Asymptotische Effizienz

Datenstrukturen und Algorithmen

Vorlesung 2: Asymptotische Effizienz (K3)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

10. April 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/27


http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

@ Asymptotische Betrachtung
@ Begriindung
o Grenzwerte

e Asymptotische Komplexitatsklassen
@ Die Klasse GroB-O
@ Die Klasse GroB-Omega
@ Die Klasse GroB-Theta

9 Platzkomplexitat

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/27



Ubersicht

@ Asymptotische Betrachtung
@ Begriindung
o Grenzwerte

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/27



Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fiir jede Eingabeladnge an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27



Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fiir jede Eingabeladnge an.

Worst-Case Laufzeit

Die Worst-Case Laufzeit W/(n) fir Eingabelénge n ist die langste Laufzeit
aus allen Eingaben mit Lange n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27



Asymptotische Effizienz Asymptotische Betrachtung

Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fiir jede Eingabeladnge an.

Worst-Case Laufzeit

Die Worst-Case Laufzeit W/(n) fir Eingabelénge n ist die langste Laufzeit
aus allen Eingaben mit Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit B(n) fir Eingabeldnge n ist die kiirzeste Laufzeit
aus allen Eingaben mit Lange n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iblicherweise sehr schwierig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W (n) = %n2?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W (n) = %n2?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W (n) = %n2?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W (n) = %n2?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.

» Betrachte Wachstum der Laufzeit fir n — oo.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fiir n — oo.

» Kurze Eingaben und konstante Faktoren werden vernachlassigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W (n) = %n2?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fir n — oo.
» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B.:
W(n) = 3n* +5n% + 10 € O(n*)
(d. h. n* ist dominierender Faktor fiir n — o)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fir n — oo.
» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B.:
W(n) = 3n* +5n% + 10 € O(n*)
(d. h. n* ist dominierender Faktor fiir n — o)
» So erhalten wir untere/obere Schranken fiir A(n), B(n) und W(n)!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist
iiblicherweise sehr schwierig. AuBerdem:

> ist sie von zweifelhaftem Nutzen fir Vergleiche:
Ist etwa W(n) = 1021n besser als W(n) = n°?

» wollen wir maschinenabhangige Konstanten (z. B. Rechnergeschwin-
digkeit), Initialisierungsaufwand, usw. ausklammern.

Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.
» Betrachte Wachstum der Laufzeit fir n — oo.
» Kurze Eingaben und konstante Faktoren werden vernachlassigt.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B.:
W(n) = 3n* +5n% + 10 € O(n*)
(d. h. n* ist dominierender Faktor fiir n — o)
» So erhalten wir untere/obere Schranken fiir A(n), B(n) und W(n)!

» Mathematische Zutat: Asymptotische Ordnung von Funktionen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, x2, . ... Dann: .
1. liminfx, = lim (inf xm)
n—o00 n—oo \ m>=n
9 . » n
2. limsupx, = lim | sup xp
n— o0 n—=00 \ ;m>n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, x2, . ... Dann: .
1. liminfx, = lim (inf xm)
n—o00 n—oo \ m>=n
9 . » n
2. limsupx, = lim | sup xp
n— o0 n—=00 \ ;m>n

Einige Fakten

1. Existieren liminf x,, und limsup x,: liminf x, < limsup x,.
n=700 n—00 N=>090 n—00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, x2, . ... Dann: .
1. liminfx, = lim (inf xm)
n—o00 n—oo \ m>=n
9 . » n
2. limsupx, = lim | sup xp
n— o0 n—=00 \ ;m>n

Einige Fakten

1. Existieren liminf x,, und limsup x,: liminf x, < limsup x,.
n=700 n—00 N=>090 n—00

2. Existiert lim x, dann: liminfx, = limsupx, = lim x,.
n— 00 n—00 N—00 n— 00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Asymptotische Effizienz Asymptotische Betrachtung

Grenzwerte
Limes inferior und Limes superior
Sei (x;)ien die Folge x1, x2, . ... Dann:
1. liminfx, = lim (inf xm)
n—o00 n—oo \ m>=n
. . » n
2. limsupx, = lim | sup xp
n— o0 n—=00 \ ;m>n

Einige Fakten

1. Existieren liminf x,, und limsup x,: liminf x, < limsup x,.
n—o0 o0

n—o0o n— n—oo
2. Existiert lim x, dann: liminfx, = limsupx, = lim x,.
n— 00 n—00 N—00 n— 00

. _____________ |
/
Sind f, g differenzierbar, dann gilt nMoo iEZ; = nli_r)noo ‘:’;IE:; L'Hépital

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27



Ubersicht

e Asymptotische Komplexitatsklassen
@ Die Klasse GroB-O
@ Die Klasse GroB-Omega
@ Die Klasse GroB-Theta

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, 0 c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: c- f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, o c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: ¢ - f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

g € O(f) gdw. 3¢ >0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1)

Seien f und g Funktionen von IN (Eingabelange) nach IR (Laufzeit) und
c>0.

|
O(f) ist die Menge von Funktionen, o c-f(n)
die nicht schneller als f wachsen. g(n)
» g € O(f) heiBt: ¢ - f(n)
ist obere Schranke fiir g(n).

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Definition (alternativ)

g € O(f) gdw. limsup,__, ?((:’3 = ¢ >0 mit ¢ # co.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup, ., &7 = c > 0 mit ¢ # o,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (I1)

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < - f(n).
Definition (alternativ)
g € O(f) gdw. Ilmsupn_>00 o ) = ¢ > 0 mit ¢ # oo.

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann:

limsup,__, f((g)) existiert gdw. 3¢ > 0, ng mit¥n > ng : g(n) < ¢ - f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,__, fE ; gdw. 3¢ > 0,n9.Yn = ng : g(n) < c-f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, ‘?ES? gdw. 3¢ > 0, ng.Vn = ng : g(n) < c-f(n).

Beweis.

=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) =

0.
Dann existiert limsup,,__, ‘?ES? gdw. 3¢ > 0, ng.Vn = ng : g(n) < c-f(n).

Beweis.

=" Sei limsup,__, ?83 = ¢ < oo.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fésg gdw. 3¢ > 0, ng.Vn = ng : g(n) < c-f(n).

Beweis.

,=—": Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e > ?((Zg
und f(n) # 0 bis auf endlich viele Ausnahmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, é ") gdw. 3¢ > 0, no.Vn > ng : g(n) < c-f(n).

Beweis

—

=" Sei limsup, ., ?83 =c<oo. Fire >0esfolgtc+e> f((g)

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > fégg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fé 3 gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).

Beweis.

=" Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: ¢ +¢ > fégg und damit: g(n) < (¢ +¢) - f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fé 3 gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).

Beweis.

=" Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: ¢ +¢ > fégg und damit: g(n) < (¢ +¢) - f(n).

nS— !

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fé 3 gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).

Beweis.

=" Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: ¢ +¢ > fégg und damit: g(n) < (¢ +¢) - f(n).

.<=": Gegeben seien nun np, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n)

=0.
Dann existiert lim sup,,__, . fé 3 gdw. Ic > 0,n9.Vn > ng : g(n) < c-f(n).

Beweis
,==": Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > %; und damit: g(n) < (¢ +¢) - f(n).

,<=": Gegeben seien nun ny, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ng > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fé 3 gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).

Beweis.

,==": Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > %; und damit: g(n) < (¢ +¢) - f(n).

,<=": Gegeben seien nun ny, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ng > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
Damit ist Vn > ng : 0 < g"; <c.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n)

Dann existiert lim sup,,__, . fé 3 gdw. dc > 0,n9.Vn = ng : g(n) < c-f(n

Beweis.

,==": Sei limsup,__, fgng =c<oo. Fire >0esfolgt c+e> 5((23
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > %; und damit: g(n) < (¢ +¢) - f(n).

0.
)-

,<=": Gegeben seien nun ny, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ng > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
Damit ist Vn > ng : 0 < g"; <c.

Die Folge a, = ‘%5 ; ist in [0, c], also beschrankt und abgeschlossen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Die Klasse GroB-O (l11)

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann existiert limsup,,__, fé 3 gdw. 3¢ > 0,n0.VYn > ng : g(n) < c-f(n).

Beweis.

,==": Sei limsup,__, ?83 =c<oo. Fire >0esfolgt c+e> f((gg
und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir

alle n > ng also: c+¢ > %; und damit: g(n) < (¢ +¢) - f(n).

,<=": Gegeben seien nun ny, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ng > ny gilt (wie oben) auBerdem f(n) # 0 fir alle n > ng.
Damit ist Vn > ng : 0 < @ <c.

(n) =
Die Folge a, = ‘%83 ist in [0, c], also beschrankt und abgeschlossen.
Dann existiert limsup,,__, ., an < c0. Ol

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-0 (1V)

g € O(f) gdw. 3¢ >0, ng mit Vn > ng : 0 < g(n) < c- f(n).

Definition (alternativ)

g € O(f) gdw. limsup,__, fgg; = ¢ >0 mit ¢ # oo.

Joost-Pieter Katoen Datenstrukturen und Algorithmen



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-0 (1V)

g € O(f) gdw. 3¢ >0, ng mit Vn > ng : 0 < g(n) < c- f(n).

g € O(f) gdw. limsup, . &

fin = c > 0 mit ¢ # oco.

=

Beispiel

Betrachte g(n) = 3n? + 10n + 6. Dann ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1V)
g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < c- f(n).

g € O(f) gdw. limsup,__, é;((i;’ = ¢ > 0 mit ¢ # 0.

Betrachte g(n) = 3n? 4 10n + 6. Dann ist:
» g & O(n), da limsup,__,. g(n)/n = .

=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1V)
g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < c- f(n).

g € O(f) gdw. limsup,__, é;((i;’ = ¢ > 0 mit ¢ # 0.

Betrachte g(n) = 3n? 4 10n + 6. Dann ist:
» g & O(n), da limsup,__,. g(n)/n = .
» g € O(n?), da g(n) < 20n? fiir n > 1.

=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-0 (1V)

g € O(f) gdw. 3¢ > 0, np mit Vn > ng : 0 < g(n) < c- f(n).

g € O(f) gdW |imsup,,*}x %E:; =€ 2 0 mit ¢ # Q.

Beispiel

Betrachte g(n) = 3n? 4 10n + 6. Dann ist:
» g & O(n), da limsup,__,. g(n)/n = .
» g € O(n?), da g(n) < 20n? fiir n > 1.
» g € O(n®), da g(n) < 5n3 fiir n hinreichend groB.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (1)

|
Q(f) ist die Menge von Funktionen, Q
die nicht langsamer als f wachsen.
» g € Q(f) heiBt: c- f(n)
ist untere Schranke fiir g(n). c-f(n)

g(n)

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/27



Die Klasse GroB-Omega (1)

|
Q(f) ist die Menge von Funktionen, Q
die nicht langsamer als f wachsen.
» g € Q(f) heiBt: c- f(n)
ist untere Schranke fiir g(n). c-f(n)

g(n)

Laufzeit

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt. Mo Eingabeldnge n

Definition
g € Q(f) gdw. 3¢ > 0, ng mit ¥n > ng : ¢ - f(n) < g(n).

Definition (alternativ)

g € Q(f) gdw. liminf, . &7 > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, ng mit Vn = ng : ¢ - f(n) < g(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ >0, ng mit Vn = ng : ¢ - f(n) < g(n).

Definition (alternativ)

g € Q(f) gdw. liminf,_ 583 > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

g € Q(f) gdw. liminf,_,o0 &2 > 0.

722 (i

|

Beispiel

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

g € Q(f) gdw. liminf, . &2 > 0.

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
» g €Q(n), daliminf,_ . g(n)/n= o0 > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

g € Q(f) gdw. liminf, . &2 > 0.

Beispiel

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
» g €Q(n), daliminf,_ . g(n)/n= o0 > 0.
» g € Q(n?), da liminf, .. g(n)/n®> =3 > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Omega (I1)

g € Q(f) gdw. 3¢ > 0, np mit Vn > ng : ¢ - f(n) < g(n).

g € Q(f) gdw. liminf, . &2 > 0.

Beispiel

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
» g €Q(n), daliminf,_ . g(n)/n= o0 > 0.
» g € Q(n?), da liminf, .. g(n)/n®> =3 > 0.
» g ZQ(n), da g(n) < 5n3 fiir n > 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27



Die Klasse GroB-Theta (1)

|
O(f) ist die Menge von Funktionen,

die genauso schnell wie f wachsen. © co-f(n)
» g € O(f) heiBt: E g(n)
¢z - f(n) ist obere Schranke und 3 :
c1 - f(n) ist untere Schranke - ! c1-f(n)
fur g(n). .
Diese Eigenschaft gilt ab einer E
Konstanten ng; Werte unter ng werden No Eingabeladnge n

vernachlassigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27



Die Klasse GroB-Theta (1)

|
©O(f) ist die Menge von Funktionen,

die genauso schnell wie f wachsen. © co-f(n)
» g € O(f) heiBt: kS g(n)
¢z - f(n) ist obere Schranke und 3 :
c1 - f(n) ist untere Schranke - ! c1-f(n)
fur g(n). |
Diese Eigenschaft gilt ab einer :
Konstanten ng; Werte unter ng werden No Eingabeladnge n

vernachlassigt.

Die Klasse GroB-Theta liefert eine obere und untere Schranke fir die
Komplexitat einer Funktion.

g € O(f) gdw. Jc1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < e - f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27



Die Klassen O, Q2 und ©

Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen O, 2 und ©
Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).

Funktionen, die Funktionen, die
nicht schneller Funktionen, die nicht langsamer
als f wachsen. genauso schnell als f wachsen.

wie f wachsen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen O, 2 und ©
Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).

Funktionen, die Funktionen, die
nicht schneller Funktionen, die nicht langsamer
als f wachsen. genauso schnell als f wachsen.

wie f wachsen.

Lemma

Nl

g € O(f) wenn limp_—, %EZ) — ¢ firein0 < ¢ < co.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. 3c1, @ >0, np mit Vn = ng : c1 - f(n) < g(n) < ¢ - f(n).

Lemma

g € O(f) wenn lim,__, ?égg — ¢ fiirein 0 < ¢ < o0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. Jc1, ¢ >0, ng mit Vn > ng : c1 - f(n) < g(n) < - f(n).

g € O(f) wenn limp—oc iEZ)) = c fiirein 0 < ¢ < 0.

Beispiel

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. Jc1, ¢ >0, ng mit Vn > ng : c1 - f(n) < g(n) < - f(n).

g € O(f) wenn limp—oc iEZ)) = c fiirein 0 < ¢ < 0.

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
» g & ©(n), da zwar g € Q(n), aber g & O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. Jc1, ¢ >0, ng mit Vn > ng : c1 - f(n) < g(n) < - f(n).

g € O(f) wenn limp—oc ‘C’;EZ)) = c fiirein 0 < ¢ < 0.

Betrachte g(n) = 3n? 4+ 10n + 6. Dann ist:
» g & ©(n), da zwar g € Q(n), aber g & O(n).
» g € 09(n?), dalim, . g(n)/n* =3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-Theta (1)

g € O(f) gdw. Jc1, ¢ >0, ng mit Vn > ng : c1 - f(n) < g(n) < - f(n).

g € O(f) wenn limp—oc ‘C’;EZ)) = c fiirein 0 < ¢ < 0.

Beispiel

Betrachte g(n) = 3n% + 10n + 6. Dann ist:
> g & ©(n), da zwar g € Q(n), aber g & O(n).
» g € 09(n?), dalim, . g(n)/n* =3.
» g ¢ ©(n?), da zwar g € O(n®), aber g & Q(n®).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27



Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(1l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.

7 8 9

1 2 3
1 2 13 21 34

4 5 6
3 5 8

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Fib(0) =0 wund Fib(1l) = 1
Fib(n+2) = Fib(n+1) + Fib(n) fiir n > 0.

7 8 9
13 21 34

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27



_Asymptotische Effizienz el o e o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Q(Ff), f €O(Ff).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Q(Ff), f €O(Ff).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz el o e o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Q(Ff), f €O(Ff).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz el o e o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Q(Ff), f €O(Ff).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz el o e o
Einige elementare Eigenschaften

> f € O(f), f eQ(f), feoO(f).

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).

Symmetrie von ©

» f € O(g) gdw. g € O(f).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



_Asymptotische Effizienz el o e o
Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Q(Ff), f €O(Ff).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt f € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € O(h).

Symmetrie von ©

» f € O(g) gdw. g € O(f).

Beziehung zwischen O und

» f e 0(g) gdw. g € Q(f).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c:log,n.

log, ne O(log,, n) log, n€O(log, n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c:log,n.

log, ne O(log,, n) log, n€O(log, n)
|
Dann: log,n < c1 -logyn < log,n< ¢ - lzgzz & log,b< g

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c-log,n
log, ne O(log,, n) log, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wahle ¢; > [log, b].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c-log,n
log, ne O(log,, n) log, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wahle ¢; > [log, b].

Analog erhalten wir log, a < ¢z; dann wahle ¢, > [log, al.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die folgenden 3 Aussagen sind alle giiltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(log,, n).

Beweis.

Wir beweisen (c). Zu zeigen: 3¢y, ¢ > 0, so dass

log,n< cy-logyn und logyn<c-log,n
log, ne O(log,, n) log, n€O(log, n)
Dann: log,n < c1 -logyn < log,n< ¢ - :zgaz & log,b< g
a

Wahle ¢; > [log, b].

Analog erhalten wir log, a < ¢z; dann wahle ¢, > [log, al.

]

Die Aussagen (a) und (b) folgen auf dhnliche Weise.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27



Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen Klein-O, Klein-Omega

o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

Definition

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27



Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

|
w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

Definition
g € w(f) gdw. Yc > 0, Ing mit Vn > ng : ¢ - f(n) < g(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27



Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) < c - f(n).

|
w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

g € w(f) gdw. Vc > 0, Ing mit ¥n > ng : ¢ - f(n) < g(n).

Beziehung zwischen o und w

» f e o(g) gdw. g € w(f).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27



Ubersicht

9 Platzkomplexitat

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/27



Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27



Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

> Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27



Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

> Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

» Dilemma: Eine Reduktion der Zeitkomplexitat fiihrt oft zur Erhéhung
der Platzkomplexitat, und vice versa.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27



Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitat eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhangigkeit von der Lange der Eingabe.

Platzkomplexitat

> Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

» Dilemma: Eine Reduktion der Zeitkomplexitat fiihrt oft zur Erhéhung
der Platzkomplexitat, und vice versa.

> Dies werden wir in spater in der DSAL Vorlesung 6fters feststellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Was ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Was ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Was ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
mussen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Was ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
mussen.

2. S(n) € ©(1), da wir mindestens eine Sache iiber das Lied wissen
miissen, um es singen zu kénnen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Betrachte eine Lied mit n Worter, d. h. die Eingabelange ist n.

Was ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da héchstens n verschiedene Worter gespeichert werden
mussen.

2. S(n) € ©(1), da wir mindestens eine Sache iiber das Lied wissen
miissen, um es singen zu kénnen.

Kann man die Platzkomplexitat durch Refrains (= Kehrverse) reduzieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27



Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27



Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27



Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.
Dann: S(n) € O(n),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27



Asymptotische Effizienz Platzkomplexitat

Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.

Dann: S(n) € O(n), da die Anzahl der Wérter immer noch O(n) ist;
z. B. bei Stropheldnge = Refrainlange halbiert sich der Speicherbedarf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27



Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27



Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me giftx, giftk—1, ..., gifts
On the (k—1)st day of Xmas, my true love gave to me giftc_1, ..., gift;

On the first day of Xmas, my true love gave to me a bottle of wine

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27



Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me giftx, giftk—1, ..., gifts
On the (k—1)st day of Xmas, my true love gave to me giftx_1, ..., gift:

On the first day of Xmas, my true love gave to me a bottle of wine

Bekanntere Variante: ,,Old MacDonald had a farm*.

Platzkomplexitat

Die benétigte Zeit, um das Lied zu singen ist (betrachte keine Refrains):
n = i = k (kH) € O(k?)
= | = 5

i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27



Die kK Weihnachtstage

Reduktion der Platzkomplexitat

Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me giftx, giftk—1, ..., gifts
On the (k—1)st day of Xmas, my true love gave to me giftx_1, ..., gift:

On the first day of Xmas, my true love gave to me a bottle of wine

Bekanntere Variante: ,,Old MacDonald had a farm*.

Platzkomplexitat
Die benétigte Zeit, um das Lied zu singen ist (betrachte keine Refrains):

i= k- (k;rl) € O(k%)

k
n —
=

Da n € ©(k?) folgt k € O(y/n), also S(n) € O(y/n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27



100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

-------- [Andy Kaufman]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/27



100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

-------- [Andy Kaufman]

Platzkomplexitat

S(n) € O(log n), da nur der Wert von n von Bedeutung ist. Dafiir reichen
log n Bits aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/27



100 Bierflaschen

Eine weitere Vereinfachung

Ein (sehr) langweiliges Lied fir lange Autofahrten:

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

-------- [Andy Kaufman]

Platzkomplexitat

S(n) € O(log n), da nur der Wert von n von Bedeutung ist. Dafiir reichen
log n Bits aus.

Es geht jedoch noch etwas einfacher, ndmlich indem man auf das Zahlen
verzichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/27



Untere Schranke?

Ein Lied mit S(n) € ©(1)

That's the way, uh-huh, uh-huh
I like it, uh-huh, huh
-------- [KC & the Sunshine Band, 1977]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/27



	Asymptotische Betrachtung
	Begründung
	Grenzwerte

	Asymptotische Komplexitätsklassen
	Die Klasse Groß-O
	Die Klasse Groß-Omega
	Die Klasse Groß-Theta

	Platzkomplexität

