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Asymptotische Effizienz Asymptotische Betrachtung

Laufzeit von Algorithmen

Betrachte
Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.
Sie gibt die Laufzeit des Algorithmus für jede Eingabelänge an.

Worst-Case Laufzeit
Die Worst-Case Laufzeit W (n) für Eingabelänge n ist die längste Laufzeit
aus allen Eingaben mit Länge n.

Best-Case Laufzeit
Die Best-Case Laufzeit B(n) für Eingabelänge n ist die kürzeste Laufzeit
aus allen Eingaben mit Länge n.
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Asymptotische Effizienz Asymptotische Betrachtung

Asymptotische Betrachtung
Die exakte Bestimmung der Funktionen A(n), B(n) und W (n) ist
üblicherweise sehr schwierig. Außerdem:

I ist sie von zweifelhaftem Nutzen für Vergleiche:
Ist etwa W (n) = 1021n besser als W (n) = 1

2n2?
I wollen wir maschinenabhängige Konstanten (z. B. Rechnergeschwin-

digkeit), Initialisierungsaufwand, usw. ausklammern.
Daher: Normalerweise keine exakte sondern asymptotische Betrachtung.

I Betrachte Wachstum der Laufzeit für n −→∞.
I Kurze Eingaben und konstante Faktoren werden vernachlässigt.
I Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z. B. :

W (n) = 3n4 + 5n3 + 10 ∈ O(n4)

(d. h. n4 ist dominierender Faktor für n −→∞)
I So erhalten wir untere/obere Schranken für A(n), B(n) und W (n)!
I Mathematische Zutat: Asymptotische Ordnung von Funktionen.
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Grenzwerte
Limes inferior und Limes superior
Sei (xi )i∈N die Folge x1, x2, . . .. Dann:

1. lim inf
n→∞

xn = lim
n→∞

(
inf

m>n
xm

)
2. lim sup

n→∞
xn = lim

n→∞

(
sup
m>n

xm

)

Einige Fakten

1. Existieren lim inf
n→∞

xn und lim sup
n→∞

xn: lim inf
n→∞

xn 6 lim sup
n→∞

xn.

2. Existiert lim
n→∞

xn dann: lim inf
n→∞

xn = lim sup
n→∞

xn = lim
n→∞

xn.

Sind f , g differenzierbar, dann gilt lim
n−→∞

g(n)

f (n)
= lim

n−→∞
g ′(n)

f ′(n)
. L’Hôpital
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Die Klasse Groß-O (I)
Seien f und g Funktionen von IN (Eingabelänge) nach IR>0 (Laufzeit) und
c > 0.

O(f ) ist die Menge von Funktionen,
die nicht schneller als f wachsen.

I g ∈ O(f ) heißt: c · f (n)
ist obere Schranke für g(n).

Diese Eigenschaft gilt ab einer
Konstanten n0; Werte unter n0 werden
vernachlässigt.

La
uf
ze
it g(n)

Eingabelänge n

O c·f (n)

n0

Die Klasse Groß-O liefert eine obere Schranke für die Komplexität einer
Funktion.

I Kleinste obere Schranken sind von größtem Nutzen!
g ∈ O(n2) sagt mehr als g ∈ O(n3).
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Asymptotische Effizienz Asymptotische Komplexitätsklassen

Die Klasse Groß-O (II)

Definition
g ∈ O(f ) gdw. ∃c > 0, n0 mit ∀n > n0 : 0 6 g(n) 6 c · f (n).

Definition (alternativ)

g ∈ O(f ) gdw. lim supn−→∞
g(n)
f (n) = c > 0 mit c 6=∞.

Theorem
Es seien f , g : IN −→ IR zwei Funktionen. Es sei nur endlich oft f (n) = 0.
Dann:
lim supn−→∞

g(n)
f (n) existiert gdw. ∃c > 0, n0 mit ∀n > n0 : g(n) 6 c · f (n).
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Asymptotische Effizienz Asymptotische Komplexitätsklassen

Die Klasse Groß-O (III)

Theorem
Es seien f , g : IN −→ IR zwei Funktionen. Es sei nur endlich oft f (n) = 0.
Dann existiert lim supn−→∞

g(n)
f (n) gdw. ∃c > 0, n0. ∀n > n0 : g(n) 6 c·f (n).

Beweis.
„=⇒“: Sei lim supn−→∞

g(n)
f (n) = c <∞. Für ε > 0 es folgt c + ε > g(n)

f (n)
und f (n) 6= 0 bis auf endlich viele Ausnahmen. Ab einem n0 ∈ IN gilt für
alle n > n0 also: c + ε > g(n)

f (n) ; und damit: g(n) 6 (c + ε) · f (n).

„⇐=“: Gegeben seien nun n′0, c > 0 so dass ∀n > n′0 : g(n) 6 c · f (n).
Ab einem n0 > n′0 gilt (wie oben) außerdem f (n) 6= 0 für alle n > n0.
Damit ist ∀n > n0 : 0 6 g(n)

f (n) 6 c.
Die Folge an = g(n)

f (n) ist in [0, c], also beschränkt und abgeschlossen.
Dann existiert lim supn−→∞ an <∞.
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Die Klasse Groß-O (IV)

Definition
g ∈ O(f ) gdw. ∃c > 0, n0 mit ∀n > n0 : 0 6 g(n) 6 c · f (n).

Definition (alternativ)

g ∈ O(f ) gdw. lim supn−→∞
g(n)
f (n) = c > 0 mit c 6=∞.

Beispiel
Betrachte g(n) = 3n2 + 10n + 6. Dann ist:

I g 6∈ O(n), da lim supn−→∞ g(n)/n =∞.
I g ∈ O(n2), da g(n) 6 20n2 für n > 1.
I g ∈ O(n3), da g(n) 6 1

10n3 für n hinreichend groß.
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Die Klasse Groß-Omega (I)

Ω(f ) ist die Menge von Funktionen,
die nicht langsamer als f wachsen.

I g ∈ Ω(f ) heißt: c · f (n)
ist untere Schranke für g(n).

Diese Eigenschaft gilt ab einer
Konstanten n0; Werte unter n0 werden
vernachlässigt.

La
uf
ze
it g(n)

c·f (n)

Eingabelänge n

Ω

n0

Die Klasse Groß-Omega liefert eine untere Schranke für die Komplexität
einer Funktion.

I Größte untere Schranken sind von größtem Nutzen!
g ∈ Ω(n2) sagt mehr als g ∈ Ω(n).
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Asymptotische Effizienz Asymptotische Komplexitätsklassen

Die Klasse Groß-Omega (II)

Definition
g ∈ Ω(f ) gdw. ∃c > 0, n0 mit ∀n > n0 : c · f (n) 6 g(n).

Definition (alternativ)

g ∈ Ω(f ) gdw. lim infn−→∞ g(n)
f (n) > 0.

Beispiel
Betrachte g(n) = 3n2 + 10n + 6. Dann ist:

I g ∈ Ω(n), da lim infn−→∞ g(n)/n =∞ > 0.
I g ∈ Ω(n2), da lim infn−→∞ g(n)/n2 = 3 > 0.
I g 6∈ Ω(n3), da g(n) 6 5n3 für n > 2.
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Die Klasse Groß-Theta (I)

Θ(f ) ist die Menge von Funktionen,
die genauso schnell wie f wachsen.

I g ∈ Θ(f ) heißt:
c2 · f (n) ist obere Schranke und
c1 · f (n) ist untere Schranke
für g(n).

Diese Eigenschaft gilt ab einer
Konstanten n0; Werte unter n0 werden
vernachlässigt.

La
uf
ze
it g(n)

c1·f (n)

c2·f (n)

n0 Eingabelänge n

Θ

Die Klasse Groß-Theta liefert eine obere und untere Schranke für die
Komplexität einer Funktion.

Definition
g ∈ Θ(f ) gdw. ∃c1, c2 > 0, n0 mit ∀n > n0 : c1 · f (n) 6 g(n) 6 c2 · f (n).
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Die Klassen O, Ω und Θ

Beziehung zwischen O, Ω und Θ

g ∈ Θ(f ) gdw. g ∈ O(f ) und g ∈ Ω(f ).

O(f )

Funktionen, die
nicht schneller
als f wachsen.

Θ(f )

Funktionen, die
genauso schnell
wie f wachsen.

Ω(f )

Funktionen, die
nicht langsamer
als f wachsen.

Lemma
g ∈ Θ(f ) wenn limn−→∞

g(n)
f (n) = c für ein 0 < c <∞.
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Die Klasse Groß-Theta (II)

Definition
g ∈ Θ(f ) gdw. ∃c1, c2 > 0, n0 mit ∀n > n0 : c1 · f (n) 6 g(n) 6 c2 · f (n).

Lemma
g ∈ Θ(f ) wenn limn−→∞

g(n)
f (n) = c für ein 0 < c <∞.

Beispiel
Betrachte g(n) = 3n2 + 10n + 6. Dann ist:

I g 6∈ Θ(n), da zwar g ∈ Ω(n), aber g 6∈ O(n).
I g ∈ Θ(n2), da limn−→∞ g(n)/n2 = 3.
I g 6∈ Θ(n3), da zwar g ∈ O(n3), aber g 6∈ Ω(n3).
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Asymptotische Effizienz Asymptotische Komplexitätsklassen

Beispiel: Fibonacci-Zahlen
Wachstum einer Kaninchenpopulation

I Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
I Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
I Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
I Sie sterben nie und hören niemals auf.

Fib(0) = 0 und Fib(1) = 1
Fib(n+2) = Fib(n+1) + Fib(n) für n > 0.

n 0 1 2 3 4 5 6 7 8 9 . . .
Fib(n) 0 1 1 2 3 5 8 13 21 34 . . .

Fib(n) ∈ O(2n) und Fib(n) ∈ Ω
(
2 n

2
)
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Asymptotische Effizienz Asymptotische Komplexitätsklassen

Einige elementare Eigenschaften
Reflexivität

I f ∈ O(f ), f ∈ Ω(f ), f ∈ Θ(f ).

Transitivität
I Aus f ∈ O(g) und g ∈ O(h) folgt f ∈ O(h).
I Aus f ∈ Ω(g) und g ∈ Ω(h) folgt f ∈ Ω(h).
I Aus f ∈ Θ(g) und g ∈ Θ(h) folgt f ∈ Θ(h).

Symmetrie von Θ

I f ∈ Θ(g) gdw. g ∈ Θ(f ).

Beziehung zwischen O und Ω

I f ∈ O(g) gdw. g ∈ Ω(f ).
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Beispiel
Die folgenden 3 Aussagen sind alle gültig:
(a) loga n ∈ Θ(logb n), (b) logb n ∈ Θ(loga n), (c) O(loga n) = O(logb n).

Beweis.
Wir beweisen (c). Zu zeigen: ∃c1, c2 > 0, so dass

loga n 6 c1 · logb n︸ ︷︷ ︸
loga n∈O(logb n)

und logb n 6 c2 · loga n︸ ︷︷ ︸
logb n∈O(loga n)

.

Dann: logan 6 c1 · logb n ⇔ loga n 6 c1 · loga n
loga b ⇔ loga b 6 c1

Wähle c1 > dloga be.
Analog erhalten wir logb a 6 c2; dann wähle c2 > dlogb ae.
Die Aussagen (a) und (b) folgen auf ähnliche Weise.
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Die Klassen Klein-O, Klein-Omega

o(f ) ist die Menge von Funktionen, die echt langsamer als f wachsen.

Definition
g ∈ o(f ) gdw. ∀c > 0, ∃n0 mit ∀n > n0 : 0 6 g(n) < c · f (n).

ω(f ) ist die Menge von Funktionen, die echt schneller als f wachsen.

Definition
g ∈ ω(f ) gdw. ∀c > 0, ∃n0 mit ∀n > n0 : c · f (n) < g(n).

Beziehung zwischen o und ω

I f ∈ o(g) gdw. g ∈ ω(f ).
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Asymptotische Effizienz Platzkomplexität

Platzkomplexität

Platzkomplexität
Unter der Platzkomplexität eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lösung dieses Problems, in
Abhängigkeit von der Länge der Eingabe.

Platzkomplexität

I Nicht nur die Zeitkomplexität, sonder auch der Speicherbedarf ist
wichtig!

I Dilemma: Eine Reduktion der Zeitkomplexität führt oft zur Erhöhung
der Platzkomplexität, und vice versa.

I Dies werden wir in später in der DSAL Vorlesung öfters feststellen.
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Beispiel: Platzkomplexität von Liedern [Knuth, 1984]

Beispiel
Betrachte eine Lied mit n Wörter, d. h. die Eingabelänge ist n.
Was ist die benötigte Platzkomplexität S(n) um ein Lied der Länge n zu
singen?

Obere und untere Schranken

1. S(n) ∈ O(n), da höchstens n verschiedene Wörter gespeichert werden
müssen.

2. S(n) ∈ Ω(1), da wir mindestens eine Sache über das Lied wissen
müssen, um es singen zu können.

Kann man die Platzkomplexität durch Refrains (= Kehrverse) reduzieren?
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Asymptotische Effizienz Platzkomplexität

Refrains
Refrain
Die Wiederkehr von textlich/musikalisch (wenigstens überwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Beispiel

Soo.. Bye, bye miss American Pie
Drove me Chevy to the levee but the levee was dry
Them good old boys were drinking whiskey and rye?
Singing this will be the day that I die
this will be the day that I die [Don McLean]

Platzkomplexität
Speichere den Refrain einmal und singe ihn O(n) Mal.
Dann: S(n) ∈ O(n), da die Anzahl der Wörter immer noch O(n) ist;
z. B. bei Strophelänge = Refrainlänge halbiert sich der Speicherbedarf.
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Asymptotische Effizienz Platzkomplexität

Die k Weihnachtstage
Reduktion der Platzkomplexität
Reduziere S(n) durch eine bestimmte, sich ändernde Liedstruktur, etwa:

On the kth day of Xmas, my true love gave to me giftk , giftk−1, . . . , gift1
On the (k−1)st day of Xmas, my true love gave to me giftk−1, . . . , gift1
· · · · · · · ·
On the first day of Xmas, my true love gave to me a bottle of wine

Bekanntere Variante: „Old MacDonald had a farm“.

Platzkomplexität
Die benötigte Zeit, um das Lied zu singen ist (betrachte keine Refrains):

n =
k∑

i=1
i = k ·

(k + 1
2

)
∈ Θ(k2)

Da n ∈ Θ(k2) folgt k ∈ O(
√

n), also S(n) ∈ O(
√

n).
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100 Bierflaschen

Eine weitere Vereinfachung
Ein (sehr) langweiliges Lied für lange Autofahrten:

n bottles of beer on the wall, n bottles of beer
You take one down and pass it around
n−1 bottles of beer on the ball
· · · · · · · · [Andy Kaufman]

Platzkomplexität
S(n) ∈ O(log n), da nur der Wert von n von Bedeutung ist. Dafür reichen
log n Bits aus.

Es geht jedoch noch etwas einfacher, nämlich indem man auf das Zählen
verzichtet.
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Untere Schranke?

Ein Lied mit S(n) ∈ Θ(1)

That’s the way, uh-huh, uh-huh
I like it, uh-huh, huh
· · · · · · ·· [KC & the Sunshine Band, 1977]
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