
2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

aaProf. Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp

Klausur Datenstrukturen und Algorithmen SoSe 2012

Vorname:

Nachname:

Matrikelnummer:

Studiengang (bitte genau einen markieren):

◦ Informatik Bachelor ◦ Mathematik Bachelor
◦ Informatik Lehramt ◦ Computational Engineering Science

◦ Sonstiges:

Anzahl Punkte Erreichte Punkte
Aufgabe 1 20
Aufgabe 2 20
Aufgabe 3 20
Aufgabe 4 20
Aufgabe 5 20
Aufgabe 6 20
Summe 120

Allgemeine Hinweise:

• Auf alle Blätter (inklusive zusätzliche Blätter) müssen Sie Ihren Vornamen, Ihren Nach-
namen und Ihre Matrikelnummer schreiben.

• Geben Sie Ihre Antworten in lesbarer und verständlicher Form an.

• Schreiben Sie mit dokumentenechten Stiften, nicht mit roten oder grünen Stiften und
nicht mit Bleistiften.

• Bitte beantworten Sie die Aufgaben auf den Aufgabenblättern (benutzen Sie auch die
Rückseiten).

• Geben Sie für jede Aufgabe maximal eine Lösung an. Streichen Sie alles andere durch.
Andernfalls werden alle Lösungen der Aufgabe mit 0 Punkten bewertet.

• Werden Täuschungsversuche beobachtet, so wird die Klausur mit 0 Punkten bewertet.

• Geben Sie am Ende der Klausur alle Blätter zusammen mit den Aufgabenblättern ab.

• Gehen Sie bei Codeanalysen davon aus, dass sämtliche Instruktionen wie arithmetische
Operationen (+,-.*,/), Vergleiche usw. in konstanter Zeit O(1) ausgeführt werden.

1

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 1 (O-Notation): (6 + 6 + 8 = 20 Punkte)

a) Sortieren Sie für die unten gegebenen Funktionen die O-Klassen O(a(n)),O(b(n)),O(c(n)),O(d(n)) und
O(e(n)) bezüglich ihrer Teilmengenbeziehung. Nutzen Sie ausschließlich die echte Teilmenge ⊂ sowie die
Gleichheit = für die Beziehungen zwischen den Mengen. Folgendes Beispiel illustriert diese Schreibweise für
einige Funktionen f1 bis f5 (diese haben nichts mit den unten angegebenen Funktionen zu tun):

O(f4(n)) ⊂ O(f3(n)) = O(f5(n)) ⊂ O(f1(n)) = O(f2(n))

Die angebenen Beziehungen müssen weder bewiesen noch begründet werden.

a(n) = n2 · log2n + 42 b(n) = 2n + n4 c(n) = 22·n d(n) = 2n+3 e(n) =
√
n5

b) Beweisen oder widerlegen Sie (log2 n)2 ∈ O(n).

2

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

c) Beweisen oder widerlegen Sie n! ∈ Ω(nn−2).

3

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 2 (Sortieren): (6 + 3 + 3 + 8 = 20 Punkte)

a) Sortieren Sie das folgende Array mittels des Heapsort-Algorithmus aus der Vorlesung.

5 9 13 7 2 3

Geben Sie das vollständige Array nach jeder Versickerung (Heapify-Operation) an, bei der sich der Arrayinhalt
ändert.

Hinweis: Es könnte hilfreich sein, die jeweils noch unsortierten Arraybereiche zusätzlich als Heap darzustellen.
Dies ist jedoch optional.

4

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

b) Beweisen oder widerlegen Sie die folgende Aussage:

Heapsort ist stabil.

c) Geben Sie die asymptotische Best-Case Laufzeit (Θ) von Mergesort an. Begründen Sie Ihre Antwort (ein
Verweis darauf, dass dies in der Vorlesung gezeigt wurde, reicht nicht aus).

5

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

d) Bestimmen Sie die Best-Case Laufzeit (Θ) des untenstehenden natMergeSort Sortieralgorithmus in Abhän-
gigkeit der Arraylänge n und geben Sie an, ob dieser Algorithmus ein stabiler Sortieralgorithmus ist. Nehmen
Sie dazu an, dass die Initialisierung des R Arrays in konstanter Zeit zu bewerkstelligen ist. Begründen Sie
Ihre Antwort.

void natMergeSort(int E[], int n) { // Eingabearray und seine Laenge
int R[] = 0; // initialisiere ein neues Array mit 0 Werten
int r = 1; // Index fuer R; R[0] bleibt 0, da r mit 1 beginnt
for (int i = 0; i < n - 1; i++) {

if (E[i] > E[i + 1]) { // falsche Reihenfolge?
R[r] = i + 1; // neues sortiertes Teilstueck gefunden
r++;

}
}
R[r] = n;
sort(E, R, 0, r - 1);

}

// nahezu Mergesort
void sort(int E[], int R[], int left , int right) {

if (left < right) {
int mid = (left + right) / 2; // finde Mitte
sort(E, R, left , mid); // sortiere linke Haelfte
sort(E, R, mid + 1, right); // sortiere rechte Haelfte
// Verschmelzen der sortierten Haelften
// merge Operation ist aus Vorlesung bekannt
// erwartet ein Array und drei Positionen
// fuegt die beiden Arrayabschnitte zwischen den Positionen
// sortiert zusammen und setzt sie in das Originalarray ein
merge(E, R[left], R[mid + 1] - 1, R[right + 1] - 1);

}
}

Hinweis: Sie dürfen Eigenschaften von aus der Vorlesung bekannten Sortierverfahren in Ihrer Begründung
benutzen.

6

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

7

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 3 (Bäume): (3 + 2 + 8 + 7 = 20 Punkte)

Gegeben sei der folgende Algorithmus für nicht leere, binäre Bäume:

class Node{
Node left , right;
int value;

}

void do(Node node){
Node m = max(node);
if(m.value > node.value){
// swap der Werte von m und node

int tmp = m.value;
m.value = node.value;
node.value = tmp

}
if(node.left != null)

do(node.left);
if(node.right != null)

do(node.right);
}

Node max(Node node){
Node max = node;

if(node.left != null){
node tmp = max(node.left);
if(tmp.value > max.value)

max = tmp;
}
if(node.right != null){

node tmp = max(node.right);
if(tmp.value > max.value)

max = tmp;
}
return max;

}

a) Beschreiben Sie in möglichst wenigen Worten die Auswirkung der Methode do(tree).

b) Die Laufzeit der Methode max(tree) ist für sämtliche Eingaben linear in n, der Anzahl von Knoten im
übergebenen Baum tree. Begründen Sie kurz, warum max(tree) eine lineare Laufzeit hat.

c) Geben Sie in Abhängigkeit von n, der Anzahl von Knoten im übergebenen Baum tree, jeweils eine Rekur-
sionsgleichung für die asymptotische Best- (B(n)) und Worst-Case Laufzeit (W (n)) des Aufrufs do(tree)
sowie die entsprechende Komplexitätsklasse (Θ) an. Begründen Sie Ihre Antwort.

Hinweis: Überlegen Sie, ob die Struktur des übergebenen Baumes Einfluss auf die Laufzeit hat.
Die lineare Laufzeit von max(tree) darf vorausgesetzt werden.

8

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

d) Beweisen sie per Induktion die folgende Aussage: Ein Rot-Schwarz-Baum der Schwarzhöhe h hat maximal
rot(h) = 2

3 · 4
h − 23 rote Knoten.

9

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 4 (Hashing): (4 + 4 + 5 + 5 + 2 = 20 Punkte)

Gegeben seien die Zahlen 43, 13, 61, 41, 53, 95 und 31 und die Hashfunktion h(x) = x mod 10 sowie eine
Hashtabelle mit 10 Plätzen. Füge Sie die Elemente mit Hilfe folgender Hashverfahren ein.

a) offene Adressierung mit linearem Sondieren,

0 1 2 3 4 5 6 7 8 9

b) offene Adressierung mit doppeltem Hashing und folgender zweiter Hashfunktion: h′(x) = 7− (x mod 7).

0 1 2 3 4 5 6 7 8 9

c) Ein weiteres Hashverfahren ist Brent-Hashing. Im Gegensatz zum Hashing aus der Vorlesung wird bei einer
Kollision im Brent-Hashing die nächste Sondierungsposition für beide Elemente berechnet und das alte
Element genau dann verschoben, wenn dies einen Sondierungsschritt und das neue Element mehr als einen
(weiteren) braucht.

Seien h1 und h2 Hashfunktionen, so ist h(k, i) = (h1(k) + i ·h2(k)) mod m die Hashfunktion, die man beim
Brent-Hashing benutzt.

Brent-Hashing für ein Element k1 im i-ten Sondierungsschritt funktioniert nun wie folgt.

• Ist h(k1, i) frei, so füge k1 an dieser Position ein.

• Ist h(k1, i) belegt mit einem Element k2, h(k1, i+1) ebenfalls belegt, k2 wurde mit j Sondierungsschrit-
ten eingefügt (d. h. h(k1, i) = h(k2, j)) und h(k2, j + 1) ist frei, so füge k2 an der Position h(k2, j + 1)

ein und k1 an der bisherigen Position von k2.

• Ansonsten fahre mit der Sondierung für k1 und i + 1 fort.

Gegeben sei nun eine Hashtabelle mit 11 Plätzen und die Hashfunktion

h(k, i) = ((k mod 11) + i · (k mod 7)) mod 11.

Fügen Sie die folgenden Werte mittels Brent-Hashing ein: 24, 22, 48, 68 und 59.

0 1 2 3 4 5 6 7 8 9 10

10

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

d) Vervollständigen Sie den nachfolgenden Algorithmus brentInsert, der ein Element k nach Brent-Hashing
in eine Hashtabelle table der Länge m einfügt. Die dabei verwendete Datenstruktur Hash hat zwei Felder:
key vom Typ int und state, welches die Werte free, used und deleted annehmen kann. Gehen Sie
davon aus, dass auf die Hashfunktionen h1 und h2 mit entsprechenden Funktionen int h1(int value)
und int h2(int value) zugegriffen werden kann. Die zu vervollständigenden Teile sind durch Unterstrei-
chungen markiert.

void brentInsert(Hash table[], int m, int k) {
int insertPos = h1(k);
while (table[insertPos].state == used) {

int newNext = ;

int oldNext = ;

if (table[newNext].state == free ||
table[oldNext].state == used) {
insertPos = newNext;

} else {

table[oldNext].key = ;

table[oldNext].state = used;
table[insertPos].state = deleted;

}
}

table[insertPos].key = ;

table[insertPos].state = used;
}

e) Welche Änderungen müssen an der normalen Suche bei offener Adressierung (Algorithmus hashSearch aus
der Vorlesung) vorgenommen werden, um für Brent-Hashing korrekt zu funktionieren?

11

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 5 (Graphen): (2 + 6 + 7 + 5 = 20 Punkte)

a) Betrachten Sie den folgenden gerichteten Graphen G1:

A B C

D E F

G H

Geben Sie den Kondensationsgraphen G1 ↓ an. Beschriften Sie die Knoten im Kondensationsgraphen mit
den Namen aller Knoten, die zur jeweiligen starken Zusammenhangskomponente gehören. Bilden beispiels-
weise die Knoten 1 und 3 eine starke Zusammenhangskomponente, so sieht der zugehörige Knoten im
Kondensationsgraphen wie folgt aus:

1, 3

12

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

b) Beweisen oder widerlegen Sie die folgende Aussage:

Für jeden zusammenhängenden, ungerichteten, gewichteten Graphen G = (V, E) mit nicht-negativen Kan-
tengewichten gibt es einen Knoten v ∈ V , sodass der SSSP-Baum von v in G ein minimaler Spannbaum
von G ist.

13

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

c) Bestimmen Sie für den folgenden Graphen G2 die Werte der kürzesten Pfade zwischen allen Paaren von
Knoten. Nutzen Sie hierzu den Algorithmus von Floyd. Geben Sie das Distanzarray vor dem Aufruf, sowie
nach jeder Iteration an.
Die Knotenreihenfolge sei mit A,B, C,D fest vorgegeben.

A

B C

D

7

2

1

9

4

8

3

1 A B C D
A
B
C
D

2 A B C D
A
B
C
D

3 A B C D
A
B
C
D

4 A B C D
A
B
C
D

5 A B C D
A
B
C
D

14

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

d) Geben Sie einen minimalen Schnitt und den Wert eines maximalen Flusses für folgendes Flussnetzwerk G3
an.

A

B C

D

s t

5

6
7

2

1

9

4

8

3

7

3

15

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

Aufgabe 6 (Dynamische Programmierung): (1 + 3 + 8 + 8 = 20 Punkte)

Gesucht ist ein Algorithmus zur Bestimmung der kleinsten Anzahl an Münzen, die nötig sind, um einen bestimmten
Geldbetrag zu zahlen. Hierzu werden verschiedene Münzwerte m1, m2, . . . , mk mit k > 0 und mi ≥ 1 sowie der
zu zahlende Betrag B gegeben.

Beispiel:
Seien die Münzwerte 1, 2 und 5 sowie der Betrag 9 gegeben, so ist die kleinste Anzahl an Münzen 3, nämlich zwei
Münzen des Werts 2 sowie eine mit dem Wert 5.

Der folgende Algorithmus soll die Aufgabe übernehmen:

int minimum(int m[], int k, int b) {
sort(m); // sortiert die Werte absteigend
int n = 0, c = 0;
while (b > 0) {

if (b < m[n]) {
n++;
if (n >= k) {

return -1;
}

} else {
b = b - m[n];
c++;

}
}
return c;

}

a) Auf welchem Prinzip beruht der gegebene Algorithmus?

b) Geben Sie ein Beispiel an, bei dem der obige Algorithmus nicht die optimale Lösung findet.

16

2 Datenstrukturen und Algorithmen SoSe 2012, Klausur 31.07.2012

Name: Matrikelnummer:

c) Geben Sie eine rekursive Gleichung für C(i , b) an, wobei C(i , b) die minimale Anzahl an Münzen ist, die
benötigt wird, um den Betrag b mit den Münzwerten m1 bis mi zu bezahlen.

Beachten Sie, dass nicht unbedingt alle Beträge zahlbar sind (z. B. wenn es keinen Münzwert 1 gibt). Diese
Fälle sollen durch den Wert ∞ repräsentiert werden.

d) Für zwei Buchstabensequenzen a = a1a2 . . . an und b = b1b2 . . . bm lässt sich anhand der folgenden Rekur-
sionsgleichung die Levenshtein-Distanz zwischen den Teilsequenzen a1a2 . . . ai und b1b2 . . . bj bestimmen:

D(i , j) =


j falls i = 0

i falls j = 0

D(i − 1, j − 1) falls ai = bj

min(D(i − 1, j − 1), D(i − 1, j), D(i , j − 1)) + 1 sonst

Nutzen Sie die oben gegebene Rekursionsgleichung, um gemäß dem Prinzip der dynamischen Program-
mierung die folgende Tabelle zu füllen, und geben Sie die resultierende Levenshtein-Distanz der Buchsta-
bensequenzen AACHEN und ATHEN an.

A A C H E N

A

T

H

E

N

Levenshtein-Distanz:

17

