
Elementare Datenstrukturen

Datenstrukturen und Algorithmen
Vorlesung 3: Elementare Datenstrukturen (K10)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

13. April 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/39

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/


Elementare Datenstrukturen

Übersicht

1 Abstrakte Datentypen

2 Stapel und Warteschlangen

3 Verkettete Listen
Einfach verkettete Listen
Doppelt verkettete Listen

4 Binäre Bäume
Traversierungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/39



Elementare Datenstrukturen Abstrakte Datentypen

Übersicht

1 Abstrakte Datentypen

2 Stapel und Warteschlangen

3 Verkettete Listen
Einfach verkettete Listen
Doppelt verkettete Listen

4 Binäre Bäume
Traversierungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/39



Elementare Datenstrukturen Abstrakte Datentypen

Abstrakte Datentypen

Abstrakter Datentyp (ADT)

Ein abstrakter Datentyp besteht aus:
I Einer Datenstruktur (Menge von Werten) und
I einer Menge von Operationen darauf.

(z. B. Konstruktor, Zugriffs- und Bearbeitungsfunktionen)

Beispiele
Baum, Kellerspeicher (stack), Liste, Warteschlange (queue),
Prioritätswarteschlange (priority queue), Wörterbuch . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39



Elementare Datenstrukturen Abstrakte Datentypen

Datenkapselung

Unterscheide zwischen
Spezifikation des ADTs: wie sich die Datenobjekte verhalten, und
Implementierung: wie dieses Verhalten programmtechnisch erreicht wird.

Datenkapselung (data encapsulation)

Dieses Paradigma wird Kapselung (oder: Datenabstraktion) genannt:
I Daten sind außerhalb des ADT nur über wohldefinierte Operationen

zugänglich.
I Die Repräsentation der Daten ist nur für die Implementierung

relevant.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/39



Elementare Datenstrukturen Abstrakte Datentypen

Datenkapselung

Unterscheide zwischen
Spezifikation des ADTs: wie sich die Datenobjekte verhalten, und
Implementierung: wie dieses Verhalten programmtechnisch erreicht wird.

Datenkapselung (data encapsulation)

Dieses Paradigma wird Kapselung (oder: Datenabstraktion) genannt:
I Daten sind außerhalb des ADT nur über wohldefinierte Operationen

zugänglich.
I Die Repräsentation der Daten ist nur für die Implementierung

relevant.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/39



Elementare Datenstrukturen Abstrakte Datentypen

Spezifikation von ADTs (I)
Spezifikation eines ADTs

I Beschreibt wie sich die Operationen auf den Daten verhalten;
I nicht jedoch die interne Repräsentation der Daten,
I genauso wenig wie die Implementierung der Operationen.

Beschreibung der Auswirkung von Operationen durch logische Aussagen:

Vorbedingung (precondition)

Aussage, die vor Aufruf der Operation gelten muss.
(Verpflichtung des Benutzers!)

Nachbedingung (postcondition)

Aussage, die als Ergebnis der Operation gelten wird.

⇒ Grundlage für die Argumentation über die Korrektheit des ADTs.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39



Elementare Datenstrukturen Abstrakte Datentypen

Spezifikation von ADTs (I)
Spezifikation eines ADTs

I Beschreibt wie sich die Operationen auf den Daten verhalten;
I nicht jedoch die interne Repräsentation der Daten,
I genauso wenig wie die Implementierung der Operationen.

Beschreibung der Auswirkung von Operationen durch logische Aussagen:

Vorbedingung (precondition)

Aussage, die vor Aufruf der Operation gelten muss.
(Verpflichtung des Benutzers!)

Nachbedingung (postcondition)

Aussage, die als Ergebnis der Operation gelten wird.

⇒ Grundlage für die Argumentation über die Korrektheit des ADTs.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39



Elementare Datenstrukturen Abstrakte Datentypen

Spezifikation von ADTs (II)

Beispiel
Die Operation void push(Stack s, int e) hat

I die Vorbedingung: true (d. h. leere Aussage) und
I die Nachbedingung: oberster Eintrag von s ist e.

I ADTs sind durch ihre Spezifikation festgelegte
„Standard“-Komponenten zum Aufbau unserer Algorithmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39



Elementare Datenstrukturen Abstrakte Datentypen

Implementierung von ADTs
Implementierung eines ADTs

I Beschreibt die interne Repräsentation der Daten, und
I die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermöglichen es uns die Performance zu optimieren.
⇒ Grundlage für die Argumentation über die Effizienz des ADTs.

Beispiel
Die Operation push(Stack s, int e) als Array-Implementierung:
1 void push(Stack s, int e) {
2 s.top = s.top + 1;
3 s[s.top] = e;
4 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39



Elementare Datenstrukturen Abstrakte Datentypen

Implementierung von ADTs
Implementierung eines ADTs

I Beschreibt die interne Repräsentation der Daten, und
I die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermöglichen es uns die Performance zu optimieren.
⇒ Grundlage für die Argumentation über die Effizienz des ADTs.

Beispiel
Die Operation push(Stack s, int e) als Array-Implementierung:
1 void push(Stack s, int e) {
2 s.top = s.top + 1;
3 s[s.top] = e;
4 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39



Elementare Datenstrukturen Abstrakte Datentypen

Implementierung von ADTs
Implementierung eines ADTs

I Beschreibt die interne Repräsentation der Daten, und
I die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermöglichen es uns die Performance zu optimieren.
⇒ Grundlage für die Argumentation über die Effizienz des ADTs.

Beispiel
Die Operation push(Stack s, int e) als Array-Implementierung:
1 void push(Stack s, int e) {
2 s.top = s.top + 1;
3 s[s.top] = e;
4 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39



Elementare Datenstrukturen Abstrakte Datentypen

Effizienz von Implementierungen
Die Effizienz einer ADT-Implementierung ist entscheidend.

1. Die Zeitkomplexität der Operationen auf dem ADT.
I Einfügen von Elementen,
I Löschen von Elementen,
I Suchen von Elementen.

2. Die Platzkomplexität der internen Datenrepräsentation.

Üblicherweise ein Kompromiss zwischen Zeit- und Platzeffizienz:
I Schnelle Operationen benötigen in der Regel zusätzlichen

Speicherplatz.
I Platzsparende Repräsentationen führen oft zu langsameren

Operationen.

Beispiel
Implementierungen einer Prioritätswarteschlange (später).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39



Elementare Datenstrukturen Abstrakte Datentypen

Effizienz von Implementierungen
Die Effizienz einer ADT-Implementierung ist entscheidend.

1. Die Zeitkomplexität der Operationen auf dem ADT.
I Einfügen von Elementen,
I Löschen von Elementen,
I Suchen von Elementen.

2. Die Platzkomplexität der internen Datenrepräsentation.

Üblicherweise ein Kompromiss zwischen Zeit- und Platzeffizienz:
I Schnelle Operationen benötigen in der Regel zusätzlichen

Speicherplatz.
I Platzsparende Repräsentationen führen oft zu langsameren

Operationen.

Beispiel
Implementierungen einer Prioritätswarteschlange (später).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39



Elementare Datenstrukturen Stapel und Warteschlangen

Übersicht

1 Abstrakte Datentypen

2 Stapel und Warteschlangen

3 Verkettete Listen
Einfach verkettete Listen
Doppelt verkettete Listen

4 Binäre Bäume
Traversierungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39



Elementare Datenstrukturen Stapel und Warteschlangen

Beispiele für ADTs: Stapel

Stapel (stack)

Ein Stapel (Kellerspeicher) speichert eine Ansammlung von Elementen und
bietet folgende Operationen:

I bool isEmpty(Stack s) gibt true zurück, wenn s leer ist und
andernfalls false.

I void push(Stack s, int e) fügt das Element e in den Stapel s ein.
I int pop(Stack s) entfernt das zuletzt eingefügte Element und gibt

es zurück; pop(s) benötigt einen nicht-leeren Stapel s.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/39



Elementare Datenstrukturen Stapel und Warteschlangen

Beispiele für ADTs: Warteschlangen

Warteschlange (queue)

Eine Warteschlange speichert eine Ansammlung von Elementen und bietet
folgende Operationen:

I bool isEmpty(Queue q) gibt true zurück, wenn q leer ist, andernfalls
false.

I void enqueue(Queue q, int e) fügt das Element e in die
Warteschlange q eine.

I int dequeue(Queue q) entfernt das schon am längsten in der
Warteschlange vorhandene Element und gibt es zurück; benötigt
daher eine nicht-leere Warteschlange q.

Ein Stapel bietet LIFO (last-in first-out) Semantik, eine Warteschlange
FIFO (first-in first-out).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/39



Elementare Datenstrukturen Stapel und Warteschlangen

Beispiele für ADTs: Warteschlangen

Warteschlange (queue)

Eine Warteschlange speichert eine Ansammlung von Elementen und bietet
folgende Operationen:

I bool isEmpty(Queue q) gibt true zurück, wenn q leer ist, andernfalls
false.

I void enqueue(Queue q, int e) fügt das Element e in die
Warteschlange q eine.

I int dequeue(Queue q) entfernt das schon am längsten in der
Warteschlange vorhandene Element und gibt es zurück; benötigt
daher eine nicht-leere Warteschlange q.

Ein Stapel bietet LIFO (last-in first-out) Semantik, eine Warteschlange
FIFO (first-in first-out).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

34
3
11

top
41
34
3
11

top

push(41)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

34
3
11

top
41
34
3
11

top

push(41)

11
41
34
3
11

top

push(11)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

34
3
11

top
41
34
3
11

top

push(41)

11
41
34
3
11

top

push(11)

41
34
3
11

top

pop()

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

1 bool isEmpty(Stack s) {
2 return (s.top == -1);
3 }

5 void push(Stack s, int e) {
6 s.top = s.top + 1;
7 s[s.top] = e;
8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];
13 }

I Die Laufzeit ist jeweils Θ(1).
I In pop muss der Fall eines leeren

Stapels nicht berücksichtigt
werden. Warum?

I Eine Implementierung als
verkettete Liste vermeidet eine
a priori Festlegung der
Arraygröße.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

1 bool isEmpty(Stack s) {
2 return (s.top == -1);
3 }

5 void push(Stack s, int e) {
6 s.top = s.top + 1;
7 s[s.top] = e;
8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];
13 }

I Die Laufzeit ist jeweils Θ(1).

I In pop muss der Fall eines leeren
Stapels nicht berücksichtigt
werden. Warum?

I Eine Implementierung als
verkettete Liste vermeidet eine
a priori Festlegung der
Arraygröße.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

1 bool isEmpty(Stack s) {
2 return (s.top == -1);
3 }

5 void push(Stack s, int e) {
6 s.top = s.top + 1;
7 s[s.top] = e;
8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];
13 }

I Die Laufzeit ist jeweils Θ(1).
I In pop muss der Fall eines leeren

Stapels nicht berücksichtigt
werden. Warum?

I Eine Implementierung als
verkettete Liste vermeidet eine
a priori Festlegung der
Arraygröße.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39



Elementare Datenstrukturen Stapel und Warteschlangen

Stapelimplementierung auf unbeschränkten Arrays

1 bool isEmpty(Stack s) {
2 return (s.top == -1);
3 }

5 void push(Stack s, int e) {
6 s.top = s.top + 1;
7 s[s.top] = e;
8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];
13 }

I Die Laufzeit ist jeweils Θ(1).
I In pop muss der Fall eines leeren

Stapels nicht berücksichtigt
werden. Warum?

I Eine Implementierung als
verkettete Liste vermeidet eine
a priori Festlegung der
Arraygröße.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (I)

17
12

tail

head

0
17
12

tail

head

enq(0)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (I)

17
12

tail

head

0
17
12

tail

head

enq(0)

0
17
12

9

tail

head

enq(9)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (I)

17
12

tail

head

0
17
12

tail

head

enq(0)

0
17
12

9

tail

head

enq(9)

0
17

9

tail

head

deq()

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (I)

17
12

tail

head

0
17
12

tail

head

enq(0)

0
17
12

9

tail

head

enq(9)

0
17

9

tail

head

deq()

0

9

tail

head

deq()

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (II)

1 bool isEmpty(Queue q) {
2 return (q.head == q.tail);
3 }

5 void enqueue(Queue q, int e) {
6 q[q.tail] = e;
7 q.tail = (q.tail + 1) mod N;
8 }

10 int dequeue(Queue q) {
11 int e = q[q.head];
12 q.head = (q.head + 1) mod N;
13 return e;
14 }

I Arraygröße N.

I Die Laufzeit ist jeweils Θ(1).
I Der Einfachheit halber werden

Überläufe nicht abgefangen.
I Die Queue ist voll gdw.

q.head == (q.tail + 1) mod N.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (II)

1 bool isEmpty(Queue q) {
2 return (q.head == q.tail);
3 }

5 void enqueue(Queue q, int e) {
6 q[q.tail] = e;
7 q.tail = (q.tail + 1) mod N;
8 }

10 int dequeue(Queue q) {
11 int e = q[q.head];
12 q.head = (q.head + 1) mod N;
13 return e;
14 }

I Arraygröße N.
I Die Laufzeit ist jeweils Θ(1).

I Der Einfachheit halber werden
Überläufe nicht abgefangen.

I Die Queue ist voll gdw.
q.head == (q.tail + 1) mod N.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (II)

1 bool isEmpty(Queue q) {
2 return (q.head == q.tail);
3 }

5 void enqueue(Queue q, int e) {
6 q[q.tail] = e;
7 q.tail = (q.tail + 1) mod N;
8 }

10 int dequeue(Queue q) {
11 int e = q[q.head];
12 q.head = (q.head + 1) mod N;
13 return e;
14 }

I Arraygröße N.
I Die Laufzeit ist jeweils Θ(1).
I Der Einfachheit halber werden

Überläufe nicht abgefangen.

I Die Queue ist voll gdw.
q.head == (q.tail + 1) mod N.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschränkten
Arrays (II)

1 bool isEmpty(Queue q) {
2 return (q.head == q.tail);
3 }

5 void enqueue(Queue q, int e) {
6 q[q.tail] = e;
7 q.tail = (q.tail + 1) mod N;
8 }

10 int dequeue(Queue q) {
11 int e = q[q.head];
12 q.head = (q.head + 1) mod N;
13 return e;
14 }

I Arraygröße N.
I Die Laufzeit ist jeweils Θ(1).
I Der Einfachheit halber werden

Überläufe nicht abgefangen.
I Die Queue ist voll gdw.

q.head == (q.tail + 1) mod N.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Elementare Datenstrukturen Stapel und Warteschlangen

Die Prioritätswarteschlange (I)
I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an ein Element vergeben.
I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Prioritätswarteschlange (priority queue)

Eine Prioritätswarteschlange speichert eine Ansammlung von Elementen
und bietet folgende Operationen:

I bool isEmpty(PriorityQueue pq) gibt true zurück, wenn pq leer ist,
andernfalls false.

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq. →

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39



Elementare Datenstrukturen Stapel und Warteschlangen

Die Prioritätswarteschlange (I)
I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an ein Element vergeben.
I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Prioritätswarteschlange (priority queue)

Eine Prioritätswarteschlange speichert eine Ansammlung von Elementen
und bietet folgende Operationen:

I bool isEmpty(PriorityQueue pq) gibt true zurück, wenn pq leer ist,
andernfalls false.

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq. →

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39



Elementare Datenstrukturen Stapel und Warteschlangen

Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue) (Forts.)

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Wichtige Datenstruktur für Greedy-Algorithmen,
Diskrete-Event-Simulationen, . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, unsortiert, auf beschränkten
Arrays

17 4
12 8

tail

head

0 12
17 4
12 8

tail

head

ins(0,12)

schwarz = Element; rot = Schlüssel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, unsortiert, auf beschränkten
Arrays

17 4
12 8

tail

head

0 12
17 4
12 8

tail

head

ins(0,12)

0 12
17 4
12 8

3 7

tail

head

ins(3,7)

schwarz = Element; rot = Schlüssel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, unsortiert, auf beschränkten
Arrays

17 4
12 8

tail

head

0 12
17 4
12 8

tail

head

ins(0,12)

0 12
17 4
12 8

3 7

tail

head

ins(3,7)

3 7
0 12
12 8

tail

head

delMin()

schwarz = Element; rot = Schlüssel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, unsortiert, auf beschränkten
Arrays

17 4
12 8

tail

head

0 12
17 4
12 8

tail

head

ins(0,12)

0 12
17 4
12 8

3 7

tail

head

ins(3,7)

3 7
0 12
12 8

tail

head

delMin() getElt(12)

schwarz = Element; rot = Schlüssel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, sortiert, auf beschränkten
Arrays

12 8
17 4

tail

head

0 12
12 8
17 4

tail

head

ins(0,12)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, sortiert, auf beschränkten
Arrays

12 8
17 4

tail

head

0 12
12 8
17 4

tail

head

ins(0,12)

12 8
3 7
17 4

0 12

tail

head

ins(3,7)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, sortiert, auf beschränkten
Arrays

12 8
17 4

tail

head

0 12
12 8
17 4

tail

head

ins(0,12)

12 8
3 7
17 4

0 12

tail

head

ins(3,7)

12 8
3 7

0 12

tail

head

delMin()

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39



Elementare Datenstrukturen Stapel und Warteschlangen

Prioritätswarteschlange, sortiert, auf beschränkten
Arrays

12 8
17 4

tail

head

0 12
12 8
17 4

tail

head

ins(0,12)

12 8
3 7
17 4

0 12

tail

head

ins(3,7)

12 8
3 7

0 12

tail

head

delMin() getElt(12)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39



Elementare Datenstrukturen Stapel und Warteschlangen

Zwei Prioritätswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array

isEmpty(pq) Θ(1) Θ(1)
insert(pq,e,k) Θ(1) Θ(n)∗

getMin(pq) Θ(n) Θ(1)
delMin(pq) Θ(n)∗ Θ(1)
getElt(pq,k) Θ(n) Θ(log n)†

decrKey(pq,e,k) Θ(n) Θ(log n)†

I In Vorlesung 8 (Heapsort) werden wir eine weitere Implementierung
kennenlernen.

∗Beinhaltet das Verschieben aller Elemente „rechts“ von k.
†Mittels binärer Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/39



Elementare Datenstrukturen Verkettete Listen

Übersicht

1 Abstrakte Datentypen

2 Stapel und Warteschlangen

3 Verkettete Listen
Einfach verkettete Listen
Doppelt verkettete Listen

4 Binäre Bäume
Traversierungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/39



Elementare Datenstrukturen Verkettete Listen

Einfach verkettete Listen

Einfach verkettete Liste
Eine einfach verkettete Liste ist eine rekursive, dynamische Datenstruktur.

I Elemente bestehend aus Schlüssel k sowie Zeiger auf ein
nachfolgendes Element

I Listen können dynamisch erweitert werden
I head zeigt auf das erste Element der Liste

head 48 34next 2 25

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39



Elementare Datenstrukturen Verkettete Listen

Listen (I)

Liste
Eine Liste speichert eine Ansammlung von Elementen mit fester
Reihenfolge und bietet folgende Operationen:

I void insert(List l, Element x) fügt das Element x an den Anfang
der Liste ein.

I void remove(List l, Element x) entfernt das Element x aus der
Liste.

I Element search(List l, int k) gibt das Element mit dem
übergebenen Key k zurück und null falls es kein derartiges Element
gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/39



Elementare Datenstrukturen Verkettete Listen

Listen (II)

Liste (Forts.)

I Element minimum(List l) gibt das Element mit dem kleinsten
Schlüssel zurück.

I Element maximum(List l) gibt das Element mit dem höchsten
Schlüssel zurück.

I Element successor(List l, Element x) gibt das Nachfolgerelement
von Element x zurück.

I Element predecessor(List l, Element x) gibt das
Vorgängerelement von Element x zurück.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos

tmppos/lastlast tmp/pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos tmp

pos/lastlast tmp/pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos tmp

pos/lastlast tmp/pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos

tmppos/last

last tmp/pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos tmppos/last

last tmp/pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List l) {
2 last = l.head;
3 pos = last.next;
4 last.next = null;

6 while(pos != null){
7 tmp = pos.next;
8 pos.next = last;
9 last = pos;
10 pos = tmp;
11 }

13 l.head = last;
14 }

last pos tmppos/last

last

tmp/pos

pos

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39



Elementare Datenstrukturen Verkettete Listen

Doppelt verkettete Listen

Doppelt verkettete Liste
Eine doppelt verkettete Liste kann sowohl vorwärts als auch rückwärts
durchlaufen werden. Sie implementiert den ADT Liste.

I Elemente besitzen neben Schlüssel und Nachfolgender einen weiteren
Zeiger auf das vorherige Element.

I Zusätzlicher Zeiger tail zeigt auf das letzte Element der Liste

48 34 2 25
prev

next

head tail

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39



Elementare Datenstrukturen Verkettete Listen

Laufzeiten

Implementierung

Operation einfach verkette Liste doppelt verkettete Liste

insert(L,x) Θ(1) Θ(1)
remove(L,x) Θ(n) Θ(1)
search(L,k) Θ(n) Θ(n)
minimum(L) Θ(n) Θ(n)
maximum(L) Θ(n) Θ(n)
successor(L,x) Θ(1) Θ(1)
predecessor(L,x) Θ(n) Θ(1)

I Suchen eines Schlüssels erfordert einen Durchlauf der gesamten Liste.
Gibt es andere Möglichkeiten, die Daten zu organisieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39



Elementare Datenstrukturen Verkettete Listen

Laufzeiten

Implementierung

Operation einfach verkette Liste doppelt verkettete Liste

insert(L,x) Θ(1) Θ(1)
remove(L,x) Θ(n) Θ(1)
search(L,k) Θ(n) Θ(n)
minimum(L) Θ(n) Θ(n)
maximum(L) Θ(n) Θ(n)
successor(L,x) Θ(1) Θ(1)
predecessor(L,x) Θ(n) Θ(1)

I Suchen eines Schlüssels erfordert einen Durchlauf der gesamten Liste.
Gibt es andere Möglichkeiten, die Daten zu organisieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39



Elementare Datenstrukturen Binäre Bäume

Übersicht

1 Abstrakte Datentypen

2 Stapel und Warteschlangen

3 Verkettete Listen
Einfach verkettete Listen
Doppelt verkettete Listen

4 Binäre Bäume
Traversierungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Intuition

Binärbaum – Intuition
Betrachte einen binären Baum:

I Jedes Element bekommt zwei Zeiger (left und right) zu den
nachfolgenden Elementen.

I Man erhält in etwa folgende Datenstruktur:

12

6

left

225

right

Vater/Mutter
von B und C

Linkes Kind
von A

Rechtes Kind
von A

SchlüsselA

B
C

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Definition

Definition (Binärbaum)

Ein Binärbaum (binary tree) ist ein gerichteter, zykelfreier Graph (V ,E )
mit Knoten (nodes, allgemein: vertices) V und gerichteten Kanten (edges)
E ∈ V × V .

I Es gibt genau einen ausgezeichneten Knoten, die Wurzel (root).
I Alle Kanten zeigen von der Wurzel weg.
I Der Ausgangsgrad (out-degree) jedes Knotens ist höchstens 2.
I Der Eingangsgrad eines Knoten ist 1, bzw. 0 bei der Wurzel.
I Sonderfall: Baum mit V = E = ∅.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Begriffe (I)

102

6

34

23 40

225

103 1056

Hö
he

de
s

Bi
nä

rb
au

m
s

=
3

Ebene 0

Ebene 1

Ebene 2

Ebene 3

Wurzel

innerer
Knoten

Blatt

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Begriffe (II)
Definition (Binärbaum – Begriffe)

I Ein Knoten mit leerem linken und rechten Teilbaum heißt Blatt (leaf).
I Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein

Abstand, d. h. die Pfadlänge, von der Wurzel.
I Die Höhe (level) eines Baumes ist die maximale Tiefe seiner Blätter.

Beispiel (Vorteile von binären Bäumen)

Angenommen, man möchte 31 Elemente vorhalten:
Ebene 0 (Wurzel) enthält 1 Element Gesamt:
Ebene 1 enthält 2 Elemente 3
Ebene 2 enthält 4 Elemente 7
Ebene 3 enthält 8 Elemente 15
Ebene 4 enthält 16 Elemente 31

⇒ Ein Element kann in 5 Schritten (statt 31) erreicht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Begriffe (II)
Definition (Binärbaum – Begriffe)

I Ein Knoten mit leerem linken und rechten Teilbaum heißt Blatt (leaf).
I Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein

Abstand, d. h. die Pfadlänge, von der Wurzel.
I Die Höhe (level) eines Baumes ist die maximale Tiefe seiner Blätter.

Beispiel (Vorteile von binären Bäumen)

Angenommen, man möchte 31 Elemente vorhalten:
Ebene 0 (Wurzel) enthält 1 Element Gesamt:
Ebene 1 enthält 2 Elemente 3
Ebene 2 enthält 4 Elemente 7
Ebene 3 enthält 8 Elemente 15
Ebene 4 enthält 16 Elemente 31

⇒ Ein Element kann in 5 Schritten (statt 31) erreicht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39



Elementare Datenstrukturen Binäre Bäume

Binärbäume – Begriffe (II)
Definition (Binärbaum – Begriffe)

I Ein Knoten mit leerem linken und rechten Teilbaum heißt Blatt (leaf).
I Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein

Abstand, d. h. die Pfadlänge, von der Wurzel.
I Die Höhe (level) eines Baumes ist die maximale Tiefe seiner Blätter.

Beispiel (Vorteile von binären Bäumen)

Angenommen, man möchte 31 Elemente vorhalten:
Ebene 0 (Wurzel) enthält 1 Element Gesamt:
Ebene 1 enthält 2 Elemente 3
Ebene 2 enthält 4 Elemente 7
Ebene 3 enthält 8 Elemente 15
Ebene 4 enthält 16 Elemente 31

⇒ Ein Element kann in 5 Schritten (statt 31) erreicht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39



Elementare Datenstrukturen Binäre Bäume

Einige Fakten über binäre Bäume

Lemma (Übung)

I Ebene d enthält höchstens 2d Knoten.
I Ein Binärbaum mit Höhe h kann maximal 2h+1 − 1 Knoten enthalten.
I Enthält er n Knoten, dann hat er mindestens Höhe dlog(n + 1)e − 1

(log ≡ log2).

Definition (vollständig)

Ein Binärbaum heißt vollständig, wenn er bei Höhe h alle 2h+1 − 1 Knoten
enthält.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39



Elementare Datenstrukturen Binäre Bäume

Einige Fakten über binäre Bäume

Lemma (Übung)

I Ebene d enthält höchstens 2d Knoten.
I Ein Binärbaum mit Höhe h kann maximal 2h+1 − 1 Knoten enthalten.
I Enthält er n Knoten, dann hat er mindestens Höhe dlog(n + 1)e − 1

(log ≡ log2).

Definition (vollständig)

Ein Binärbaum heißt vollständig, wenn er bei Höhe h alle 2h+1 − 1 Knoten
enthält.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39



Elementare Datenstrukturen Binäre Bäume

Traversierung

Traversierung
Eine Traversierung ist ein Baumdurchlauf mit folgenden Eigenschaften:
1. Die Traversierung beginnt und endet an der Wurzel.
2. Die Traversierung folgt den Kanten des Baumes. Jede Kante wird

genau zweimal durchlaufen: Einmal von oben nach unten und danach
von unten nach oben.

3. Die Teilbäume eines Knotens werden in festgelegter Reihenfolge
(zuerst linker, dann rechter Teilbaum) besucht.

4. Unterschiede bestehen darin, bei welchen Durchlauf man den Knoten
selbst (bzw. das dort gespeicherte Element) „besucht“.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel

((−(8/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
(

(−(8/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−

(8/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(

8/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8

/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/

4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4

)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)

) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4))

+ (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) +

(3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (

3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (3

∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (3 ∗

5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (3 ∗ 5

))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (3 ∗ 5)

)

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Inorder-Traversierung

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 "("
4 inorder(node.left);
5 print(node);
6 inorder(node.right);
7 ")"
8 }
9 }

Beispiel
((−(8/4)) + (3 ∗ 5))

Linearisierung
Eine Aufzählung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (I)

+

−

/

8 4

∗

3 5

1 void inorder(Node node) {
2 if (node != null) {
3 inorder(node.left);
4 print(node);
5 inorder(node.right);
6 }
7 }

Beispiel (Inorder)

− 8 / 4 + 3 ∗ 5

Beispiel (Preorder)

+ − / 8 4 ∗ 3 5

Beispiel (Postorder – Umgekehrte Polnische Notation (RPN))

8 4 / −† 3 5 ∗ +

†neg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (I)

+

−

/

8 4

∗

3 5

1 void preorder(Node node) {
2 if (node != null) {
3 print(node);
4 preorder(node.left);
5 preorder(node.right);
6 }
7 }

Beispiel (Inorder)

− 8 / 4 + 3 ∗ 5

Beispiel (Preorder)

+ − / 8 4 ∗ 3 5

Beispiel (Postorder – Umgekehrte Polnische Notation (RPN))

8 4 / −† 3 5 ∗ +

†neg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (I)

+

−

/

8 4

∗

3 5

1 void postorder(Node node) {
2 if (node != null) {
3 postorder(node.left);
4 postorder(node.right);
5 print(node);
6 }
7 }

Beispiel (Inorder)

− 8 / 4 + 3 ∗ 5

Beispiel (Preorder)

+ − / 8 4 ∗ 3 5

Beispiel (Postorder – Umgekehrte Polnische Notation (RPN))

8 4 / −† 3 5 ∗ +

†neg
Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder-Traversierung
1 void preorder(Node node) {
2 if (node != null) {
3 visit(node);
4 preorder(node.left);
5 preorder(node.right);
6 }
7 }

9 void inorder(Node node) {
10 if (node != null) {
11 inorder(node.left);
12 visit(node);
13 inorder(node.right);
14 }
15 }

16 void postorder(Node node) {
17 if (node != null) {
18 postorder(node.left);
19 postorder(node.right);
20 visit(node);
21 }
22 }

Komplexität
Θ(n), wobei n die Anzahl der Knoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (II)

Satz
Ist von einem (unbekannte) Binärbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 5 2 7 9

Preorder: 5 7 2 9
5

7

2 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (II)

Satz
Ist von einem (unbekannte) Binärbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 5 2 7 9
Preorder: 5 7 2 9

5

7

2 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39



Elementare Datenstrukturen Binäre Bäume

Preorder, Inorder, Postorder (II)

Satz
Ist von einem (unbekannte) Binärbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 5 2 7 9
Preorder: 5 7 2 9

5

7

2 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39


	Abstrakte Datentypen
	Stapel und Warteschlangen
	Verkettete Listen
	Einfach verkettete Listen
	Doppelt verkettete Listen

	Binäre Bäume
	Traversierungen


