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Ubersicht Formale Definition (1)

Einige hilfreiche Begriffe

D, = Menge aller Eingaben der Lange n
t(/) = fir Eingabe / benétigte Anzahl elementarer Operationen

Pr(/) = Wahrscheinlichkeit, dass Eingabe / auftritt

Woher kennen wir:

t(/)? — Durch Analyse des fraglichen Algorithmus.

Pr(/)? — Erfahrung, Vermutung (z. B. ,alle Eingaben treten mit gleicher
Wahrscheinlichkeit auf").
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Suchen Lineare Suche

Formale Definition (1)

Average-Case Laufzeit

Die Average-Case Laufzeit von A ist die von A durchschnittlich benétigte Anzahl
elementarer Operationen auf einer beliebigen Eingabe der Lange n:

A(n) = > Pr(l)-t(/)

Suchen Lineare Suche

Intermezzo: Erwartungswerte

Betrachte einen einarmigen Banditen. Er hat 3 Rader und jedes Rad ist
beschriftet mit Herz- und Karo-Symbolen.

Jedes Rad wird unabhangig von allen anderen Radern angestoBen; jedes
liefert Herz oder Karo, beides mit der Wahrscheinlichkeit %

Man gewinnt den ganzen Jackpot wenn alle Rader ein Herz-Symbol zeigen.

Man gewinnt die Halfte des Jackpots wenn alle Rader ein Karo-Symbol

IeD, zeigen.
Sonst gewinnt man nichts.
Frage: Wieviel Prozent des Jackpots gewinnt man im Schnitt?
-1 11,6 - 3
Antwort: g x 1+ g x5 +gx0 = 5.

Lineare Suche

Rechenproblem

Eingabe: Array E mit n > 0 Eintragen, sowie das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

1 bool linSearch(int E[], int n, int K) {

2 for (int index = 0; index < n; index ++) {
3 if (E[index] == K) {
4 return true; // oder: return index;
5 }
6
7 return false; // nicht gefunden
8 }
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Lineare Suche — Analyse

Elementare Operation

Vergleich einer ganzen Zahl K mit Element E[index].

Menge aller Eingaben

D,, ist die Menge aller Permutationen von n ganzen Zahlen, die
urspriinglich aus einer Menge N > n ganzer Zahlen ausgewahlt wurden.

Zeitkomplexitat

» W(n) = n, da n Vergleiche notwendig sind, falls K nicht in E
vorkommt (oder wenn K == E[n]).

» B(n) =1, da ein Vergleich ausreicht, wenn K gleich E[1] ist.

» A(n) ~ 3n, da im Schnitt kK mit etwa der Halfte des Arrays E
verglichen werden muss? — Nein.
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Suchen Lineare Suche

Lineare Suche — Average-Case-Analyse (I)

Zwei Szenarien

1. X kommt nicht in E vor.

2. K kommt in E vor.

Zwei Definitionen

1. Sei Akge(n) die Average-Case-Laufzeit fiir den Fall "K nicht in E".
2. Sei Akeg(n) die Average-Case-Laufzeit fiir den Fall "K in E".

|
A(n) = Pr{K in E} - Akce(n) + Pr{K nicht in E} - Axge(n)
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Suchen Lineare Suche

Herleitung

A(n) = Pr{K in E} - Akce(n) + Pr{K nicht in E} - Axge(n)

n+1
Axee(n) = ——

1
= Pr{Kk in E} - % + Pr{X nicht in E} - Akgge(n)
| Pr{nicht B} =1 — Pr{B}

=Pr{K in E} - %1 + (1 = Pr{K in E}) - Akge(n)
‘ AKgE(n) =n

:Pr{KinE}~%1+(l—Pr{KinE})-n

=n (1 - % Pr{K in E}) + % Pr{K in E}
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Suchen Lineare Suche

Der Fall "k in "

» Angenommen alle Elemente in E sind unterschiedlich.

» Damit ist die Wahrscheinlichkeit fiir K == E[i] gleich %

» Die Anzahl benétigter Vergleiche im Fall K == E[i] ist / + 1.
» Damit ergibt sich:
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Suchen Lineare Suche

Lineare Suche — Average-Case-Analyse

Endergebnis

Die Average-Case-Zeitkomplexitat der linearen Suche ist:

A(n) = n- (1 - % Pr{K in E}) 4+ % Pr{Kk in E}

Beispiel
Wenn Pr{K in E}
=1, dannist A(n) =
= 0, dann ist A(n) =
)=

=1 dannist A(n

n£1 4. h. etwa 50% von E ist iiberpriift.
= W(n), d.h. E wird komplett iberpriift.
- %, d.h. etwa 75% von E wird tberprift.

w 3

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/1



Suchen Bilineare Suche Suchen Bilineare Suche

Ubersicht Bilineare Suche

Statt eine Reihe in einer Richtung zu durchsuchen, kann man dies auch in
beide Richtungen “zeitgleich™.

Dies fuhrt zur bilineare Suche.

1 bool bilinSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;
3 while (left <= right) {
4 if (E[left] == K || Elright] == K) {
5 return true;
6 }
7 left = left + 1;
8 right = right - 1;
o }
10 return false; // nicht gefunden
1}
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Bilineare Suche — Analyse Bilineare Suche

Worst-Case Zeitkomplexitat Vereinfachung wenn gegeben ist, dass K in E vorkommt, und wenn

ichtet wird auf Termini der Such bald K gefunden ist.
Im schlimmsten Fall, wird die Schleife [g] mal durchlaufen. verzichtet wird aut ferminierung der suche soba getunden 1s

Weiterhin soll der A be i sei daB E[i] == K gilt.
Pro Schleife finden zwei Vergleiche K == E[i] statt. eiterhin soll der Ausgabe 1 sein, sodal E[] &

Also W(n) =21%].

Best-Case Zeitkomplexitat

B(n) = 2, da zwei Vergleiche reichen, wenn K == E[1] oder K == E[n].

1 int bilinSearch(int E[], int n, int K) {

2 int left = 0, right = n - 1;

3 while (left != right) {

4 if (E[left] != K || E[right] == K) { left = left + 1; }

5 if (El[right] != K || E[left] == K) { right = right - 1; }
6

7

8

9

b
b

return left

3

Ahnlich wie fiir die lineare Suche. Hausaufgabe: bestimmen Sie fiir dieses Programm W/(n) und A(n).

Average-Case Zeitkomplexitat

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/1 Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/1



Suchen Biincare Suche
Das Prominentensuche Problem Das Prominentensuche Problem

Was ist ein Prominenter?

Ein Prominenter (celebrity) ist jemand den alle kennen, der jedoch selber
keinen kennt.

Beispiel (Das Prominentensuche Problem)

Eingabe: 1. n € N Personen nummeriert O,...,n—1
2. Mindestens eine Person ist ein Prominenter
3. n x n boolean Matrix K, so dass fiir 0 < /,j < n:

o 1 falls Person i kennt Person j
Klijl =

0 sonst

Ausgabe: Sei k € {0, ..., n—1}, so dass Person k Prominenter ist, d.h.:

VO<i<ni#k= K[i,k] und VO < i< n.i#k=-KIk,i]

alle kennen Person k Person k kennt niemandem
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Beispiel: Wer ist ein Prominenter? Beispiel: Wer ist ein Prominenter?

11111101
11111101 11111010
1 1111010 00111010
0 0111010 0001 0O0O0TO
0001 O0O0O0TU0O 10011111
10011111 01111000
01111000 11111010
11111010 0 001 0O0O01
0001 0O0O0T1

Es ist einfach, einen Prominenten mit W(n) € O(n?) zu bestimmen.
Geht es auch mit W(n) € O(n)?
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Suchen Bilineare Suche

Das Prominentensuche Problem: Lineare Suche

Idee: starte eine Suche am K[0,0] und suche bis eine 1 gefunden wird in
Zeile 0, Spalte m # 0.

Dann gilt: VO < k < m. k ist kein Prominenter.

Die Suche geht dann weiter in Zeile m, Spalte m, usw.

1 int CelebritySearch(bool K[], int n) {
2 int row = 0; column = 0; // Rethe- und Spalte-index
3 while (row '= n && column !'= n) {
4 if (row != column) {
5 if ('K[row,column]) { column = column + 1; }
6 if (K[row,column]) { row = column; }
7 } else { column = column + 1; } // row == column
s r
9 Treturn row
10 }
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Suchen Bilineare Suche

Das Prominentensuche Problem

Zeitkomplexitat
Es gilt A(n), B(n), W(n) € O(n).

Der Algorithmus kann leicht angepasst werden, damit er terminiert sobald
ein Prominenter gefunden wurde.

Dies andert die asymptotische Zeitkomplexitat W(n) jedoch nicht.

Aufgabe:

Bestimmen Sie die Zeitkomplexitat der linearen Suche fiir dieses Problem.
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Suchen Bilineare Suche

Das Prominentensuche Problem: Bilineare Suche

Einige Eigenschaften

Fir alle 0 < i, j < n gilt:
1. K[i,j] = i ist kein Prominenter
2. =K]|j, i] = i ist kein Prominenter

Aus dieser Eigenschaft folgt direkt folgende bilineare Suche im Array K:

1 int CelebritySearch(bool K[], int n) {

2 int row = 0, column = n - 1; // Rethe- und Spalte-index

3 while (row !'= column) {

4 if (K[row,column]) { row = row + 1; } // Property 1

5 if (!K[row,column]) { column = column - 1; } // Property 2

6 }

7

8 return row

9}
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Suchen Bilineare Suche

Das Boxenstopp Problem
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Bilineare Suche

Suchen
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Suchen

Das Boxenstopp Problem: Beispiel
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Suchen Bilineare Suche

Das Boxenstopp Problem

Beispiel (Das Boxenstopp Problem)

Eingabe: 1. n € N Boxenstopps auf den Hockenheimring, rechts
herum nummeriert O durch n—1.
2. Am Boxenstopp i stehen uns T (/) Liter Benzin zur
Verfligung
3. Um von Boxenstopp i nach (i+1) mod n zu fahren
braucht man V(i) Liter Benzin

n—1 n—1
4. Gegeben: Z T(i) = Z V(i)
i=0 i=0

Ausgabe: Bestimme k € {0,...,n— 1}, so dass Michael Schumacher
mit einem leeren Tank eine komplette Runde fahren kann.

Erwiinschte Worst Case Zeitkomplexitat: O(n).
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Suchen Bilineare Suche

Das Boxenstopp Problem

Differenzmatrix

Sei D eine n x n Integermatrix, so dass D[/, j] die Differenz ist zwischen
der Anzahl der Liter Benzin die zur Verfiigung stehen und die man braucht
um von Boxenstopp i (rechts herum) nach Boxenstopp j zu fahren.

j—1
D[i,j] = Z. T(m) — V(m).

Starting Boxenstopp

Boxenstopp k ist starting Boxenstopp gdw. V0 < i < n. D[k, i] >0
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Suchen Bilineare Suche

Das Boxenstopp Problem

Einige Eigenschaften

1. Furalle0<i,j<ngilt: D[li,i] = Ound D[i,j]+ D[j,i] = 0
2. Firalle 0 < i,j,m < ngilt: D[i, m] = Dli,j]+ D[j, m]|

3. k ist starting Boxenstopp gdw. D[0, k] minimal ist

4. DIi,j] > 0 = j ist kein starting Boxenstopp
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Suchen Binare Suche

Ubersicht
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Das Boxenstopp Problem: Bilineare Suche

Mittels einer Hilfsvariable d bekommen wir jetzt folgenden Algorithmus:

1 int PitstopSearch(int V[], int T[], int n) {

2 int left = 0, right = n - 1;

3 int 4 = V[n-1] - Tn-11; // d = D[0,n-1]

4 while (left != right) { // Invariant: d = D[left,right]

5 if (d <= 0) { left = left + 1; d = d + V[left] - T[left]; }
6 if (d >= 0) { right = right - 1;

7 d = d + V[right-1] - T[right-1];

8 }

9 }

10 return left

11}

Es ist leicht festzustellen, dass W(n) € O(n), da die Schleife genau n Mal
durchlaufen wird.
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Suchen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Fazit:

Wir halbieren den Suchraum in jedem Durchlauf.
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Suchen Binare Suche

Bindre Suche — Beispiel
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Suchen Binare Suche

Binare Suche — Analyse

Lemma

Sei r € R und n € N. Dann gilt:
1. [r+n] = [r]+n
2. [r+n] = [r]+n
3. |—r] = —[r]
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Suchen Binare Suche

Binare Suche

1 bool binSearch(int E[], int n, int K) {

2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8 }

9 return false;

10 }
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Suchen Binare Suche

Binare Suche — Analyse

Abkilirzungen: m = mid, r = right, | = left

Im nachsten Durchlauf ist die GroBe des Arrays m — | oder r — m.
Hierbei ist m = (/4 r)/2].

Die neue GroBe ist also:

>m—1 = [(I+r)/2] -1 = [(r=1)/2] = [(n-1)/2]

oder

>r—m = r—[(+r)/2] = [(r=1)/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]
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Suchen Binare Suche

Suchen Binare Suche

Rekursionsgleichung fiir Binare Suche Losen der Rekursionsgleichung

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Betrachte den Spezialfall n = 2K — 1.
Wir erhalten die Rekursionsgleichung:

Da die maximal GroBe des Arrays [(n—1)/2] ist, leiten wir her:

0 falls n=20 . .
o= k-1 -1]  [2k-2] o
S(n) { 1+ S([(n—1)/2]) fallsn>0 {2-‘ = { 5 -‘ — 2kl _1] = 2kl 7

Die erste Werten sind: Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n—1)/2]), daB:

n|0 1 2 3 45 6 7 8 S(2k-1) = 14+S5(2**~1) und damit S(2¥-1) = k+5(2° - 1) = k.
S(mlo 1 2 2 3 3 3 3 4 5
Wir suchen eine geschlossene Formel fiir S(n)
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Suchen Binare Suche Suchen Binare Suche
Binare Suche — Analyse Binare Suche — Analyse
Wir vermuten S(n) = [logn| + 1 fir n >0
n|0 123456738 Induktion iber n:
S(ny|o 1 2 2 3 3 3 3 4
Basis: S(1) = 1 = |logl] +1
Vermutung: S(2F) = 1+ S(2k1). (L) llog 1]
Induktionsschritt: Sei n > 1. Dann:
S(n) steigt monoton, also S(n) = k falls 2k=1 < n < 2k,
Oder: falls k — 1 < logn < k. S(n) = 1+5([(n=1)/2]) = 1+ [log[(n—1)/2]] +1
Dann ist S(n) = [log n| + 1. Man kann zeigen (Hausaufgabe): |log[(n —1)/2]| +1 = |logn].
Damit: S(n) = [logn| + 1 fir n > 0.
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Suchen Binare Suche Suchen Binare Suche

Binare Suche — Analyse Vergleich der Suchalgorithmen

Algorithmus Zeitkomplexitat Vorteil Nachteil

newe Suche  O(r) - dnfach langaam

Die Worst Case Zeitkomplexitat der bindren Suche ist W(n) = |logn| + 1. B!IlTeare Suche O(n) einfach / elegant Iangsam
Binare Suche O(log n) schnell sortiertes Array

(O(n-log n) Initia-
lisierungsaufwand)
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