Rekursionsgleichungen

Datenstrukturen und Algorithmen

Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

20. April 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/39

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

0 Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binarer Suche

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

© Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
@ Rekursionsbaume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/39

Ubersicht

0 Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binarer Suche

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/39

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Binare Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8}

9 return false;

10 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/39

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

s m—1 = |(I+0)/2) =1 = |[(r=1)/2) = [(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

B B 0 falls n=20
(n) = { 1+ 5S([(n—1)/2]) falls n>0

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:
0 falls n =10
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=0

S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = |log n] + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

(k—1)—-1|
| =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

=N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_% _ sz_ﬂ T S I =Y

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_1l _ sz_ﬂ R NS N

Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n —1)/2]), dass:

S(2k-1) = 1+5(2k1-1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_1l _ sz_ﬂ R NS N

Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n —1)/2]), dass:

S(2k-1) = 1+5(2*~1) und damit S(2K—1) = k+5(2° — 1)
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_1l _ sz_ﬂ R NS N

Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n —1)/2]), dass:

S(2k-1) = 1+5(2K*~-1) und damit S(2k—1) = k+5(2° - 1) = k.
=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Bindre Suche — Analyse

N[
W
w o
w [
w I~
& (00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Bindre Suche — Analyse

1
1

2 3 4
2 2 3

w [
& (00

w I~

5
S(n) | 3

Vermutung: S(2%) = 1+ S(2¢1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Vermutung: S(2%) = 1+ S(2¢1).
S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,
Oder: falls k — 1 < logn < k.

Dann ist S(n) = |logn| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Induktion tiber n:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:

Basis: S(1) = 1 = |[logl] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+5([(n—1)/2]) =

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+S5([(n—=1)/2]) = 1+ |log[(n—1)/2]] +1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Damit: S(n) = [logn] + 1 fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Bindre Suche — Analyse

Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n| + 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/39

Ubersicht

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/39

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(n-1)+1 Lineare Suche
» T(n)=T([(n-1)/2]) +1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2-T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:
Fib(0) =0
Fib(1) =1
Fib(n + 2) = Fib(n + 1) + Fib(n) fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1
Fib(n+ 2) = Fib(n+ 1) + Fib(n) fiir n > 0.
n|0 1 2 3 45 6 7 8 9
Fib(n) [0 1 1 2 3 5 8§ 13 21 34

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n == || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer
Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
Tfibrec(0) =0
Tfibrec(1) =0
ThibRec(n+2)

Ttibrec(n+1) + Thiprec(n) +3 fiir n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer

Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
TiibRec(0) = 0
Tfibrec(1) =0

TﬁbRec(n+2) = Tf,-bRec(n—i-l) + Tf,-bReC(n) +3 firn>0.

Zur Ermittlung der Zeitkomplexitatsklasse von fibRec l6st man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Analyse: Anwendung der ,,Substitutionsmethode*
Tiibrec(0) =0

Thibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(27),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3 fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(2"), oft abgekiirzt dargestellt als fibRec(n) € ©(2").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6

7 return f[n];

8}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Damit ergibt sich:
Ttipirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2]

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Thibiter2(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Es gilt fur n > 0:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:

Fib(n+2)\ (1 1\° (Fib(n) \ (1 1\" (Fib(2)
(Fib(n+1)>_<1 0) '(Fib(n—1)>_'“_<1 o) '(Fib(l))

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~ \1 o) "\ Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fib(n+2)) _ (1 1* (Fib(n) \ (1 1\" [(Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) " \1 0 Fib(1)

> Wie kénnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Bindre Exponentiation (iterative squaring) — Idee

1 int fibMat(int n) {
2 if (n==0 || n ==1) { return n; }
3 int Fib2([2,2] = { {0, 1}, {1, 1} };

4 int Res[2,2] = iterSq(Fib2, n - 1); // Matrizpotenz
5 return Res[1,1]; // das Element Res[1,1]

6t

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39

Rekursionsgleichungen Rekursionsgleichungen

Iterative Squaring — Analyse

1int[2,2] iterSq(int A[2,2], int n) { // n > 0
int Res[2,2];
if (n==1) {
return A;
} else if (n % 2) { // n ungerade
Res = matrixSquare(A, (n-1)/2);
return Res * Res * A;
} else { // n gerade
Res = matrixSquare(A, n/2);
return Res x Res;

© ® N o U B~ W N

=
o

3

-
=

_.
N
-

Die benétigte Anzahl arithmetischer Operationen Titersq(n) ist:
Titequ(l) =0
Titersq(n+1) = Titersq(n/2]) +3 fiir n > 0.
= iterSq hat logarithmische Komplexitat:
iterSq(-, n) € ©(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/39

Praktische Konsequenzen

GroBte losbare Eingabelange fiir angenommene 1 ps pro Operation:

Verfligbare Zeit Rekursiv Iterativ. Matrix

1ms 14 500 10%2
1ls 28 5.10° 1012000
1m 37 3-107 10700000
1h 45 1,8-10° 10%°°

Vereinfachende Annahmen: Lezbere Enzzlosl Ziss

> Nur arithmetische Operationen wurden beriicksichtigt.

» Die Laufzeit der arithmetischen Operationen ist fix, also nicht von
ihren jeweiligen Argumenten unabhangig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/39

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

» Die Kosten aufeinanderfolgender Blocke werden addiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.

» Von alternativen Blocken wird das Maximum genommen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Lange der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Ubersicht

© Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
@ Rekursionsbaume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/39

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k
T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k

T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k

T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Falle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:
T(n)y=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Einige Hinweise

» diese Methode ist sehr leistungsfahig, aber

» kann nur angewendet werden in den Fallen in denen es relativ einfach
ist, die Form der Lésung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

» Wir vermuten als Lésung T(n) € O(n - log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5 < c-3log3 firc>1
» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Die Substitutionsmethode: Beispiel

Beispiel
T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/39

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39

Die Substitutionsmethode: Variablentransformation

T(n) =2-T (y/n) + logn fiir n >0

(ﬁ) + log n | Variablentransformation m = log n
=2 (2'"/2) +m | Umbenennung T(2") = S(m)

=2-5(m/2)+m | Lsung vorheriges Beispiels

(m-log m) | m=logn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/39

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Loésung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Loésung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lésung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lésung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lésung funktioniert.

|
Wir betrachten mehr in Detail wie man die Form der Losung raten kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

log,n—1 3\/
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

3)\? 3\ 3\°
~or Tiasony+ (2 ons (2 s (2
log,n—1 f
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) =3 - T(n/4) + n sieht etwa so aus:

Aktuelles > T Nichtrekursive
Rekursionsargument o la---"" " Kosten
l
(/) = (/) . of4)
n/4 n/4 n/4
T(n/16)| |T(n/16)| | T(n/16) T(n/16)| |T(n/16)| | T(n/16)
n/16 n/16 nji6 | n/16 n/16 n/16

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

7(n) ;
T(n/4) 7(1/4) T(n/4)
logy n /4 n/a n/a 3n/4
T(n/16)| [T(n/16)| [T(n/16)] T(n/16)| | T(n/16)|[T(n/16)] 4, 14
n/16 n/16 n/16 n/16 n/16 n/16
TA)TQ) T@) TA) T(L) oo T()TA)T(1) T(1) T(1)
< 3loggn — plogs 3 >

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 37/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

7(n) ;
T(n/4) 7(1/4) T(n/4)
logy n /4 n/a n/a 3n/4
T(n/16)| [T(n/16)| [T(n/16)] T(n/16)| | T(n/16)|[T(n/16)] 4, 14
n/16 n/16 n/16 n/16 n/16 n/16
T TAQ)TQA)TA)T(A) e T()T(1) T(1) T(1) T(1)
< 3loggn — plogs 3 >
logyn—1 3\
T(n) = ; (4) ‘n 4+ c-n'os3

—— ~—— Gesamtkosten
Summe iiber KOSten pro fiir die Blitter
alle Ebenen Ebene mit T(1) =c¢

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 37/39

Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhalt man nun folgendermaBen:

logyn—1 i
T(n) = Z (4) -n+ c-n'°3 | Vernachlissigen kleinerer Terme

i=0
o) 3 i
< Z (4) -n+c-n'°s3 | Geometrische Reihe
i=0
1 log, 3
< -n—+ c- nosts | Umformen

3 Asymptotische Ordnung bestimmen
setze ein, dass log, 3 < 1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/39

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-:n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Und wir stellen fest, dass es ein ny gibt, so dass T(ng) < d-ng ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

	Rekursionsgleichungen
	Fibonacci-Zahlen
	Ermittlung von Rekursionsgleichungen

	Lösen von Rekursionsgleichungen
	Die Substitutionsmethode
	Rekursionsbäume

