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Ubersicht

@ Abstrakte Datentypen
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Abstrakte Datentypen

Abstrakter Datentyp (ADT)

Ein abstrakter Datentyp besteht aus:
» Einer Datenstruktur (Menge von Werten) und

» einer Menge von Operationen darauf.
(z. B. Konstruktor, Zugriffs- und Bearbeitungsfunktionen)

Beispiele

Baum, Kellerspeicher (stack), Liste, Warteschlange (queue),
Prioritatswarteschlange (priority queue), Wérterbuch . ..
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Elementare Datenstrukturen Abstrakte Datentypen

Datenkapselung

Unterscheide zwischen

Spezifikation des ADTs: wie sich die Datenobjekte verhalten, und

Implementierung: wie dieses Verhalten programmtechnisch erreicht wird.

Joost-Pieter Katoen
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Elementare Datenstrukturen Abstrakte Datentypen

Datenkapselung

Unterscheide zwischen
Spezifikation des ADTs: wie sich die Datenobjekte verhalten, und

Implementierung: wie dieses Verhalten programmtechnisch erreicht wird.

Datenkapselung (data encapsulation)

Dieses Paradigma wird Kapselung (oder: Datenabstraktion) genannt:

» Daten sind auBerhalb des ADT nur (iber wohldefinierte Operationen
zuganglich.

» Die Reprasentation der Daten ist nur fiir die Implementierung
relevant.
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Spezifikation von ADTs (I)

Spezifikation eines ADTs

» Beschreibt wie sich die Operationen auf den Daten verhalten;
> nicht jedoch die interne Reprasentation der Daten,

> genauso wenig wie die Implementierung der Operationen.
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Spezifikation von ADTs (I)

Spezifikation eines ADTs

» Beschreibt wie sich die Operationen auf den Daten verhalten;
> nicht jedoch die interne Reprasentation der Daten,

> genauso wenig wie die Implementierung der Operationen.

Beschreibung der Auswirkung von Operationen durch logische Aussagen:

Vorbedingung (precondition)

Aussage, die vor Aufruf der Operation gelten muss.
(Verpflichtung des Benutzers!)

Nachbedingung (postcondition)

Aussage, die als Ergebnis der Operation gelten wird.

= Grundlage fir die Argumentation iiber die Korrektheit des ADTs.
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Spezifikation von ADTs (Il)

Die Operation void push(Stack s, int e) hat
» die Vorbedingung: true (d. h. leere Aussage) und

» die Nachbedingung: oberster Eintrag von s ist e.

» ADTs sind durch ihre Spezifikation festgelegte
»Standard"-Komponenten zum Aufbau unserer Algorithmen.
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Implementierung von ADTs

Implementierung eines ADTs

» Beschreibt die interne Reprasentation der Daten, und

» die genaue Implementierung der Operationen.
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Implementierung von ADTs

Implementierung eines ADTs

» Beschreibt die interne Reprasentation der Daten, und

» die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermoglichen es uns die Performance zu optimieren.

= Grundlage fir die Argumentation iiber die Effizienz des ADTs.
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Implementierung von ADTs

Implementierung eines ADTs

» Beschreibt die interne Reprasentation der Daten, und

» die genaue Implementierung der Operationen.

Verschiedene Implementierungen von ADTs der selben Spezifikation
ermoglichen es uns die Performance zu optimieren.

= Grundlage fir die Argumentation iiber die Effizienz des ADTs.

Beispiel

Die Operation push(Stack s, int e) als Array-Implementierung:
1 void push(Stack s, int e) {

2 s.top = s.top + 1;

3 s[s.top] = e;

4}
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Elementare Datenstrukturen Abstrakte Datentypen

Effizienz von Implementierungen
Die Effizienz einer ADT-Implementierung ist entscheidend.

1. Die Zeitkomplexitat der Operationen auf dem ADT.

» Einfiigen von Elementen,
» Ldschen von Elementen,
» Suchen von Elementen.

2. Die Platzkomplexitat der internen Datenreprasentation.
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Elementare Datenstrukturen Abstrakte Datentypen

Effizienz von Implementierungen
Die Effizienz einer ADT-Implementierung ist entscheidend.

1. Die Zeitkomplexitat der Operationen auf dem ADT.

» Einfiigen von Elementen,
» Ldschen von Elementen,
» Suchen von Elementen.

2. Die Platzkomplexitat der internen Datenreprasentation.

Ublicherweise ein Kompromiss zwischen Zeit- und Platzeffizienz:

» Schnelle Operationen bendtigen in der Regel zusatzlichen
Speicherplatz.

» Platzsparende Reprasentationen fiihren oft zu langsameren
Operationen.

Implementierungen einer Prioritdtswarteschlange (spater).
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Ubersicht

© Stapel und Warteschlangen
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Elementare Datenstrukturen Stapel und Warteschlangen

Beispiele fiir ADTs: Stapel

Stapel (stack)

Ein Stapel (Kellerspeicher) speichert eine Ansammlung von Elementen und
bietet folgende Operationen:

> bool isEmpty(Stack s) gibt true zuriick, wenn s leer ist und
andernfalls false.

> void push(Stack s, int e) fiigt das Element e in den Stapel s ein.

> int pop(Stack s) entfernt das zuletzt eingefligte Element und gibt
es zuriick; pop(s) bendtigt einen nicht-leeren Stapel s.
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Beispiele fiir ADTs: Warteschlangen

Warteschlange (queue)

Eine Warteschlange speichert eine Ansammlung von Elementen und bietet
folgende Operationen:

> bool isEmpty(Queue q) gibt true zuriick, wenn q leer ist, andernfalls
false.

> void enqueue(Queue g, int e) fligt das Element e in die
Warteschlange q eine.

> int dequeue(Queue q) entfernt das schon am langsten in der
Warteschlange vorhandene Element und gibt es zuriick; bendtigt
daher eine nicht-leere Warteschlange q.
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Beispiele fiir ADTs: Warteschlangen

Warteschlange (queue)

Eine Warteschlange speichert eine Ansammlung von Elementen und bietet
folgende Operationen:

> bool isEmpty(Queue q) gibt true zuriick, wenn q leer ist, andernfalls
false.

> void enqueue(Queue g, int e) fligt das Element e in die
Warteschlange q eine.

> int dequeue(Queue q) entfernt das schon am langsten in der
Warteschlange vorhandene Element und gibt es zuriick; bendtigt
daher eine nicht-leere Warteschlange q.

Ein Stapel bietet LIFO (last-in first-out) Semantik, eine Warteschlange
FIFO (first-in first-out).
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Stapelimplementierung auf unbeschrankten Arrays

. push(41; T
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Stapelimplementierung auf unbeschrankten Arrays
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Stapelimplementierung auf unbeschrankten Arrays

] push(41= ] push(11= ] pop() ]
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Stapelimplementierung auf unbeschrankten Arrays

1 bool isEmpty(Stack s) {
2 return (s.top == -1);

3}

5 void push(Stack s, int e) {
6 s.top = s.top + 1;

7 s[s.top] = e;

8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];

13}
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Stapelimplementierung auf unbeschrankten Arrays

1 bool isEmpty(Stack s) { » Die Laufzeit ist jeweils ©(1).
2 return (s.top == -1);
3}

5 void push(Stack s, int e) {
6 s.top = s.top + 1;

7 s[s.top] = e;

8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];

13}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39



Stapelimplementierung auf unbeschrankten Arrays

1 bool isEmpty(Stack s) { » Die Laufzeit ist jeweils ©(1).

2> return (s.top == -1); .

2} > In pop muss der Fall eines leeren
Stapels nicht beriicksichtigt

5 void push(Stack s, int e) { werden. Warum?

6 s.top = s.top + 1;
7 s[s.top] = e;
8 }

10 int pop(Stack s) {
11 s.top = s.top - 1;
12 return s[s.top + 1];

13}
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Stapelimplementierung auf unbeschrankten Arrays

1 bool isEmpty(Stack s) { » Die Laufzeit ist jeweils ©(1).

2> return (s.top == -1); .

2} > In pop muss der Fall eines leeren
Stapels nicht beriicksichtigt

5 void push(Stack s, int e) { werden. Warum?

6 s.top = s.top + 1;

: sls.top] = e; » Eine Implementierung als

s } verkettete Liste vermeidet eine
a priori Festlegung der
10 int pop(Stack s) { ArraygréBe.

11 s.top = s.top - 1;
12 return s[s.top + 1];

13}
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

: tail E
i7 17
12 head Q head
T enq(Og .
- 1 tail
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

- o o 5
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

: tail E E E - m head

17 1 ead 17 1 ead 17 ead 17+

] enq(Og ] enq(gg 1 deq(O). [—1 deqQ

] ] — tail — tail tail
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. 1 tail

] = 9 9] [9]
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

1 bool isEmpty(Queue q) { » ArraygroBe N.
> return (q.head == g.tail);
3}

5 void enqueue(Queue g, int e) {
6 qlq.taill = e;

7 q.tail = (q.tail + 1) mod N;
8}

10 int dequeue(Queue q) {

11 int e = q[q.head];

12 g.head = (q.head + 1) mod N;
13 return e;
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

1 bool isEmpty(Queue q) { » ArraygroBe N.
t .head == q.tail); . e .
z } return (q.hea q-tail) » Die Laufzeit ist jeweils ©(1).
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

1 bool isEmpty(Queue q) { » ArraygroBe N.
t .head == q.tail); . e .
z } return (q.hea q-tail) » Die Laufzeit ist jeweils ©(1).

» Der Einfachheit halber werden

5 void enqueue(Queue g, int e) { Uberliufe nicht abgefangen.

6 qlq.taill = e;
7 q.tail = (q.tail + 1) mod N;
8}

10 int dequeue(Queue q) {

11 int e = q[q.head];

12 g.head = (q.head + 1) mod N;
13 return e;
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Elementare Datenstrukturen Stapel und Warteschlangen

Warteschlangenimplementierung auf beschrankten
Arrays (1)

1 bool isEmpty(Queue q) {
> return (q.head == g.tail);
3}

v

ArraygroBe N.
Die Laufzeit ist jeweils ©(1).

Der Einfachheit halber werden
Uberliufe nicht abgefangen.

v

v

5 void enqueue(Queue g, int e) {
6 qlq.taill = e;

7 q.tail = (q.tail + 1) mod N; » Die Queue ist voll gdw.

s} q-head == (q.tail + 1) mod N.

10 int dequeue(Queue q) {

11 int e = q[q.head];

12 g.head = (q.head + 1) mod N;
13 return e;
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Die Prioritatswarteschlange (1)

v

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

Jeder Schliissel sei hochstens an ein Element vergeben.

v

Schliissel werden als Prioritat betrachtet.

Die Elemente werden nach ihrer Prioritat sortiert.

v
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Die Prioritatswarteschlange (1)

v

Betrachte Elemente, die mit einem Schliissel (key) versehen sind.

v

Jeder Schliissel sei hochstens an ein Element vergeben.

Schliissel werden als Prioritat betrachtet.

v

v

Die Elemente werden nach ihrer Prioritat sortiert.

Prioritatswarteschlange (priority queue)

Eine Prioritatswarteschlange speichert eine Ansammlung von Elementen
und bietet folgende Operationen:

> bool isEmpty(PriorityQueue pq) gibt true zuriick, wenn pq leer ist,
andernfalls false.

> void insert(PriorityQueue pq, int e, int k) fiigt das Element e
mit dem Schliissel k in pq ein.

> int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten

Schliissel zuriick; bendtigt nicht-leere pq. _
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Die Prioritatswarteschlange (1)

Prioritatswarteschlange (priority queue) (Forts.)

> void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schliissel; bendtigt nicht-leere pq.

> int getElt(PriorityQueue pg, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

> void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel
von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schliissel von e sein.

Wichtige Datenstruktur fir Greedy-Algorithmen,
Diskrete-Event-Simulationen, . ..
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, unsortiert, auf beschrankten
Arrays

tail 012
17 4 17 4
128 head 12 8 head

ins(0,12)
N

tail
———

schwarz = Element; rot = Schliissel
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, unsortiert, auf beschrankten
Arrays

JLall 012 012
17 4 17 4 17 4
128 head 12 8 head 128 head

ins(0,12) ins(3,7)
=2y =Ty
tail
-
tail
D 37

schwarz = Element; rot = Schliissel
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, unsortiert, auf beschrankten
Arrays

ALY 012 012 37
17 4 17 4 17 4 012

128 head 12 8 head 128 head 12 8 head

ins(0,12) ins(3,7) delMin()
— — ——
tail
-
tail tail
-« 37 -«

schwarz = Element; rot = Schliissel
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, unsortiert, auf beschrankten
Arrays

ALY 012 012 37
17 4 17 4 17 4 012

128 head 12 8 head 128 head 12 8 head

ins(0,12) ins(3,7) delMin() getE1t (12)
— 2 —= —— -
tail
-« ==
tail tail
-« 37 -«

schwarz = Element; rot = Schliissel
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, sortiert, auf beschrankten
Arrays

tail 012
12 8 12 8
17 4 head 17 4 head
ins(0,12)
tail
H
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, sortiert, auf beschrankten
Arrays

tail
——

012 12 8
12 8 12 8 37
17 4 head 17 4 head 17 4 head
ins(0,12) ins(3,7)
tail
tail 012
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, sortiert, auf beschrankten
Arrays

12 8

17 4

tail
——

head
le———

ins(0,12)
N

Joost-Pieter Katoen

012
12 8
17 4 head
ins(3,7)
tail
H

12 8

37

17 4 head
delMin()
tail
H

012

012
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Elementare Datenstrukturen Stapel und Warteschlangen

Prioritatswarteschlange, sortiert, auf beschrankten
Arrays

tail
——

012 12 8 12 8 head
12 8 12 8 37 3 7=
17 4 head 17 4 head 17 4 head
ins(0,12) ins(3,7) delMin() getE1t (12)
tail tail
. -« -«
<ot 012 012
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Zwei Prioritatswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array
isEmpty (pq) o(1) o(1)
insert(pq,e,k) ©(1) O(n)*
getMin(pq) ©(n) o(1)
delMin(pq) O(n)* o(1)
getElt (pq,k) ©(n) O(log n)T
decrKey(pq,e,k) ©(n) O(log n)f

> In Vorlesung 8 (Heapsort) werden wir eine weitere Implementierung
kennenlernen.

*Beinhaltet das Verschieben aller Elemente , rechts" von k.
TMittels binarer Suche.
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Ubersicht

© Verkettete Listen
o Einfach verkettete Listen
@ Doppelt verkettete Listen
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Elementare Datenstrukturen Verkettete Listen

Einfach verkettete Listen

Einfach verkettete Liste

Eine einfach verkettete Liste ist eine rekursive, dynamische Datenstruktur.

» Elemente bestehend aus Schliissel k sowie Zeiger auf ein
nachfolgendes Element

> Listen kdnnen dynamisch erweitert werden

> head zeigt auf das erste Element der Liste

head —»{ 48 [@]***5{34 [@}—»{ 2 [@} {25 [ |

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39



Listen (1)

Eine Liste speichert eine Ansammlung von Elementen mit fester
Reihenfolge und bietet folgende Operationen:

» void insert(List 1, Element x) fligt das Element x an den Anfang
der Liste ein.

» void remove(List 1, Element x) entfernt das Element x aus der
Liste.

> Element search(List 1, int k) gibt das Element mit dem
tibergebenen Key k zuriick und null falls es kein derartiges Element
gibt.
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Listen (1)

Liste (Forts.)

> Element minimum(List 1) gibt das Element mit dem kleinsten
Schliissel zuriick.

> Element maximum(List 1) gibt das Element mit dem hochsten
Schlissel zuriick.

> Element successor(List 1, Element x) gibt das Nachfolgerelement
von Element x zuriick.

> Element predecessor(List 1, Element x) gibt das
Vorgangerelement von Element x zuriick.
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Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List 1) {
2 last = l.head;

3 pos = last.next;

4 last.next = null;

6 while(pos != null){ last pos

7 tmp = pos.next;

8 pos.next = last;

9 last = pos; < <:> >
10 pos = tmp;

un

13 1l.head = last;
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Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List 1) {
2 last = l.head;

3 pos = last.next;
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6 while(pos != null){ last pos tmp
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Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List 1) {
2 last = l.head;

3 pos = last.next;

4 last.next = null;

while(pos !'= null){ pos/last tmp

6

7 tmp = pos.next;

8 pos.next = last;

9 last = pos; < <:>

10 pos = tmp;

11}

13 1l.head = last;
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Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List 1) {
2 last = l.head;

3 pos = last.next;

4 last.next = null;

6 while(pos != null){ last tmp/pos

7 tmp = pos.next;

8 pos.next = last;

9 last = pos; < <:> >
10 pos = tmp;

un

13 1l.head = last;
14 }
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Elementare Datenstrukturen Verkettete Listen

Listen umdrehen

1 void reverse(List 1) {
2 last = l.head;

3 pos = last.next;

4 last.next = null;

6 while(pos != null){ last
7 tmp = pos.next;

8 pos.next = last;

9 last = pos; < (:)

10 pos = tmp;

11 }

13 1l.head = last;
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Doppelt verkettete Listen

Doppelt verkettete Liste

Eine doppelt verkettete Liste kann sowohl vorwarts als auch riickwarts
durchlaufen werden. Sie implementiert den ADT Liste.

» Elemente besitzen neben Schliissel und Nachfolgender einen weiteren
Zeiger auf das vorherige Element.

» Zusatzlicher Zeiger tail zeigt auf das letzte Element der Liste

head tail
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Elementare Datenstrukturen Verkettete Listen

Laufzeiten
Implementierung
Operation einfach verkette Liste doppelt verkettete Liste
insert(L,x) O(1) ©(1)
remove (L, x) O(n) o(1)
search(L,k) ©(n) ©(n)
minimum(L) ©(n) ©(n)
maximum (L) ©(n) ©(n)
successor (L,x) o(1) o(1)
predecessor (L,x) ©(n) (1)
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Laufzeiten

Implementierung

Operation einfach verkette Liste doppelt verkettete Liste
insert(L,x) O(1) ©(1)
remove (L,x) O(n) o(1)
search(L,k) ©(n) ©(n)
minimum(L) ©(n) ©(n)
maximum(L) ©(n) ©(n)
successor (L,x) o(1) o(1)
predecessor(L,x) O(n) o(1)

> Suchen eines Schliissels erfordert einen Durchlauf der gesamten Liste.
Gibt es andere Moglichkeiten, die Daten zu organisieren?
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Ubersicht

@ Binire Biaume
@ Traversierungen
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Binarbaume — Intuition

Binarbaum — Intuition

Betrachte einen binaren Baum:

» Jedes Element bekommt zwei Zeiger (1eft und right) zu den
nachfolgenden Elementen.

» Man erhélt in etwa folgende Datenstruktur:

Vater/Mutter A )
von Bund C ~---_ ] 124___--—Sch|ussel
elel,,
N N
Linkes Kind ¢ Rechtes Kind
vonA TT--- W6 C[ 225 |q----""" vonA
ole ole

o XN
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Binarbaume — Definition

Definition (Bindrbaum)

Ein Binarbaum (binary tree) ist ein gerichteter, zykelfreier Graph (V, E)
mit Knoten (nodes, allgemein: vertices) V und gerichteten Kanten (edges)
EcVxV.

» Es gibt genau einen ausgezeichneten Knoten, die Wurzel (root).

» Alle Kanten zeigen von der Wurzel weg.

» Der Ausgangsgrad (out-degree) jedes Knotens ist hochstens 2.
> Der Eingangsgrad eines Knoten ist 1, bzw. 0 bei der Wurzel.
» Sonderfall: Baum mit V = E = @.
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Binarbaume — Begriffe (1)

. Wurzel

A T

: 1(132 7777777777777777 +» Ebene 0
™
Il innerer
0!
g «-- Knoten -,
5. 6Q K :TSQ fffffff » Ebene 1
_Q: //
k= /
o) L4
" 34 103 1056
@ ---» Ebene 2
g ole [ |
=y \ ‘ !
:O‘ ' !
T \ ’

: 2‘3 410 S » Ebene 3

\ <4- — ‘\\\\\ \\ /I

"7 - Blatt
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Binarbaume — Begriffe (1)

Definition (Bindarbaum — Begriffe)

» Ein Knoten mit leerem linken und rechten Teilbaum heiBt Blatt (leaf).

» Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein
Abstand, d. h. die Pfadlange, von der Wurzel.

» Die Hohe (level) eines Baumes ist die maximale Tiefe seiner Blatter.
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Binarbaume — Begriffe (1)

Definition (Bindarbaum — Begriffe)

» Ein Knoten mit leerem linken und rechten Teilbaum heiBt Blatt (leaf).

» Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein
Abstand, d. h. die Pfadlange, von der Wurzel.

» Die Hohe (level) eines Baumes ist die maximale Tiefe seiner Blatter.

Beispiel (Vorteile von binaren Baumen)

Angenommen, man mochte 31 Elemente vorhalten:
Ebene 0 (Wurzel) enthalt 1 Element Gesamt:

Ebene 1 enthalt 2 Elemente 3
Ebene 2 enthalt 4 Elemente 7
Ebene 3 enthalt 8 Elemente 15
Ebene 4 enthalt 16 Elemente 31
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Binarbaume — Begriffe (1)

Definition (Bindarbaum — Begriffe)

» Ein Knoten mit leerem linken und rechten Teilbaum heiBt Blatt (leaf).

» Die Tiefe (depth) (auch: Ebene / level) eines Knotens ist sein
Abstand, d. h. die Pfadlange, von der Wurzel.

» Die Hohe (level) eines Baumes ist die maximale Tiefe seiner Blatter.

Beispiel (Vorteile von binaren Baumen)

Angenommen, man mochte 31 Elemente vorhalten:
Ebene 0 (Wurzel) enthalt 1 Element Gesamt:

Ebene 1 enthalt 2 Elemente 3
Ebene 2 enthalt 4 Elemente 7
Ebene 3 enthalt 8 Elemente 15
Ebene 4 enthalt 16 Elemente 31

= Ein Element kann in 5 Schritten (statt 31) erreicht werden.
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Elementare Datenstrukturen Binadre Baume

Einige Fakten iiber binare Baume

Lemma (Ubung)

» Ebene d enthilt héchstens 29 Knoten.

» Ein Bindrbaum mit Hoéhe h kann maximal 2h+t1 — 1 Knoten enthalten.

» Enthilt er n Knoten, dann hat er mindestens Héhe [log(n+1)] — 1
(log = log,).
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Elementare Datenstrukturen Binadre Baume

Einige Fakten iiber binare Baume

Lemma (Ubung)

» Ebene d enthilt héchstens 29 Knoten.

» Ein Bindrbaum mit Hoéhe h kann maximal 2h+t1 — 1 Knoten enthalten.

» Enthilt er n Knoten, dann hat er mindestens Héhe [log(n+1)] — 1
(log = log,).

Definition (vollstandig)

Ein Binarbaum heiBt vollstindig, wenn er bei Hohe h alle 26+1 — 1 Knoten
enthalt.
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Elementare Datenstrukturen Binadre Baume

Traversierung

Traversierung

Eine Traversierung ist ein Baumdurchlauf mit folgenden Eigenschaften:
1. Die Traversierung beginnt und endet an der Wurzel.

2. Die Traversierung folgt den Kanten des Baumes. Jede Kante wird
genau zweimal durchlaufen: Einmal von oben nach unten und danach
von unten nach oben.

3. Die Teilbdume eines Knotens werden in festgelegter Reihenfolge
(zuerst linker, dann rechter Teilbaum) besucht.

4. Unterschiede bestehen darin, bei welchen Durchlauf man den Knoten
selbst (bzw. das dort gespeicherte Element) , besucht*.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung
void inorder (Node node) {
if (node !'= null) {

1
(+) :
3 n (ll
‘ e 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
u e e 7 II) n
8
&) @ :

}
}

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
m 2 if (node != null) {
& 3 " (u
‘ e 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
u e e 7 II) n
8
&) @ o}

(

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 Il(ll
B 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
u 7 Il)ll
8
&) @ o}

Beispiel
((=

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binare Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 Il(ll
a 4 inorder (node.left);

5 print (node) ;
6 inorder(node.right) ;

@ G 6 o

—_— 8 }

&) @ o}

((=(

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binare Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 n (ll
a 4 inorder (node.left);

5 print (node) ;
6 inorder(node.right) ;

e e 7 Il) n
8

@ (%) 9}

((—(8

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 Il(ll
4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
/ 7 Il)ll
8
lo 3

((—(8/

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binare Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 n (ll
a 4 inorder (node.left);

5 print (node) ;
6 inorder(node.right) ;

e e 7 Il) n
8

(8) @ 9}

((—(8/4

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 Il(ll
a 4 inorder (node.left);

5 print (node) ;
6 inorder(node.right) ;

) & B ©w

S’ 8 }

& @ o}

((—(8/4)

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

void inorder (Node node) {
if (node !'= null) {
Il(ll

1
2
3
@ e 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 e e 7 II) n

8

g ® 9

((—(8/4))

}
}

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
T 2 if (node !'= null) {
3 n (ll
‘ 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 7 II) n
8
& @ o}

Beispiel
((—(8/4)) +

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

void inorder (Node node) {
if (node !'= null) {
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1
2
3
‘ O 4 inorder (node.left);
s 5 print (node) ;
6 inorder(node.right) ;
0 e e 7 II) n
8
g ® 9

((=(8/4)) +(

}
}

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 n (ll
‘ 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 3 e 7 n) n
8
& @ o}

((—(8/4)) + (3

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 n (ll
‘ " 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 7 II) n
8
& @ o}

((—(8/4)) + 3+

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

1 void inorder (Node node) {
2 if (node !'= null) {
3 n (ll
‘ 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 e 5 7 n) "
8
& @ o}

((—(8/4)) + (35

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung

void inorder (Node node) {
if (node !'= null) {
Il(ll

1
2
3
‘ @ 4 inorder (node.left);
s 5 print (node) ;
6 inorder(node.right) ;
0 e e 7 II) n

8

g ® 9

((—(8/4)) +(3%5)

}
}

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Inorder-Traversierung
void inorder (Node node) {
if (node !'= null) {

1
©) :
—~ 3 " (u
‘ e 4 inorder (node.left);
5 print (node) ;
6 inorder(node.right) ;
0 e e 7 II) n
8
& @ :

((—(8/4)) +(3%5))

}
}

Linearisierung

Eine Aufzahlung alle Elemente eines Baumes in der Reihenfolge einer
bestimmten Traversierung (ohne Klammern) nennt man Linearisierung.
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Elementare Datenstrukturen Binadre Baume

Preorder, Inorder, Postorder (1)

a 1 void inorder (Node node) {
2 if (node !'= null) {
‘ 6 3 inorder (node.left);
4 print (node) ;
5 inorder(node.right) ;
(& ®
oo -

Beispiel (Inorder)
—8/4+4+3%5
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Elementare Datenstrukturen Binadre Baume

Preorder, Inorder, Postorder (1)

a 1 void preorder(Node node) {
2 if (node !'= null) {
‘ 6 3 print(node);
4 preorder (node.left);
5 preorder (node.right) ;
ONORIONEENE:
oo .

Beispiel (Inorder) Beispiel (Preorder)

—8/4+3x%5 +—/84%35
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Elementare Datenstrukturen Binadre Baume

Preorder, Inorder, Postorder (1)
void postorder(Node node) {

(+) :
2 if (node !'= null) {
‘ 6 3 postorder (node.left);
4 postorder (node.right);

5 print (node);
OBORONE
OJRO :

Beispiel (Inorder) Beispiel (Preorder)

—8/4+3x%5 +—/84%35

}
}

Beispiel (Postorder — Umgekehrte Polnische Notation (RPN))

84/ -135%+4

"neg
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Preorder, Inorder, Postorder-Traversierung

1 void preorder (Node node) { 16 void postorder(Node node) {
2 if (node != null) { 17 if (node != null) {

3 visit(node); 18 postorder (node.left);

4 preorder (node.left); 19 postorder (node.right) ;

5 preorder (node.right) ; 20 visit (node);

6 ) a

7 } 2 }

9 void inorder(Node node) {
10 if (node '= null) {

11 inorder(node.left);
12 visit(node);

13 inorder (node.right) ;
1}

15

Komplexitat

©(n), wobei n die Anzahl der Knoten ist.
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Preorder, Inorder, Postorder (1)

Ist von einem (unbekannte) Bindrbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 527 9
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Preorder, Inorder, Postorder (1)

Ist von einem (unbekannte) Bindrbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 527 9
Preorder: 57 2 9
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Preorder, Inorder, Postorder (1)

Satz

Ist von einem (unbekannte) Bindrbaum mit eindeutigen Werten sowohl die
Inorder-Linearisierung als auch entweder die Preorder- oder die
Postorder-Linearisierung gegeben, dann ist der Baum eindeutig bestimmt.

Beispiel (Rekonstruktion aus Inorder- und Preorder-Linearisierung)

Inorder: 527 9
Preorder: 57 2 9 e
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