
Vorname Name Matr.-Nr.
1

Aufgabe 1 Bäume (3+1+6=10 Punkte)

a) Gegeben sei der folgende binäre Suchbaum:

20

11

10

27

23

24

31

(i) Geben Sie den binären Suchbaum an, der durch Rechtsrotation auf den Wurzelknoten
des oben gegebenen Baumes entsteht:

(ii) Geben Sie den binären Suchbaum an, der durch Linksrotation auf den Wurzelknoten
des oben gegebenen Baumes (nicht des resultierenden Baums aus (i) ) entsteht:



Vorname Name Matr.-Nr.
2

b) Bleibt ein Rot-Schwarz-Baum nach einer Linksrotation um einen inneren Knoten in jedem
Fall ein Rot-Schwarz-Baum? Begründen Sie Ihre Antwort.



Vorname Name Matr.-Nr.
3

c) Fügen Sie den Wert 18 in den folgenden Rot-Schwarz-Baum ein. Zeichnen Sie den Baum
nach dem Einfügen, vor und nach jeder Rotation, sowie das Endergebnis.

In Ihrer Lösung müssen Sie externe Blätter nicht einzeichnen.

25

11

10 17

14 20

32



Vorname Name Matr.-Nr.
4

Aufgabe 2 Hashing (2+4+4 = 10 Punkte)

Gegeben sei die folgende Folge von Schlüsselwerten:

5, 19, 22, 14, 17, 32, 30, 43, 1,

sowie die Hashfunktion:

h1(k) = k mod 13

a) Geben Sie die Hashtabelle an, die entsteht, wenn die gegebenen Schlüssel, unter Verwen-
dung der Hashfunktion h1, sukzessive in eine zu Beginn leere Hashtabelle mit Verkettung
(geschlossene Adressierung) der Länge 13 einfügt werden.

0 1 2 3 4 5 6 7 8 9 10 11 12



Vorname Name Matr.-Nr.
5

b) Geben Sie die Hashtabelle an, die entsteht, wenn die gegebenen Schlüssel, unter Verwendung
von quadratischer Sondierung mit c1 = c2 = 2, sukzessive in eine zu Beginn leere Hashtabelle
mit offener Adressierung der Länge 13 einfügt werden.

Nutzen Sie für jeden einzufügenden Schlüssel eine Zeile der folgenden Tabelle und markieren
Sie fehlgeschlagene Sondierungspositonen mit einem ×, sowie die erfolgreiche Sondierungs-
position mit dem entsprechenden Schlüssel. Eingefügte Schlüssel müssen in den folgenden
Zeilen nicht wiederholt werden.

Schlüssel: 5, 19, 22, 14, 17, 32, 30, 43, 1

0 1 2 3 4 5 6 7 8 9 10 11 12



Vorname Name Matr.-Nr.
6

c) Geben Sie die Hashtabelle an, die entsteht, wenn die gegebenen Schlüssel, unter Verwendung
von doppeltem Hashing mit h1 und h2(k) = 1 + (k mod 5), sukzessive in eine zu Beginn
leere Hashtabelle mit offener Adressierung der Länge 13 einfügt werden.

Nutzen Sie für jeden einzufügenden Schlüssel eine Zeile der folgenden Tabelle und markieren
Sie fehlgeschlagene Sondierungspositonen mit einem ×, sowie die erfolgreiche Sondierungs-
position mit dem entsprechenden Schlüssel. Eingefügte Schlüssel müssen in den folgenden
Zeilen nicht wiederholt werden.

Schlüssel: 5, 19, 22, 14, 17, 32, 30, 43, 1

0 1 2 3 4 5 6 7 8 9 10 11 12



Vorname Name Matr.-Nr.
7

Aufgabe 3 Sortieren (4+2+4=10 Punkte)

Quicksort benötigt einen Partitionierungsalgorithmus um die zu sortierende Eingabe schrittweise
aufzuteilen. In der Vorlesung haben wir bereits einen Partionierungsalgorithmus kennengelernt.
Im Folgenden finden Sie einen weiteren – den von Hoare ursprünglich vorgeschlagenen – Partitio-
nierungsalgorithmus sowie den dazugehörigen Quicksortalgorithmus:

1 void QuickSort(int A[], int left, int right){

2

3 if(left < right){

4 int p = Hoare-Partitionierung(A, left, right);
5 QuickSort(A, left, p);

6 QuickSort(A, p+1, right);
7 }

8 }

1 int Hoare-Partitionierung(int A[], int l, int r){
2 int pivot = A[l];

3 l--;
4 r++;

5

6 while (true){

7

8 r--;

9 while(A[r] > pivot) r--;
10

11 l++;
12 while(A[l] < pivot) l++;

13

14 if (l >= r)
15 return r;

16

17 swap(A[l], A[r]);

18

19 // Ausgabe

20 }
21 }

a) Sortieren Sie die folgende Eingabe entsprechend dem oben angegebenen Quicksortalgorith-
mus beim Aufruf von QuickSort(A, 0, 7). Geben Sie jeweils beim Erreichen der Zeile 19
(// Ausgabe) den Inhalt des Arrays sowie die Positionen von l und r an:

A: 18 10 5 27 13 1 9 32

Auf der folgenden Seite finden Sie obigen Hoare-Partitionierungsalgorithmus in kompakterer
Darstellung, eine Kopie des Eingabearrays sowie mehrere Vorlagen für weitere Arrays, die Sie
für Ihre Lösung nutzen können. Sie dürfen beliebig viele Zwischenschritte angeben, sollten
dann aber die Arrays, die der gewünschten Ausgabe entsprechen, besonders kennzeichnen.



Vorname Name Matr.-Nr.
8

1 int Hoare-Partitionierung(int A[], int l, int r){
2 int pivot = A[l]; l--; r++;

3 while (true){

4 r--; while(A[r] > pivot) r--;
5 l++; while(A[l] < pivot) l++;

6 if (l >= r) return r;
7 swap(A[l], A[r]);

8 // Ausgabe
9 } }

18 10 5 27 13 1 9 32

l r



Vorname Name Matr.-Nr.
9



Vorname Name Matr.-Nr.
10

b) Ist Quicksort mit Hoare-Partitionierung stabil? Begründen Sie Ihre Antwort.



Vorname Name Matr.-Nr.
11

Aufgabe 4 Rekursionsgleichungen (1+2+4+3=10 Punkte)

Betrachten Sie das folgende Programm:

1 public static double calcu(double n){

2 if (n <= 1)
3 return 0;

4 double number = calcu(n/4)*calcu(n/4)*calcu(n/4);
5 for (int i = 0 ; i < n; i++){

6 for (int j = 0; j*j < n; j++){
7 number = number + 1;

8 }
9 }

10 return number;
11 }

a) Geben Sie eine Rekursionsgleichung für die asymptotische Laufzeit des obigen Programms
an.

Gehen Sie davon aus, dass die Grundrechenarten +, -, *, /, sowie Zuweisungen = und Ver-
gleiche <= in konstanter Zeit O(1) ausgeführt werden.

b) Lösen Sie die Rekursionsgleichung aus a) mit Hilfe des Mastertheorems.



Vorname Name Matr.-Nr.
12

c) Bestimmen Sie die Lösung von T (n) = 2T (n
2
) + n log n, T (1) = 1 mit n = 2k, k ∈ N anhand

des entsprechenden Rekursionsbaums. Das Ergebnis sollte frei von Summenzeichen sein. Sie
brauchen Ihre Lösung nicht zu beweisen.

d) Versuchen Sie T (n) mit Hilfe des Mastertheorems zu lösen. Begründen Sie Ihre Antwort.



Vorname Name Matr.-Nr.
13

Aufgabe 5 Algorithmen und Laufzeit (5+5=10 Punkte)

a) Gegeben sei ein Integer-Array der Länge n mit beliebigen Werten. Finden Sie einen Algo-
rithmus, der die Länge der längsten zusammenhängenden Folge von Nullen innerhalb des
Arrays in Linearzeit (O(n)) bestimmt.

Beispiel: Die Länge der längsten zusammenhängenden Folge von Nullen in dem Array
[0, 0, 12,−1, 4, 0, 0, 0, 5, 0] ist drei.



Vorname Name Matr.-Nr.
14

b) Gegeben sei der folgende Algorithmus divInter(int n, int k). Bestimmen Sie die exakte
Laufzeit W (n, k) für den Aufruf divInter (n,k) in Abhängigkeit von n und k.

1 (int, int) divInter (int n, int k){

2 int q=0;
3 int r=n;

4 int m=2*k;
5 while (r>=m){

6 q=q+1;
7 r=r-m;

8 }
9 q=q*2;

10 return (q,r);
11 }

Gehen Sie davon aus, dass die Grundrechenarten +, -, *, /, sowie Zuweisungen = und Verglei-
che >= in exakt einer Zeiteinheit ausgeführt werden. Die Kosten der weiteren Anweisungen
sollen ignoriert werden.


