — Graham-Scan — ldee

» Wir ziehen ein Gummiband Punkt fir Punkt weiter.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/33



Konvexe Hiille — Graham-Scan — ldee

> Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
» Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:
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> Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
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Konvexe Hiille — Graham-Scan — ldee

Wir ziehen ein Gummiband Punkt fir Punkt weiter.

v

v

Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:

» Der Punkt mit der geringsten x,-Koordinate, bei Mehrdeutigkeiten
auBerdem geringsten x;-Koordinate, ist geeignet.

v

Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

v

Das entspricht einer rotierenden Sweepline.
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> Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
» Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:

» Der Punkt mit der geringsten x,-Koordinate, bei Mehrdeutigkeiten
auBerdem geringsten x;-Koordinate, ist geeignet.

» Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

» Das entspricht einer rotierenden Sweepline.
Dann gilt:

» Entweder das Gummiband liegt weiterhin an, oder der neue Punkt
hebt das Gummiband vom vorigen Punkt weg.
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Konvexe Hiille — Graham-Scan — ldee

> Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
» Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:

» Der Punkt mit der geringsten x,-Koordinate, bei Mehrdeutigkeiten
auBerdem geringsten x;-Koordinate, ist geeignet.

» Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

» Das entspricht einer rotierenden Sweepline.

Dann gilt:

» Entweder das Gummiband liegt weiterhin an, oder der neue Punkt
hebt das Gummiband vom vorigen Punkt weg.
Dann ist der vorige Punkt sicherlich nicht Teil der konvexen Hiille.
Uberpriife in dem Fall nun den ,,neuen” vorigen Punkt (usw.).

» Bemerke, dass auch (neben dem Startpunkt) der Punkt mit dem
geringsten Polarwinkel sicher auf der Hiille liegt.
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Konvexe Hiille — Graham-Scan — ldee

» Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
» Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:
» Der Punkt mit der geringsten x,-Koordinate, bei Mehrdeutigkeiten
auBerdem geringsten x;-Koordinate, ist geeignet.
» Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

» Das entspricht einer rotierenden Sweepline.
Dann gilt:

» Entweder das Gummiband liegt weiterhin an, oder der neue Punkt
hebt das Gummiband vom vorigen Punkt weg.
Dann ist der vorige Punkt sicherlich nicht Teil der konvexen Hiille.
Uberpriife in dem Fall nun den ,,neuen” vorigen Punkt (usw.).
» Bemerke, dass auch (neben dem Startpunkt) der Punkt mit dem
geringsten Polarwinkel sicher auf der Hiille liegt.
> Gleiches gilt fiir den Punkt mit groBtem Polarwinkel.
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Konvexe Hiille — Graham-Scan — Beispiel

P11 e
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Algorithmische Geometrie Konvexe Hiille

Konvexe Hiille — Graham-Scan — Algorithmus

1 // gibt index der Punkte auf der Hille zurick

2 int[] grahamScan(Point poly[n], int n) {

3 // Finde Index des Punktes mit minimaler x; Koordinate

int refPnt = findRef (poly);

// Sortiere Punkte nach aufsteigendem Polarwinkel beziglich
// refPnt, setze dabei rTefPnt an Position 0. Lésche alle
// bis auf den dufersten, bei mehreren mit gleichem Winkel.
inverseMap = polarSort(poly, refPnt);

© 0 N o U

10 Stack hull; // Punkte, die bis jetzt auf der Hille sind.
u  for (int i = 0; i < m; i++) {
12 if (1 > 2)

13 while (direction(poly[hull[-2]], poly[hull([-1]],polyl[il)
14 < 0) // die oberen beiden Punkte vom Stack
15 hull.popQ);

16
17 hull.push(i);

18}

19 return inverseMap(hull); // macht die Umsortierung rickgdngig

20 }
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Graham-Scan — Korrektheit

Wenn grahamScan auf einer Punktemenge Q lauft, dann gilt bei
Terminierung, dass der Stapel hull von unten nach oben die Eckpunkte
der konvexen Hillen von @ enthalt in der dem Uhrzeigersinn
entgegengesetzten Reihenfolge.
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Graham-Scan — Korrektheit

Wenn grahamScan auf einer Punktemenge Q lauft, dann gilt bei
Terminierung, dass der Stapel hull von unten nach oben die Eckpunkte
der konvexen Hillen von @ enthalt in der dem Uhrzeigersinn
entgegengesetzten Reihenfolge.

Beweis.

(Skizze). Die Schleifeninvariante ist: zu Beginn der i-ten lteration besteht
der Stapel hull von unten nach oben genau aus den Eckpunkten von der
konvexen Hiille der Punktenmenge { po, ..., pi-1 }-

Wir verzichten hier auf weitere Details. L]
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Algorithmische Geometrie Konvexe Hiille

Graham-Scan — Komplexitat
Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).
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Graham-Scan — Komplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

» direction € ©(1).
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Graham-Scan — Komplexitat
Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

» direction € ©(1).

» findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).
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Graham-Scan — Komplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

» direction € ©(1).

» findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).
» Sortieren: polarSort € ©(nlog n).
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Graham-Scan — Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

» direction € ©(1).
» findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).
» Sortieren: polarSort € ©(nlog n).

v

n Schleifendurchlaufe mit, von der while-Schleife abgesehen, ©(1).
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Graham-Scan — Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

» direction € ©(1).

» findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).

» Sortieren: polarSort € ©(nlogn).

» n Schleifendurchldufe mit, von der while-Schleife abgesehen, ©(1).

» Da im while nur Punkte von Stack genommen werden, die vorher
durch die for-Schleife hinzugefiigt wurden, kénnen alle Iterationen
der while-Schleife in der Analyse jeweils zum jeweiligen push
gerechnet werden.
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Algorithmische Geometrie Konvexe Hiille

Graham-Scan — Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

direction € @( )
» findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).
» Sortieren: polarSort € ©(nlogn).
» n Schleifendurchldufe mit, von der while-Schleife abgesehen, ©(1).

» Da im while nur Punkte von Stack genommen werden, die vorher
durch die for-Schleife hinzugefiigt wurden, kénnen alle Iterationen
der while-Schleife in der Analyse jeweils zum jeweiligen push
gerechnet werden.

Somit bleibt es bei insgesamt ©(n) fir alle Schleifen. O
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