9) Lehrstuhl fiir Informatik 2 Datenstrukturen und Algorithmen SoSe 2012

Modellierung und Verifikation von Software Ubung 13 (Abgabe bis 13.07.2012)

Prof. Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Stroder, Sabrina von Styp
Hinweise:

e Die Ubungsblatter sind in Gruppen von je 3 Studierenden aus der gleichen Kleingruppeniibung zu bearbeiten.

Die Losungen miissen bis Freitag, den 13. Juli um 14:00 Uhr in den entsprechenden Ubungskasten ein-
geworfen werden. Sie finden die Kasten am Eingang Halifaxstr. des Informatikzentrums (Ahornstr. 55).
Alternativ kdnnen die Lésungen auch zu Beginn der zugehorigen Globaliibung im Audimax abgegeben wer-
den.

Namen und Matrikelnummern der Studenten sowie die Nummer der Ubungsgruppe sind auf jedes Blatt der
Abgabe zu schreiben. Heften bzw. tackern Sie die Blatter!

Aufgabe 1 (Dynamische Programmierung): (4 + 6 + 5 = 15 Punkte)

a)

b)

Schreiben Sie eine Funktion, welche die Lange der Longest Common Subsequence (LCS) fiir zwei gegebene
Zeichensequenzen berechnet. Die Zeichensequenzen seien dabei der Einfachheit halber int Arrays seql und
seq2 mit den Langen 11 and 12. Demnach soll Ihre Funktion die folgende Signatur haben:

int lcs(int seql[], int 11, int seq2[], int 12)

Bestimmen Sie gemaB dem in der Vorlesung vorgestellten Verfahren die LCS der Worter BACHELOR und
AACHEN. Geben Sie hierzu die berechnete Matrix an und kennzeichnen Sie den Pfad, der zur Rekonstruktion
des Ergebnisses genutzt wird.

Betrachten Sie folgendes Szenario. lhnen wird eine Klausur gestellt, welche n Aufgaben umfasst. Jede dieser
Aufgaben hat eine Punktzahl p; und eine von lhnen geschatzte Zeit t;, die Sie zum Losen der Aufgabe
benotigen (1 </ < n). Geben Sie die maximale Punktzahl, welche Sie in T Zeiteinheiten erreichen konnen,
als Rekursionsgleichung an (inklusive der passenden Argumente).

Aufgabe 2 (Geometrie): (8 + 7 = 15 Punkte)

a)

b)

Gegeben seien die folgenden Punkte:
(13, 7), (3, 8), (5, 2), (9, 4), (6, 11), (12, 14), (7, 13), (10, 8), (17, 14), (18, 5)

Bestimmen Sie mit Hilfe des Graham-Scans die konvexe Hiille der oben angegebenen Punkte. Geben Sie
alle berechneten Determinanten und den jeweils aktuellen Zustand des Stacks an.

Schreiben Sie eine Funktion, die zu einem einfachen (aber nicht notwendigerweise konvexen) Polygon und
einem Punkt einen Wahrheitswert zuriick liefert, der angibt, ob sich der Punkt innerhalb des Polygons be-
findet (Punkte auf dem Rand des Polygons sind dabei innerhalb des Polygons). Hierbei kénnen Sie davon
ausgehen, dass eine Datenstruktur P existiert, die zwei ganzzahlige Felder x und y besitzt. Diese Datenstruk-
tur modelliert Punkte im zweidimensionalen Raum. Solche Punkte konnen mittels des Vergleichsoperators
== auf Gleichheit getestet werden. Das Polygon sei fiir die Eingabe als Array von Punkten gegeben, wo-
bei jeweils aufeinander folgende Punkte sowie der letzte und erste Punkt miteinander verbunden sind. Als
Beispiel ist nachfolgend ein Polygon und seine Reprdsentation als Array von Punkten angegeben.

polygon[0] .x = 0, polygon[0].y = 0
polygon[1] .x = 3, polygon[il]l.y = 0
polygon[2] .x = 2, polygon[2].y = 1

x = 3, polygon[3].y = 4

\ polygon[3].



9) Lehrstuhl fiir Informatik 2 Datenstrukturen und Algorithmen SoSe 2012
Modellierung und Verifikation von Software Ubung 13 (Abgabe bis 13.07.2012)

Ihre Funktion soll folgende Signatur haben, wobei n die Anzahl der Punkte ist, aus denen das Polygon
besteht:

boolean inPolygon(P point, P polygon[], int n)

Sie diirfen davon ausgehen, dass eine Funktion float winkel (P pl, P p2, P p3) existiert, welche den
Winkel zwischen den Strecken p2p1 und p2p3 berechnet. Sie liefert FlieBkommazahlen w mit —180 < w <
180 zuriick. AuBerdem diirfen Sie annehmen, dass keine Rundungsfehler bei Berechnungen mit FlieBkom-
mazahlen auftreten.

Hinweis: Eine mégliche Losung arbeitet dhnlich wie der Graham-Scan. Uberlegen Sie sich, wie Sie Winkel
zwischen bestimmten Strecken dazu nutzen kénnen, das Problem zu losen.



