Asymptotische Effizienz

Datenstrukturen und Algorithmen

Vorlesung 2: Asymptotische Effizienz (K3)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

10. April 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/27
Ubersicht

@ Asymptotische Betrachtung

@ Begriindung

o Grenzwerte
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/27

Ubersicht

@ Asymptotische Betrachtung
@ Begriindung
o Grenzwerte

@ Asymptotische Komplexitatsklassen
@ Die Klasse GroB-O
@ Die Klasse GroB-Omega
o Die Klasse GroB-Theta

© Platzkomplexitat

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/27
Asymptotische Effizienz Asymptotische Betrachtung

Laufzeit von Algorithmen

Betrachte

Die Laufzeit eines Algorithmus ist keine Zahl, sondern eine Funktion.

Sie gibt die Laufzeit des Algorithmus fiir jede Eingabeldange an.

Worst-Case Laufzeit

Die Worst-Case Laufzeit W(n) fir Eingabeldnge n ist die langste Laufzeit
aus allen Eingaben mit Lange n.

Best-Case Laufzeit

Die Best-Case Laufzeit B(n) fir Eingabelange n ist die kiirzeste Laufzeit
aus allen Eingaben mit Lange n.
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Asymptotische Betrachtung Grenzwerte

Die exakte Bestimmung der Funktionen A(n), B(n) und W(n) ist Limes inferior und Limes superior

tiblicherweise sehr schwierig. AuBerdem:

Sei (x;);en die Folge x1, x2, .. .. Dann:
> ist sie von zweifelhaftem Nutzen fiir Vergleiche: (xi)ien ge X1, X2
Ist etwa W/(n) = 1021n besser als W(n) = $n?? 1. liminfx, = lim <inf xm)
n—o00 n—oo \ m>n
» wollen wir maschinenabhingige Konstanten (z. B. Rechnergeschwin- -
digkeit), Initialisierungsaufwand, usw. ausklammern. 2. limsupx, = lim (sup Xm) "0
. . . — n—o0 >
Daher: Normalerweise keine exakte sondern asymptotische Betrachtung. e m=n
> Betrachte Wachstum der Laufzeit fiir n — oco. Einige Fakten

> Kurze Eingaben und konstante Faktoren werden vernachlassigt. | Bamr T 4 e
. Existieren liminf x, und lim sup x,: liminf x im sup X.
» Anschaulich: Wir lassen Glieder niedriger Ordnung weg, z.B.: n—co n—)oop " nsoo 77T n—)oop !

W(n) = 30 £ 5m3 410 € O(n4) 2. Existiert nli_)ngox,, dann: Iirs‘r_m)iorlfx,, = Iirrp_}solipx,, = nIi_}ngox,,.

(d. h. n* ist dominierender Faktor fiir n — o0)
» So erhalten wir untere/obere Schranken fiir A(n), B(n) und W(n)!

gn) _ &)

Sind f, g differenzierbar, dann gilt lim = . L’'Hépital
» Mathematische Zutat: Asymptotische Ordnung von Funktionen. n—oo f(n)  n—0o0 f'(n)
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Ubersicht Die Klasse GroB-O (1)
Seien f und g Funktionen von IN (Eingabeldnge) nach IR>¢ (Laufzeit) und
c>0.
|
O(f) ist die Menge von Funktionen, o c-f(n)
die nicht schneller als f wachsen. '§ g(n)
» g € O(f) heiBt: c- f(n) E
© Asymptotische Komplexitatsklassen ist obere Schranke fiir g(n). -
e Die Klasse GroB-O Diese Eigenschaft gilt ab einer .
° D!e Klasse GroB-Omega Konstanten ng; Werte unter ng werden !
@ Die Klasse GroB-Theta vernachlissigt. No Eingabelange n

Die Klasse GroB-O liefert eine obere Schranke fiir die Komplexitat einer
Funktion.

» Kleinste obere Schranken sind von groBtem Nutzen!
g € O(n?) sagt mehr als g € O(n3).
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Asymptotische Effizienz

Die Klasse GroB-O (1)

Asymptotische Komplexitatsklassen

g € O(f) gdw. 3¢ > 0, ng mit Vn > np : 0 < g(n) < ¢ - f(n).

Definition (alternativ)

g € O(f) gdw. limsup, ., & = c > 0 mit ¢ # oo.

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) = 0.
Dann:

limsup,__, ?83 existiert gdw. 3¢ > 0, ngp mit ¥n > ngy : g(n) < c- f(n).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klasse GroB-O (1V)

g € O(f) gdw. 3¢ > 0, ng mit Vn > ng : 0 < g(n) < c- f(n).

—

g € O(f) gdw. limsup, ., &2 = c > 0 mit ¢ # oo.

Betrachte g(n) = 3n? + 10n + 6. Dann ist:

» g ¢ O(n), da limsup,__,. g(n)/n= cc.
» g € 0(n?), da g(n) < 20n fiir n > 1.
» g€ 0O(n), da g(n) < 1—10n3 fur n hinreichend groB.
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Asymptotische Effizienz

Die Klasse GroB3-O (l11)

Asymptotische Komplexitatsklassen

Es seien f, g : IN — IR zwei Funktionen. Es sei nur endlich oft f(n) =0

Dann existiert limsup,__, é;gg; gdw. 3¢ > 0,n9.Vn = ng : g(n) < c-f(n).

Beweis.

2= Sei limsup, ., %(% =c<oo. Fire >0esfolgt c+¢> %(%

und f(n) # 0 bis auf endlich viele Ausnahmen. Ab einem ng € IN gilt fir
alle n> ng also: ¢ +¢ > g}gg; und damit: g(n) < (c +¢) - f(n).

,<=": Gegeben seien nun np, ¢ > 0 so dass Vn > nj : g(n) < c- f(n).
Ab einem ng > nj gilt (wie oben) auBerdem f(n) # 0 fur alle n > no.

DamitistVn}ané%(%ic-

N n) . o -
Die Folge a, = % ist in [0, c], also beschrankt und abgeschlossen.
Dann existiert limsup,__, . a, < oo. O
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Die Klasse GroB-Omega (1)

|
Q(f) ist die Menge von Funktionen, Q

die nicht langsamer als f wachsen. '§ g(n)
» g € Q(f) heiBt: ¢ - f(n) uf_g
ist untere Schranke fir g(n). = c-f(n)

Diese Eigenschaft gilt ab einer
Konstanten ng; Werte unter ng werden
vernachlassigt.

No Eingabeldnge n

Die Klasse GroB-Omega liefert eine untere Schranke fiir die Komplexitat
einer Funktion.

> GroBte untere Schranken sind von groBtem Nutzen!
g € Q(n?) sagt mehr als g € Q(n).
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Die Klasse GroB-Omega (II) Die Klasse GroB-Theta (1)

]
©(F) ist die Menge von Funktionen,

g € Q(f) gdw. 3¢ >0, ng mit Vn > ng : ¢ - f(n) < g(n). die genauso schnell wie f wachsen. © c2-f(n)

> g € O(f) heiBt: E g(n)
Definition (alternativ) ¢y - f(n) ist obere Schranke und 2
g € Q(f) gdw. liminf, % > 0. c1 - f(n) ist untere Schranke - ci-f(n)

fur g(n). ;

e s ! e
No Eingabelange n

Konstanten ng; Werte unter ng werden
Betrachte g(n) = 3n% + 10n + 6. Dann ist: vernachlissigt.
» g € Q(n), daliminf,_, . g(n)/n=o00 > 0.

) o ) Die Klasse GroB-Theta liefert eine obere und untere Schranke fir die
> g € Q(n), da liminf, . g(n)/n“=3>0. Komplexitat einer Funktion.

> £ ¢ Q(n%), da g(n) <5n° fir n>2.

g € O(f) gdw. dc1, & >0, np mit Vn > ng : c1 - f(n) < g(n) < & - f(n).
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Die Klassen O, Q2 und © Die Klasse GroB-Theta (I1)

Beziehung zwischen O, 2 und ©

g € O(f) gdw. g € O(f) und g € Q(f).
g c @(f) gdw. dcy, ¢ >0, ng mit Vn > ng : 1 - f(n) < g(n) <o- f(n)

N

g € O(f) wenn lim,_, i((,:) — ¢ fiirein0 < ¢ < oo.

Funktionen, die Funktionen, die

nicht schneller Funktionen, die nicht langsamer Betrachte g(n) = 3n? 4 10n + 6. Dann ist:

als f wachsen. ge.na;lso schhnell als f wachsen. > g & O(n), da zwar g € Q(n), aber g & O(n).
wie T wachsen. » g €0(n?), dalim,_, g(n)/n* = 3.

» g ¢ ©(n®), da zwar g € O(n3), aber g & Q(n®).

Lemma

g € O(f) wenn limp— %EZ; — ¢ fiirein0 < ¢ < oo.
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel: Fibonacci-Zahlen

Wachstum einer Kaninchenpopulation

» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

> Sie sterben nie und hoéren niemals auf.

Fib(0)=0 und Fib(l) = 1
Fib(n+2) = Fib(n+1) 4 Fib(n)  fir n > 0.

7 8 9
13 21 34

n |

Fib(n) |

01 2 3 4 5 6
0 11 2 3 5 8

Fib(n) € O(2") und Fib(n) € Q (23)
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Beispiel
Die folgenden 3 Aussagen sind alle giltig:
(a) log, n € ©(logy, n), (b) log, n € ©(log, n), (c) O(log, n) = O(logy, n).

Beweis.

Wir beweisen (c). Zu zeigen: Jc1, ¢ > 0, so dass

log,n < cy-logyn und logy,n< c-log,n.

log, n€ O(logy, n) log, n€O(log, n)
I
Dann: logan < c1 - logyn < log,n < c; - |§§jZ & log,b< g

Wahle ¢; > [log, b].
Analog erhalten wir log, a < ¢; dann wahle ¢; > [log, a].

Die Aussagen (a) und (b) folgen auf dhnliche Weise. O
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Einige elementare Eigenschaften

Reflexivitat

> f e O(f), f € Qf), f € O(Ff).

Transitivitat

» Aus f € O(g) und g € O(h) folgt f € O(h).
» Aus f € Q(g) und g € Q(h) folgt £ € Q(h).
» Aus f € ©(g) und g € ©(h) folgt f € ©(h).

Symmetrie von ©

» f €0O(g) gdw. g € O(f).

Beziehung zwischen O und 2

» f e O0(g) gdw. g € Q(f).
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Asymptotische Effizienz Asymptotische Komplexitatsklassen

Die Klassen Klein-O, Klein-Omega

|
o(f) ist die Menge von Funktionen, die echt langsamer als f wachsen.

g € o(f) gdw. Yc > 0, Ing mit Vn > ng : 0 < g(n) <c - f(n).

|
w(f) ist die Menge von Funktionen, die echt schneller als f wachsen.

g € w(f) gdw. Yc > 0, Ing mit Yn > ng : ¢ - f(n) < g(n).

Beziehung zwischen o und w

» f €o(g) gdw. g € w(f).
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Asymptotische Effizienz Platzkomplexitat

Ubersicht

© Platzkomplexitat
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Asymptotische Effizienz Platzkomplexitat

Beispiel: Platzkomplexitat von Liedern [knuth, 1984]

Beispiel
Betrachte eine Lied mit n Woérter, d. h. die Eingabelange ist n.

Wias ist die benétigte Platzkomplexitat S(n) um ein Lied der Lange n zu
singen?

Obere und untere Schranken

1. S(n) € O(n), da hochstens n verschiedene Worter gespeichert werden
mussen.

2. 5(n) € Q(1), da wir mindestens eine Sache lber das Lied wissen
miissen, um es singen zu konnen.

Kann man die Platzkomplexitat durch Refrains (= Kehrverse) reduzieren?
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Asymptotische Effizienz Platzkomplexitat

Platzkomplexitat

Platzkomplexitat

Unter der Platzkomplexitdt eines Problems versteht man den (minimalen)
Bedarf an Speicherplatz eines Algorithmus zur Lésung dieses Problems, in
Abhéangigkeit von der Lange der Eingabe.

Platzkomplexitat

> Nicht nur die Zeitkomplexitat, sonder auch der Speicherbedarf ist
wichtig!

» Dilemma: Eine Reduktion der Zeitkomplexitat fiihrt oft zur Erhéhung
der Platzkomplexitat, und vice versa.

> Dies werden wir in spater in der DSAL Vorlesung ofters feststellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27
Asymptotische Effizienz Platzkomplexitat
Refrains

Die Wiederkehr von textlich/musikalisch (wenigstens tiberwiegend)
identischen Zeilen am Schluss einer Strophe oder zwischen den Strophen.

Soo.. Bye, bye miss American Pie

Drove me Chevy to the levee but the levee was dry

Them good old boys were drinking whiskey and rye?

Singing this will be the day that | die

this will be the day that | die [Don McLean]

Platzkomplexitat

Speichere den Refrain einmal und singe ihn O(n) Mal.

Dann: S(n) € O(n), da die Anzahl der Woérter immer noch O(n) ist;
z.B. bei Stropheldnge = Refrainlange halbiert sich der Speicherbedarf.
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Die kK Weihnachtstage 100 Bierflaschen

Reduktion der Platzkomplexitat
Reduziere S(n) durch eine bestimmte, sich dndernde Liedstruktur, etwa: Eine weitere Vereinfachung

On the kth day of Xmas, my true love gave to me gifty, giftc—1, . . ., gift: Ein (sehr) langweiliges Lied fiir lange Autofahrten:
On the (k—1)st day of Xmas, my true love gave to me gifti_1, ..., gifty

On the first day of Xmas, my true love gave to me a bottle of wine

n bottles of beer on the wall, n bottles of beer

You take one down and pass it around

n—1 bottles of beer on the ball

Bekanntere Variante: ,Old MacDonald had a farm*. ... [Andy Kaufman]

Platzkomplexitat
TPE———

Die benétigte Zeit, um das Lied zu singen ist (betrachte keine Refrains): S(n) € O(log n), da nur der Wert von n von Bedeutung ist. Dafiir reichen

k log n Bits aus.
. k+1
n = I:k'<—)€@(k2)
) 2 Es geht jedoch noch etwas einfacher, ndmlich indem man auf das Zahlen
verzichtet.
Da n € ©(k?) folgt k € O(y/n), also S(n) € O(+/n).
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Untere Schranke?

Ein Lied mit S(n) € ©(1)

That's the way, uh-huh, uh-huh
| like it, uh-huh, huh
-------- [KC & the Sunshine Band, 1977]
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