
2 Lehrstuhl für Informatik 2

Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2012

Übung 13 (Abgabe bis 13.07.2012)

aaProf. Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp

Hinweise:

• Die Übungsblätter sind in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung zu bearbeiten.

• Die Lösungen müssen bis Freitag, den 13. Juli um 14:00 Uhr in den entsprechenden Übungskasten ein-

geworfen werden. Sie finden die Kästen am Eingang Halifaxstr. des Informatikzentrums (Ahornstr. 55).

Alternativ können die Lösungen auch zu Beginn der zugehörigen Globalübung im Audimax abgegeben wer-

den.

• Namen und Matrikelnummern der Studenten sowie die Nummer der Übungsgruppe sind auf jedes Blatt der

Abgabe zu schreiben. Heften bzw. tackern Sie die Blätter!

Aufgabe 1 (Dynamische Programmierung): (4 + 6 + 5 = 15 Punkte)

a) Schreiben Sie eine Funktion, welche die Länge der Longest Common Subsequence (LCS) für zwei gegebene

Zeichensequenzen berechnet. Die Zeichensequenzen seien dabei der Einfachheit halber int Arrays seq1 und

seq2 mit den Längen l1 and l2. Demnach soll Ihre Funktion die folgende Signatur haben:

int lcs(int seq1[], int l1, int seq2[], int l2)

b) Bestimmen Sie gemäß dem in der Vorlesung vorgestellten Verfahren die LCS der Wörter BACHELOR und

AACHEN. Geben Sie hierzu die berechnete Matrix an und kennzeichnen Sie den Pfad, der zur Rekonstruktion

des Ergebnisses genutzt wird.

c) Betrachten Sie folgendes Szenario. Ihnen wird eine Klausur gestellt, welche n Aufgaben umfasst. Jede dieser

Aufgaben hat eine Punktzahl pi und eine von Ihnen geschätzte Zeit ti , die Sie zum Lösen der Aufgabe

benötigen (1 ≤ i ≤ n). Geben Sie die maximale Punktzahl, welche Sie in T Zeiteinheiten erreichen können,

als Rekursionsgleichung an (inklusive der passenden Argumente).

Aufgabe 2 (Geometrie): (8 + 7 = 15 Punkte)

a) Gegeben seien die folgenden Punkte:

(13, 7), (3, 8), (5, 2), (9, 4), (6, 11), (12, 14), (7, 13), (10, 8), (17, 14), (18, 5)

Bestimmen Sie mit Hilfe des Graham-Scans die konvexe Hülle der oben angegebenen Punkte. Geben Sie

alle berechneten Determinanten und den jeweils aktuellen Zustand des Stacks an.

b) Schreiben Sie eine Funktion, die zu einem einfachen (aber nicht notwendigerweise konvexen) Polygon und

einem Punkt einen Wahrheitswert zurück liefert, der angibt, ob sich der Punkt innerhalb des Polygons be-

findet (Punkte auf dem Rand des Polygons sind dabei innerhalb des Polygons). Hierbei können Sie davon

ausgehen, dass eine Datenstruktur P existiert, die zwei ganzzahlige Felder x und y besitzt. Diese Datenstruk-

tur modelliert Punkte im zweidimensionalen Raum. Solche Punkte können mittels des Vergleichsoperators

== auf Gleichheit getestet werden. Das Polygon sei für die Eingabe als Array von Punkten gegeben, wo-

bei jeweils aufeinander folgende Punkte sowie der letzte und erste Punkt miteinander verbunden sind. Als

Beispiel ist nachfolgend ein Polygon und seine Repräsentation als Array von Punkten angegeben.

polygon[0].x = 0, polygon[0].y = 0

polygon[1].x = 3, polygon[1].y = 0

polygon[2].x = 2, polygon[2].y = 1

polygon[3].x = 3, polygon[3].y = 4

1



2 Lehrstuhl für Informatik 2

Modellierung und Verifikation von Software

Datenstrukturen und Algorithmen SoSe 2012

Übung 13 (Abgabe bis 13.07.2012)

Ihre Funktion soll folgende Signatur haben, wobei n die Anzahl der Punkte ist, aus denen das Polygon

besteht:

boolean inPolygon(P point, P polygon[], int n)

Sie dürfen davon ausgehen, dass eine Funktion float winkel(P p1, P p2, P p3) existiert, welche den

Winkel zwischen den Strecken p2p1 und p2p3 berechnet. Sie liefert Fließkommazahlen w mit −180 < w ≤
180 zurück. Außerdem dürfen Sie annehmen, dass keine Rundungsfehler bei Berechnungen mit Fließkom-

mazahlen auftreten.

Hinweis: Eine mögliche Lösung arbeitet ähnlich wie der Graham-Scan. Überlegen Sie sich, wie Sie Winkel

zwischen bestimmten Strecken dazu nutzen können, das Problem zu lösen.

2


