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Suchen Lineare Suche

Formale Definition (I)

Einige hilfreiche Begriffe

Dn = Menge aller Eingaben der Länge n

t(I) = für Eingabe I benötigte Anzahl elementarer Operationen

Pr(I) = Wahrscheinlichkeit, dass Eingabe I auftritt

Woher kennen wir:

t(I)? – Durch Analyse des fraglichen Algorithmus.
Pr(I)? – Erfahrung, Vermutung (z. B. „alle Eingaben treten mit gleicher

Wahrscheinlichkeit auf“).
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Formale Definition (II)

Average-Case Laufzeit
Die Average-Case Laufzeit von A ist die von A durchschnittlich benötigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Länge n:

A(n) =
∑
I∈Dn

Pr(I) · t(I)
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Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Räder und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhängig von allen anderen Rädern angestoßen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit 1

2 .

Man gewinnt den ganzen Jackpot wenn alle Räder ein Herz-Symbol zeigen.

Man gewinnt die Hälfte des Jackpots wenn alle Räder ein Karo-Symbol
zeigen.

Sonst gewinnt man nichts.

Frage: Wieviel Prozent des Jackpots gewinnt man im Schnitt?

Antwort: 1
8 × 1+ 1

8 ×
1
2 +

6
8 × 0 = 3

16 .
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Lineare Suche

Rechenproblem

Eingabe: Array E mit n > 0 Einträgen, sowie das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

1 bool linSearch(int E[], int n, int K) {
2 for (int index = 0; index < n; index ++) {
3 if (E[index] == K) {
4 return true; // oder: return index;
5 }
6 }
7 return false; // nicht gefunden
8 }
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Lineare Suche – Analyse
Elementare Operation
Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben
Dn ist die Menge aller Permutationen von n ganzen Zahlen, die
ursprünglich aus einer Menge N > n ganzer Zahlen ausgewählt wurden.

Zeitkomplexität

I W (n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

I B(n) = 1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.
I A(n) ≈ 1

2n, da im Schnitt K mit etwa der Hälfte des Arrays E
verglichen werden muss? – Nein.
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Lineare Suche – Average-Case-Analyse (I)

Zwei Szenarien

1. K kommt nicht in E vor.
2. K kommt in E vor.

Zwei Definitionen

1. Sei AK6∈E (n) die Average-Case-Laufzeit für den Fall "K nicht in E".
2. Sei AK∈E (n) die Average-Case-Laufzeit für den Fall "K in E".

A(n) = Pr{K in E} · AK∈E (n) + Pr{K nicht in E} · AK6∈E (n)
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Der Fall "K in E"
I Angenommen alle Elemente in E sind unterschiedlich.
I Damit ist die Wahrscheinlichkeit für K == E[i] gleich 1

n .
I Die Anzahl benötigter Vergleiche im Fall K == E[i] ist i + 1.
I Damit ergibt sich:

AK∈E (n) =
n−1∑
i=0

Pr{K == E[i]|K in E} · t(K == E[i])

=
n−1∑
i=0

(1
n

)
· (i + 1)

=

(1
n

)
·

n−1∑
i=0

(i + 1)

=
(
1
n

)
· n(n+1)

2

= n+1
2 .
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Herleitung

A(n) = Pr{K in E} · AK∈E (n) + Pr{K nicht in E} · AK6∈E (n)

AK∈E (n) =
n+1
2

= Pr{K in E} · n+1
2 + Pr{K nicht in E} · AK6∈E (n)

Pr{nicht B} = 1− Pr{B}

= Pr{K in E} · n+1
2 + (1− Pr{K in E}) · AK6∈E (n)

AK 6∈E (n) = n

= Pr{K in E} · n+1
2 + (1− Pr{K in E}) · n

= n·
(
1− 1

2 Pr{K in E}
)
+

1
2 Pr{K in E}
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Lineare Suche – Average-Case-Analyse

Endergebnis
Die Average-Case-Zeitkomplexität der linearen Suche ist:

A(n) = n ·
(
1− 1

2 Pr{K in E}
)
+

1
2 Pr{K in E}

Beispiel
Wenn Pr{K in E}
= 1, dann ist A(n) = n+1

2 , d. h. etwa 50% von E ist überprüft.
= 0, dann ist A(n) = n = W (n), d. h. E wird komplett überprüft.
= 1

2 , dann ist A(n) = 3·n
4 + 1

4 , d. h. etwa 75% von E wird überprüft.
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Suchen Bilineare Suche

Bilineare Suche

Statt eine Reihe in einer Richtung zu durchsuchen, kann man dies auch in
beide Richtungen “zeitgleich”.
Dies führt zur bilineare Suche.

1 bool bilinSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;
3 while (left <= right) {
4 if (E[left] == K || E[right] == K) {
5 return true;
6 }
7 left = left + 1;
8 right = right - 1;
9 }

10 return false; // nicht gefunden
11 }
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Bilineare Suche – Analyse

Worst-Case Zeitkomplexität
Im schlimmsten Fall, wird die Schleife

⌈n
2
⌉
mal durchlaufen.

Pro Schleife finden zwei Vergleiche K == E[i] statt.
Also W (n) = 2

⌈n
2
⌉
.

Best-Case Zeitkomplexität
B(n) = 2, da zwei Vergleiche reichen, wenn K == E[1] oder K == E[n].

Average-Case Zeitkomplexität
Ähnlich wie für die lineare Suche.
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Bilineare Suche

Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn
verzichtet wird auf Terminierung der Suche sobald K gefunden ist.
Weiterhin soll der Ausgabe i sein, sodaß E[i] == K gilt.

1 int bilinSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;
3 while (left != right) {
4 if (E[left] != K || E[right] == K) { left = left + 1; }
5 if (E[right] != K || E[left] == K) { right = right - 1; }
6 }
7 }
8 return left
9 }

Hausaufgabe: bestimmen Sie für dieses Programm W (n) und A(n).
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Das Prominentensuche Problem
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Das Prominentensuche Problem
Was ist ein Prominenter?
Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n ∈ N Personen nummeriert 0, . . . , n−1
2. Mindestens eine Person ist ein Prominenter
3. n × n boolean Matrix K , so dass für 0 6 i , j < n:

K [i , j] =
{

1 falls Person i kennt Person j
0 sonst

Ausgabe: Sei k ∈ {0, . . . , n−1}, so dass Person k Prominenter ist, d.h.:

∀0 6 i < n. i 6= k ⇒ K [i , k]︸ ︷︷ ︸
alle kennen Person k

und ∀0 6 i < n. i 6= k ⇒ ¬K [k, i ]︸ ︷︷ ︸
Person k kennt niemandem
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Beispiel: Wer ist ein Prominenter?



1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 0
0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 1 1 1 1
0 1 1 1 1 0 0 0
1 1 1 1 1 0 1 0
0 0 0 1 0 0 0 1


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Beispiel: Wer ist ein Prominenter?



1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 0
0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 1 1 1 1
0 1 1 1 1 0 0 0
1 1 1 1 1 0 1 0
0 0 0 1 0 0 0 1


Es ist einfach, einen Prominenten mit W (n) ∈ O(n2) zu bestimmen.

Geht es auch mit W (n) ∈ O(n)?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/1



Suchen Bilineare Suche

Das Prominentensuche Problem: Lineare Suche

Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m 6= 0.
Dann gilt: ∀0 6 k < m. k ist kein Prominenter.
Die Suche geht dann weiter in Zeile m, Spalte m, usw.

1 int CelebritySearch(bool K[], int n) {
2 int row = 0; column = 0; // Reihe- und Spalte-index
3 while (row != n && column != n) {
4 if (row != column) {
5 if (!K[row,column]) { column = column + 1; }
6 if (K[row,column]) { row = column; }
7 } else { column = column + 1; } // row == column
8 }
9 return row

10 }
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Das Prominentensuche Problem: Bilineare Suche

Einige Eigenschaften
Für alle 0 < i , j 6 n gilt:
1. K [i , j] =⇒ i ist kein Prominenter
2. ¬K [j , i ] =⇒ i ist kein Prominenter

Aus dieser Eigenschaft folgt direkt folgende bilineare Suche im Array K:

1 int CelebritySearch(bool K[], int n) {
2 int row = 0, column = n - 1; // Reihe- und Spalte-index
3 while (row != column) {
4 if (K[row,column]) { row = row + 1; } // Property 1
5 if (!K[row,column]) { column = column - 1; } // Property 2
6 }
7 }
8 return row
9 }
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Das Prominentensuche Problem

Zeitkomplexität
Es gilt A(n),B(n),W (n) ∈ O(n).
Der Algorithmus kann leicht angepasst werden, damit er terminiert sobald
ein Prominenter gefunden wurde.
Dies ändert die asymptotische Zeitkomplexität W (n) jedoch nicht.

Aufgabe:
Bestimmen Sie die Zeitkomplexität der linearen Suche für dieses Problem.
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Das Boxenstopp Problem
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Der Hockenheimring
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Das Boxenstopp Problem
Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n ∈ N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert 0 durch n−1.

2. Am Boxenstopp i stehen uns T (i) Liter Benzin zur
Verfügung

3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V (i) Liter Benzin

4. Gegeben:
n−1∑
i=0

T (i) =
n−1∑
i=0

V (i)

Ausgabe: Bestimme k ∈ {0, . . . , n − 1}, so dass Michael Schumacher
mit einem leeren Tank eine komplette Runde fahren kann.

Erwünschte Worst Case Zeitkomplexität: O(n).
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Das Boxenstopp Problem: Beispiel
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Das Boxenstopp Problem

Differenzmatrix
Sei D eine n × n Integermatrix, so dass D[i , j] die Differenz ist zwischen
der Anzahl der Liter Benzin die zur Verfügung stehen und die man braucht
um von Boxenstopp i (rechts herum) nach Boxenstopp j zu fahren.

D[i , j] =
j−1∑
m=i

T (m)− V (m).

Starting Boxenstopp
Boxenstopp k ist starting Boxenstopp gdw. ∀0 6 i < n. D[k, i ] > 0
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Das Boxenstopp Problem

Einige Eigenschaften

1. Für alle 0 6 i , j < n gilt: D[i , i ] = 0 und D[i , j] + D[j , i ] = 0
2. Für alle 0 6 i , j ,m < n gilt: D[i ,m] = D[i , j] + D[j ,m]

3. k ist starting Boxenstopp gdw. D[0, k] minimal ist
4. D[i , j] > 0 =⇒ j ist kein starting Boxenstopp
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Das Boxenstopp Problem: Bilineare Suche

Mittels einer Hilfsvariable d bekommen wir jetzt folgenden Algorithmus:

1 int PitstopSearch(int V[], int T[], int n) {
2 int left = 0, right = n - 1;
3 int d = V[n-1] - T[n-1]; // d = D[0,n-1]
4 while (left != right) { // Invariant: d = D[left,right]
5 if (d <= 0) { left = left + 1; d = d + V[left] - T[left]; }
6 if (d >= 0) { right = right - 1;
7 d = d + V[right-1] - T[right-1];
8 }
9 }

10 return left
11 }

Es ist leicht festzustellen, dass W (n) ∈ O(n), da die Schleife genau n Mal
durchlaufen wird.
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Übersicht
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Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.
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Binäre Suche – Beispiel
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Binäre Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;
3 while (left <= right) {
4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }
6 if (E[mid] > K) { right = mid - 1; }
7 if (E[mid] < K) { left = mid + 1; }
8 }
9 return false;

10 }
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Binäre Suche – Analyse

Lemma
Sei r ∈ R und n ∈ N. Dann gilt:
1. br + nc = brc+ n
2. dr + ne = dre+ n
3. b−rc = −dre
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Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e
Im schlimmsten Fall ist die neue Größe des Arrays also:

d(n − 1)/2e
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Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1+ S(d(n − 1)/2e) falls n > 0

Die erste Werten sind:

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Wir suchen eine geschlossene Formel für S(n)
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Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximal Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1+ S(d(n − 1)/2e), daß:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.
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Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1+ S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/1

Suchen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+ S(d(n − 1)/2e) = 1+ blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.
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Binäre Suche – Analyse

Theorem
Die Worst Case Zeitkomplexität der binären Suche ist W (n) = blog nc+ 1.
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Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexität Vorteil Nachteil

Lineare Suche O(n) einfach langsam
Bilineare Suche O(n) einfach / elegant langsam
Binäre Suche O(log n) schnell sortiertes Array

(O(n · log n) Initia-
lisierungsaufwand)
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