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Algorithmische Komplexitat

Was sind Algorithmen?

Algorithmen

Algorithmus

Eine wohldefinierte Rechenvorschrift um ein Problem durch ein
Computerprogramm zu I6sen.
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Algorithmen

Algorithmus

Eine wohldefinierte Rechenvorschrift um ein Problem durch ein
Computerprogramm zu I6sen.

Beispiel (Algorithmen)

Quicksort, Heapsort, Lineare und Binare Suche, Graphalgorithmen.
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Algorithmische Komplexitat Was sind Algorithmen?

Algorithmen

Algorithmus

Eine wohldefinierte Rechenvorschrift um ein Problem durch ein
Computerprogramm zu I6sen.

Beispiel (Algorithmen)

Quicksort, Heapsort, Lineare und Binare Suche, Graphalgorithmen.

Lost ein Rechenproblem, beschrieben durch:
» die zu verarbeitenden Eingaben (Vorbedingung / precondition),
» die erwartete Ausgabe (Nachbedingung / postcondition).
mithilfe einer Folge von Rechenschritten.
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Algorithmische Komplexitat Was sind Algorithmen?

Beispiel Rechenproblem: Sortieren

Eingabe: Eine Folge von n natiirlichen Zahlen (a1, a2, ..., a,) mit
a; € N.

Ausgabe: Eine Permutation (Umordnung) (b1, by, ..., bp) der
Eingabefolge, sodass by < by < ... < b,
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Andere Rechenprobleme: kiirzester Weg
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: kiirzester Weg

Beispiel (kiirzester Weg)

Eingabe: 1. Eine StraBenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,
2. eine Startkreuzung s, und
3. eine Zielkreuzung z.

Ausgabe: Ein kiirzeste Weg von s nach z.
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Andere Rechenprobleme: maximale Fliisse
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: maximale Fliisse

Beispiel (maximale Fliisse)

Eingabe: 1. Eine StraBenkarte, auf der die Kapazitat der StraBen
eingezeichnet ist,
2. eine Quelle, und
3. eine Senke.
Ausgabe: Die maximale Rate, mit der Material (= Zuschauer) von der
Quelle bis zur Senke (= Stadion) transportiert werden kann,
ohne die Kapazitatsbeschrankungen der StraBen zu verletzen.
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: das CD-Brennproblem
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: das CD-Brennproblem

Betrachte alle Schallplatten von Nina Hagen:
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Andere Rechenprobleme: das CD-Brennproblem

Betrachte alle Schallplatten von Nina Hagen:
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Wie bekommen wir eine Kompilation ihrer Songs auf einige CDs?
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: das CD-Brennproblem

Beispiel (CD-Brennproblem)

Eingabe: 1. N € N Songs, Song i dauert 0 < n; < 80 Minuten,
2. k € N CDs, jeweils mit Kapazitat: 80 Minuten.
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Andere Rechenprobleme: das CD-Brennproblem

Beispiel (CD-Brennproblem)

Eingabe: 1. N € N Songs, Song i dauert 0 < n; < 80 Minuten,
2. k € N CDs, jeweils mit Kapazitat: 80 Minuten.

Ausgabe: k CDs gefillt mit einer Auswahl der N Songs, so dass

1. die Songs in chronologische Reihenfolge vorkommen,
und
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Algorithmische Komplexitat Was sind Algorithmen?

Andere Rechenprobleme: das CD-Brennproblem

Beispiel (CD-Brennproblem)

Eingabe: 1. N € N Songs, Song i dauert 0 < n; < 80 Minuten,
2. k € N CDs, jeweils mit Kapazitat: 80 Minuten.
Ausgabe: k CDs gefillt mit einer Auswahl der N Songs, so dass

1. die Songs in chronologische Reihenfolge vorkommen,
und

2. die totale Dauer der (verschiedenen) ausgewahlten
Songs maximiert wird,

wobei ein Song komplett auf eine CD gebrannt werden soll.
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Algorithmen

» Korrektheit: Bei jeder Eingabeinstanz stoppt der Algorithmus mit der
korrekten Ausgabe
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Algorithmen

» Korrektheit: Bei jeder Eingabeinstanz stoppt der Algorithmus mit der
korrekten Ausgabe

» Eleganz
» Effizienz: Wieviel Zeit und Speicherplatz wird bendtigt?
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Algorithmen

Kernpunkte

» Korrektheit: Bei jeder Eingabeinstanz stoppt der Algorithmus mit der
korrekten Ausgabe

» Eleganz
» Effizienz: Wieviel Zeit und Speicherplatz wird bendtigt?

|
Effiziente Algorithmen verwenden effektive Datenstrukturen
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Algorithmische Komplexitat Was sind Algorithmen?

Datenstrukturen

Datenstruktur

Ein mathematisches Objekt zur Speicherung von Daten.

|
Man spricht von einer Struktur, da die Daten in einer bestimmten Art und
Weise angeordnet und verkniipft werden, um den Zugriff auf sie und ihre
Verwaltung geeignet und effizient zu ermoglichen.

Beispiele (Datenstrukturen)

Array, Baum, Kellerspeicher (stack), Liste,
Warteschlange (queue), Heap, Hashtabelle . ..
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Algorithmische Komplexitat Was sind Algorithmen?

Effizienz von Algorithmen — Kiriterien

Wichtige Kriterien sind (fiir eine bestimmte Eingabe):
» die bendtigte Zeit, Zeitkomplexitat
» der bendtigte Platz. Platzkomplexitat

Zeitkomplexitat # Platzkomplexitdt #£ Komplexitit des Algorithmus

Beurteilung der Effizienz von Algorithmen unabhangig von

» verwendetem Computer, Programmiersprache,
Fahigkeiten des Programmierers, usw.
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Algorithmische Komplexitat Was sind Algorithmen?

Effizienz von Algorithmen — Elementare Operation

Die Analyse hangt von der Wahl der elementaren Operationen ab, etwa:
> Vergleich zweier Zahlen" beim Sortieren eines Arrays von Zahlen.

»  Multiplikation zweier FlieBkommazahlen" bei Matrixmultiplikation.
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Effizienz von Algorithmen — Elementare Operation

Die Analyse hangt von der Wahl der elementaren Operationen ab, etwa:
> Vergleich zweier Zahlen" beim Sortieren eines Arrays von Zahlen.

»  Multiplikation zweier FlieBkommazahlen" bei Matrixmultiplikation.

Elementare Operationen

» Anzahl der elementaren Operationen sollte eine gute Abschatzung fiir
die Anzahl der Gesamtoperationen sein.

> Anzahl der elementaren Operationen bildet die Basis zur Bestimmung
der Wachstumsrate der Zeitkomplexitat bei immer langeren Eingaben.
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Algorithmische Komplexitat

Was sind Algorithmen?

Effizienz von Algorithmen — Beispiele

Technologie fiihrt nur zu Verbesserung um einen konstanten Faktor:

Selbst ein Supercomputer kann einen ,schlechten” Algorithmus nicht

retten: Fiir geniigend groBe Eingaben gewinnt immer der schnellere
Algorithmus auf dem langsameren Computer.
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Algorithmische Komplexitat

Was sind Algorithmen?

Effizienz von Algorithmen — Beispiele

Technologie fiihrt nur zu Verbesserung um einen konstanten Faktor:

Selbst ein Supercomputer kann einen ,,schlechten® Algorithmus nicht

retten: Fiir geniigend groBe Eingaben gewinnt immer der schnellere
Algorithmus auf dem langsameren Computer.

Typische Laufzeiten (bis auf einen konstanten Faktor) fiir Eingabelange n:

1 konstant n-logn
logn logarithmisch | n® quadratisch
n linear 2" exponentiell
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Zeitkomplexitat in der Praxis |

Beispiel (Tatsachliche Laufzeiten)

Komplexitat
Lange n 33n 46nlog n 13n? 3,4n° 2"
10 0,00033s 0,0015s 0,0013s 0,0034s 0,001s
102 0,0033s 0,03s 0,13s 3,4s 4.10%y
103 0,033s 0,45s 13s 0,94 h
10* 0,33s 6.1s 1300s 39d
10° 3,3s 1,3m 1,5d 108y

Benotigte Zeit (s = Sekunde, h = Stunde, d = Tag, y = Jahr)

» Der Einfluss groBer konstanter Faktoren nimmt mit wachsendem n ab.
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Algorithmische Komplexitat Was sind Algorithmen?

Zeitkomplexitat in der Praxis 1l

Beispiel (GroBte losbare Eingabeldange)

Komplexitat
Verfligbare Zeit 33n 46nlogn  13n> 3,4n3 27
1s 30000 2000 280 67 20

Im 13800000 82000 2170 260 26
1h 108000000 1180800 16818 1009 32

GroBte I6sbare Eingabelange
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Algorithmische Komplexitat Was sind Algorithmen?

Zeitkomplexitat in der Praxis 1l

Beispiel (GroBte losbare Eingabeldange)

Komplexitat
Verfligbare Zeit 33n 46nlogn  13n> 3,4n3 27
1s 30000 2000 280 67 20

Im 13800000 82000 2170 260 26
1h 108000000 1180800 16818 1009 32

GroBte I6sbare Eingabelange

» Eine 60-fach langere Eingabe lasst sich nicht durch um den Faktor 60
langere Zeit (oder hohere Geschwindigkeit) bewaltigen.
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Algorithmische Komplexitat

Was sind Algorithmen?

Schnellere Computer. ..

Sei N die groBte Eingabeldnge, die in fester Zeit gelost werden kann.

Wie verhalt sich N, wenn wir einen K-mal schnelleren Rechner verwenden?

#C.)per.:.atlopen GroBte I6sbare
benotigt fur Eingabe Eingabelange
der Lange n
log n NK
n K-N
n? VK-N
2" N +log K

Joost-Pieter Katoen
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
Ubersicht

© Average, Best und Worst Case Laufzeitanalyse
@ Lineare Suche
@ Average-Case Analyse von linearer Suche
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Idee

Wir betrachten einen gegebenen Algorithmus A.

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.
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Datenstrukturen und Algorithmen 33/52



Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Idee

Wir betrachten einen gegebenen Algorithmus A.

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit von A ist die von A minimal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/52



Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Idee

Wir betrachten einen gegebenen Algorithmus A.

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit von A ist die von A minimal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich benétigte
Anzahl elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/52



Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Idee

Wir betrachten einen gegebenen Algorithmus A.

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit von A ist die von A minimal benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich benétigte
Anzahl elementarer Operationen auf einer beliebigen Eingabe der Lange n.

Alle drei sind Funktionen: Laufzeit in Abhangigkeit von der Eingabelange!
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Beispiel

W (n)

Laufzeit

B(n)

Eingabelange n
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Formale Definition (1)

Einige hilfreiche Begriffe

D, = Menge aller Eingaben der Lange n
t(/) = fur Eingabe | bendtigte Anzahl elementarer Operationen

Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/52



Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Formale Definition (1)

Einige hilfreiche Begriffe

D,, = Menge aller Eingaben der Lange n
t(/) = fur Eingabe [ bendtigte Anzahl elementarer Operationen

Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Woher kennen wir:

t(/)? — Durch Analyse des fraglichen Algorithmus.

Pr(/)? — Erfahrung, Vermutung (z. B. ,alle Eingaben treten mit gleicher
Wahrscheinlichkeit auf").
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Formale Definition (1)

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal bendtigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n:

W(n) =max{t(l) |l € Dy}.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Formale Definition (1)

Worst-Case Laufzeit

Die Worst-Case Laufzeit von A ist die von A maximal bendtigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n:

W(n) =max{t(l) |l € Dy}.

Best-Case Laufzeit

Die Best-Case Laufzeit von A ist die von A minimal benétigte Anzahl elementarer
Operationen auf einer beliebigen Eingabe der Lange n:

B(n) =min{t(/) |/ € Dp}.
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Formale Definition (1)

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich bendtigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n:

A(n) =Y Pr(l)-t())

leD,
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche

Rechenproblem

Eingabe: Array E mit n Eintragen, sowie das gesuchte Element K.
Ausgabe: Ist K in E enthalten?
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Lineare Suche

Rechenproblem

Eingabe: Array E mit n Eintragen, sowie das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

bool linSearch(int E[], int n, int K) {
for (int index = 0; index < n; index ++) {
if (El[index] == K) {
return true; // oder: return index;
}
}
return false; // nicht gefunden

®w N o A W N =

(-
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).
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Algorithmische Komplexitat

Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.

> A(n) = %n?, da im Schnitt K mit etwa der Halfte der Array E
verglichen werden muss? — Nein.
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Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akce(n) die Average-Case-Laufzeit fir den Fall "K in E".
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Average-Case-Analyse (1)

Zwei Szenarien

1. K kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akce(n) die Average-Case-Laufzeit fir den Fall "K in E".

|
A(n) = Pr{K in E} - Akce(n) + Pr{X nicht in E} - Axge(n)
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
[ 1] H [ 1]
Der Fall "k in e

» Nehme an, dass alle Elemente in E unterschiedlich sind.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
[ 1] H [ 1]
Der Fall "k in e

» Nehme an, dass alle Elemente in E unterschiedlich sind.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist i+1.
» Damit ergibt sich:

Akee(n) = ZPr{K E[i]|K in E} - t(K == E[i])
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
[ 1] H [ 1]
Der Fall "k in e

» Nehme an, dass alle Elemente in E unterschiedlich sind.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist i+1.
» Damit ergibt sich:
n—1
Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])
i=0
n—1
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» Nehme an, dass alle Elemente in E unterschiedlich sind.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist i+1.
» Damit ergibt sich:
n—1
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Der Fall '« in "

» Nehme an, dass alle Elemente in E unterschiedlich sind.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist i+1.

» Damit ergibt sich:
n—1

Akee(n) = Pr{k == E[i]|K in E} - t(K == E[i])

i=0
n—1
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Der Fall '« in "

» Nehme an, dass alle Elemente in E unterschiedlich sind.

v

v

v

Damit ergibt sich:

Axece(n)

Joost-Pieter Katoen

Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %
Die Anzahl benotigter Vergleiche im Fall K == E[i] ist ji+1.

>
|
-

Pr{k == E[i]|K in E} - t(K == E[i])
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse
Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

1
=Pr{KinE}- % + Pr{K nicht in E} - Akge(n)
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

1
=Pr{KinE}- % + Pr{K nicht in E} - Akge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{K in E} - %1 + (1= Pr{Kin E}) - Akge(n)
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

= Pr{Kin E} - %1 + Pr{K nicht in E} - Akge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{Kin E} - %1 + (1= Pr{k in E}) - Akge(n)
| Axge(n) = n

:Pr{KinE}~%1+(1—Pr{KinE})~n
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Herleitung

A(n) = Pr{K in E} - Akcge(n) 4+ Pr{K nicht in E} - Axge(n)

n+1
Akee(n) = S

= Pr{Kin E} - %1 + Pr{K nicht in E} - Akge(n)
| Pr{nicht B} =1 — Pr{B}

= Pr{Kin E} - %1 + (1= Pr{k in E}) - Akge(n)
| Axge(n) = n

:Pr{KinE}~%1+(1—Pr{KinE})~n

=n (1 - % Pr{K in E}> + % Pr{k in E}
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in E}
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Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Wenn Pr{K in E}
=1, dann A(n) = 2£L, d.h. etwa 50% von E ist iiberpriift.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 43/52



Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Wenn Pr{K in E}
=1, dann A(n) = 2£L, d.h. etwa 50% von E ist iiberpriift.
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Algorithmische Komplexitat Average, Best und Worst Case Laufzeitanalyse

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) + % Pr{K in £}

Wenn Pr{K in E}
=1, dann A(n) = 2£L, d.h. etwa 50% von E ist iiberpriift.
= 0, dann A(n) = n= W(n), d.h. E wird komplett berprift.

=1 dann A(n) =32+ 1 d.h. etwa 75% von E wird iiberprift.
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Algorithmische Komplexitat Organisatorisches

Ubersicht

© Organisatorisches
o Ubersicht
e Ubungsbetrieb
o Prifung
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Algorithmische Komplexitat Organisatorisches

Ubersicht (Teil 1)

Algorithmische Komplexitat
Asymptotische Effizienz
Elementare Datenstrukturen
Suchen

Rekursionsgleichungen

ook w -

Sortieren: in-situ, Mergesort, Heapsort, Quicksort
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Algorithmische Komplexitat Organisatorisches

Ubersicht (Teil 11)

Binare Suchbaume

Rot-schwarz Baume

Hashing

Elementare Graphenalgorithmen
Minimale Spannbdume
Kiirzeste Pfadalgorithmen
Maximaler Fluss

Dynamische Programmierung

© 0N o oA w

Algorithmische Geometrie
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Algorithmische Komplexitat Organisatorisches

Literatur

Die Vorlesung orientiert sich im Wesentlichen an diesem Buch:

Algorithmen -
. Eine Einfiihrun,
Thomas H. Cormen, Charles E. Leiserson, g —_—

Ronald Rivest, Clifford Stein:
Algorithmen - Eine Einfiihrung

R. Oldenbourg Verlag , 2. oder 3. Auflage.
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Algorithmische Komplexitat

Organisatorisches

Wichtige Termine
Vorlesung: Di. 14:00-15:30, Fr. 14:00-15:30, GroBer Horsaal (Audimax)

Keine Vorlesung am 6.04, 1.05, 11.05, 15.05, 29.05, 1.06, 19.06

Letzte Vorlesung am 13. Juli

Joost-Pieter Katoen
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Algorithmische Komplexitat

Organisatorisches

Wichtige Termine

Vorlesungstermine

Vorlesung: Di. 14:00-15:30, Fr. 14:00-15:30, GroBer Horsaal (Audimax)
Keine Vorlesung am 6.04, 1.05, 11.05, 15.05, 29.05, 1.06, 19.06
Letzte Vorlesung am 13. Juli
Frontaliibung: Mo. 14:00-15:30, AH IV (Informatikzentrum)

Erste Frontaliibung: Mo. 16. April
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Algorithmische Komplexitat Organisatorisches

Ubungsbetrieb

Ubungsgruppen

» 15 Ubungsgruppen: verschiedene Uhrzeiten am Mo.—Mi.

» Speziallibung fiir Lehramtsstudenten

» 3 Ubungsgruppen fiir Erstsemester

» Koordinatoren: Christian Dehnert, Jonathan Heinen, Thomas Stroder

und Sabrina von Styp.
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Algorithmische Komplexitat Organisatorisches

Ubungsbetrieb

Ubungsgruppen

» 15 Ubungsgruppen: verschiedene Uhrzeiten am Mo.—Mi.
» Speziallibung fiir Lehramtsstudenten
» 3 Ubungsgruppen fiir Erstsemester

» Koordinatoren: Christian Dehnert, Jonathan Heinen, Thomas Stroder
und Sabrina von Styp.

Anmeldung fiir die Ubungsgruppen

Anmeldung zum Ubungsbetrieb iiber CAMPUS-Office bis spatestens
Mittwoch, 11.04., 12 Uhr (Aachener Zeit)

» moglichst viele Prioritaten angeben
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Algorithmische Komplexitat

Organisatorisches

Ubungsbetrieb

Wichtige Termine

Ubungszettel:
Erster Ubungszettel:
Abgabe Ubungszettel:

Erste Ubungsabgabe:
Ubungszeiten:

Erste Ubungen:
Frontalibung:

Prasenziibung:

Joost-Pieter Katoen

Freitags ab 18:00 im Web
6. April 2012

Montags (ein Woche spater) vor 11:00 Uhr im
Sammelkasten

Montag, 16. April 2012

Montag, Dienstag oder Mittwoch

16. Kalenderwoche: 16.—. April 2012
Montags, 14:00-15:30 (AH IV) ab 16. April
Montag, 21. Mai 2012 (13:45-15:30)
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Algorithmische Komplexitat Organisatorisches

Priifung

|
Die Priifung ist eine schriftliche Klausur von 120 Minuten.

Zulassungskriterium Klausur

1. Mindestens 50% aller in den Ubungen erreichbaren Punkte, und
2. mindestens 33% der in der Prasenziibung erreichbaren Punkte.

CES-Studenten brauchen kein Zulassungskriterium zu erfiillen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 51/52



Algorithmische Komplexitat

Organisatorisches

Priifung

Die Priifung ist eine schriftliche Klausur von 120 Minuten.

Zulassungskriterium Klausur

1. Mindestens 50% aller in den Ubungen erreichbaren Punkte, und
2. mindestens 33% der in der Prasenziibung erreichbaren Punkte.

CES-Studenten brauchen kein Zulassungskriterium zu erfiillen.

Wichtige Termine

Prasenziilbung: Montag, 21. Mai 2012 (13:45-15:30)
Klausur: Dienstag, 31. Juli 2012 (9:00-11:00)
Wiederholungsklausur: Montag, 10. September 2012 (12:30-14:30)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 51/52



Algorithmische Komplexitat Organisatorisches

Priifung

|
Die Priifung ist eine schriftliche Klausur von 120 Minuten.

Zulassungskriterium Klausur

1. Mindestens 50% aller in den Ubungen erreichbaren Punkte, und
2. mindestens 33% der in der Prasenziibung erreichbaren Punkte.

CES-Studenten brauchen kein Zulassungskriterium zu erfiillen.

Wichtige Termine

Prasenziilbung: Montag, 21. Mai 2012 (13:45-15:30)
Klausur: Dienstag, 31. Juli 2012 (9:00-11:00)
Wiederholungsklausur: Montag, 10. September 2012 (12:30-14:30)

|
Anmeldung zur Prifung ilber CAMPUS-Office bis Mittwoch, 18.05..
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Algorithmische Komplexitat Organisatorisches

Sonstiges
Mehr Information
> Webseite: http://moves.rwth-aachen.de/i2/dsall2/

> Diskussionsforum:
https://www2.elearning.rwth-aachen.de/ss12/12ss-24467/

» Oder: http://www.infostudium.de/

» E-Mail: dsal@informatik.rwth-aachen.de
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