
Rekursionsgleichungen

Datenstrukturen und Algorithmen
Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

20. April 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/39

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Rekursionsgleichungen

Übersicht

1 Binäre Suche
Was ist binäre Suche?
Worst-Case Analyse von Binärer Suche

2 Rekursionsgleichungen
Fibonacci-Zahlen
Ermittlung von Rekursionsgleichungen

3 Lösen von Rekursionsgleichungen
Die Substitutionsmethode
Rekursionsbäume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/39

Rekursionsgleichungen Binäre Suche

Übersicht

1 Binäre Suche
Was ist binäre Suche?
Worst-Case Analyse von Binärer Suche

2 Rekursionsgleichungen
Fibonacci-Zahlen
Ermittlung von Rekursionsgleichungen

3 Lösen von Rekursionsgleichungen
Die Substitutionsmethode
Rekursionsbäume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.

Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Idee
Da E sortiert ist, können wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:
1. suche in der linken Hälfte von E, falls K < E[mid]

2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:
Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

Rekursionsgleichungen Binäre Suche

Binäre Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;
3 while (left <= right) {
4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }
6 if (E[mid] > K) { right = mid - 1; }
7 if (E[mid] < K) { left = mid + 1; }
8 }
9 return false;

10 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e
Im schlimmsten Fall ist die neue Größe des Arrays also:

d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.

Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e
Im schlimmsten Fall ist die neue Größe des Arrays also:

d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.

Die neue Größe ist also:
I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c

oder
I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e

Im schlimmsten Fall ist die neue Größe des Arrays also:
d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c

oder
I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e

Im schlimmsten Fall ist die neue Größe des Arrays also:
d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e
Im schlimmsten Fall ist die neue Größe des Arrays also:

d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e

Im schlimmsten Fall ist die neue Größe des Arrays also:
d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays
Im nächsten Durchlauf ist die Größe des Arrays m − l oder r −m.
Hierbei ist m = b(l + r)/2c.
Die neue Größe ist also:

I m − l = b(l + r)/2c − l = b(r − l)/2c = b(n − 1)/2c
oder

I r −m = r − b(l + r)/2c = d(r − l)/2e = d(n − 1)/2e
Im schlimmsten Fall ist die neue Größe des Arrays also:

d(n − 1)/2e

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39

Rekursionsgleichungen Binäre Suche

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1 + S(d(n − 1)/2e) falls n > 0

Die ersten Werten sind:
n 0 1 2 3 4 5 6 7 8

S(n) 0 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binäre Suche

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1 + S(d(n − 1)/2e) falls n > 0

Die ersten Werten sind:
n 0 1 2 3 4 5 6 7 8

S(n) 0 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binäre Suche

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1 + S(d(n − 1)/2e) falls n > 0

Die ersten Werten sind:
n 0 1 2 3 4 5 6 7 8

S(n) 0 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binäre Suche

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1 + S(d(n − 1)/2e) falls n > 0

Die ersten Werten sind:
n 0 1 2 3 4 5 6 7 8

S(n) 0 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binäre Suche

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:

S(n) =

{
0 falls n = 0
1 + S(d(n − 1)/2e) falls n > 0

Die ersten Werten sind:
n 0 1 2 3 4 5 6 7 8

S(n) 0 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.

Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈
(2k − 1)− 1

2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:

⌈
(2k − 1)− 1

2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
=

d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1)

und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Lösen der Rekursionsgleichung

Betrachte den Spezialfall n = 2k − 1.
Da die maximale neue Größe des Arrays d(n−1)/2e ist, leiten wir her:⌈

(2k − 1)− 1
2

⌉
=

⌈
2k − 2

2

⌉
= d2k−1 − 1e = 2k−1 − 1.

Daher gilt für k > 0 nach der Definition S(n) = 1 + S(d(n − 1)/2e), dass:

S(2k−1) = 1+S(2k−1−1) und damit S(2k−1) = k+S(20 − 1)︸ ︷︷ ︸
=0

= k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1 + S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1 + S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1 + S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1 + S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

n 0 1 2 3 4 5 6 7 8
S(n) 0 1 2 2 3 3 3 3 4

Vermutung: S(2k) = 1 + S(2k−1).

S(n) steigt monoton, also S(n) = k falls 2k−1 6 n < 2k .

Oder: falls k − 1 6 log n < k.

Dann ist S(n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1
Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) =

1 + blogd(n − 1)/2ec+ 1
Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Wir vermuten S(n) = blog nc+ 1 für n > 0

Induktion über n:

Basis: S(1) = 1 = blog 1c+ 1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1 + S(d(n − 1)/2e) = 1 + blogd(n − 1)/2ec+ 1

Man kann zeigen (Hausaufgabe): blogd(n − 1)/2ec+ 1 = blog nc.

Damit: S(n) = blog nc+ 1 für n > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39

Rekursionsgleichungen Binäre Suche

Binäre Suche – Analyse

Theorem
Die Worst Case Zeitkomplexität der binären Suche ist W (n) = blog nc+ 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/39

Rekursionsgleichungen Rekursionsgleichungen

Übersicht

1 Binäre Suche
Was ist binäre Suche?
Worst-Case Analyse von Binärer Suche

2 Rekursionsgleichungen
Fibonacci-Zahlen
Ermittlung von Rekursionsgleichungen

3 Lösen von Rekursionsgleichungen
Die Substitutionsmethode
Rekursionsbäume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen
Rekursionsgleichung
Für rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben
beschreibt.

Beispiele

I T (n) = T (n−1) + 1 Lineare Suche
I T (n) = T (d(n−1)/2e) + 1 Binäre Suche
I T (n) = T (n−1) + n − 1 Bubblesort
I T (n) = 2·T (n/2) + n − 1 Mergesort
I T (n) = 7·T (n/2) + c·n2 Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen
Rekursionsgleichung
Für rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben
beschreibt.

Beispiele

I T (n) = T (n−1) + 1 Lineare Suche
I T (n) = T (d(n−1)/2e) + 1 Binäre Suche
I T (n) = T (n−1) + n − 1 Bubblesort
I T (n) = 2·T (n/2) + n − 1 Mergesort
I T (n) = 7·T (n/2) + c·n2 Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen
Rekursionsgleichung
Für rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben
beschreibt.

Beispiele

I T (n) = T (n−1) + 1 Lineare Suche
I T (n) = T (d(n−1)/2e) + 1 Binäre Suche
I T (n) = T (n−1) + n − 1 Bubblesort
I T (n) = 2·T (n/2) + n − 1 Mergesort
I T (n) = 7·T (n/2) + c·n2 Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen
Problem
Betrachte das Wachstum einer Kaninchenpopulation:

I Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
I Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
I Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
I Sie sterben nie und hören niemals auf.

Lösung
Die Anzahl der Kaninchenpaare lässt sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1

Fib(n + 2) = Fib(n + 1) + Fib(n) für n > 0.

n 0 1 2 3 4 5 6 7 8 9 . . .

Fib(n) 0 1 1 2 3 5 8 13 21 34 . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen
Problem
Betrachte das Wachstum einer Kaninchenpopulation:

I Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
I Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
I Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
I Sie sterben nie und hören niemals auf.

Lösung
Die Anzahl der Kaninchenpaare lässt sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1

Fib(n + 2) = Fib(n + 1) + Fib(n) für n > 0.

n 0 1 2 3 4 5 6 7 8 9 . . .

Fib(n) 0 1 1 2 3 5 8 13 21 34 . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen
Problem
Betrachte das Wachstum einer Kaninchenpopulation:

I Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
I Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
I Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
I Sie sterben nie und hören niemals auf.

Lösung
Die Anzahl der Kaninchenpaare lässt sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1

Fib(n + 2) = Fib(n + 1) + Fib(n) für n > 0.

n 0 1 2 3 4 5 6 7 8 9 . . .

Fib(n) 0 1 1 2 3 5 8 13 21 34 . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus
Rekursiver Algorithmus

1 int fibRec(int n) {
2 if (n == 0 || n == 1) {
3 return n;
4 }
5 return fibRec(n - 1) + fibRec(n - 2);
6 }

Die zur Berechnung von fibRec(n) benötigte Anzahl arithmetischer
Operationen TfibRec(n) ist durch folgende Rekursionsgleichung gegeben:

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n+2) = TfibRec(n+1) + TfibRec(n) + 3 für n > 0.

Zur Ermittlung der Zeitkomplexitätsklasse von fibRec löst man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus
Rekursiver Algorithmus

1 int fibRec(int n) {
2 if (n == 0 || n == 1) {
3 return n;
4 }
5 return fibRec(n - 1) + fibRec(n - 2);
6 }

Die zur Berechnung von fibRec(n) benötigte Anzahl arithmetischer
Operationen TfibRec(n) ist durch folgende Rekursionsgleichung gegeben:

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n+2) = TfibRec(n+1) + TfibRec(n) + 3 für n > 0.

Zur Ermittlung der Zeitkomplexitätsklasse von fibRec löst man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus
Rekursiver Algorithmus

1 int fibRec(int n) {
2 if (n == 0 || n == 1) {
3 return n;
4 }
5 return fibRec(n - 1) + fibRec(n - 2);
6 }

Die zur Berechnung von fibRec(n) benötigte Anzahl arithmetischer
Operationen TfibRec(n) ist durch folgende Rekursionsgleichung gegeben:

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n+2) = TfibRec(n+1) + TfibRec(n) + 3 für n > 0.

Zur Ermittlung der Zeitkomplexitätsklasse von fibRec löst man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der „Substitutionsmethode“
Problem

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n + 2) = TfibRec(n + 1) + TfibRec(n) + 3 für n > 0.

Lösung (mittels vollständiger Induktion)

TfibRec(n) = 3 · Fib(n + 1)− 3.

Fakt
2(n−2)/2 6 Fib(n) 6 2n−2 für n > 1.

Damit ergibt sich:
TfibRec(n) ∈ Θ(2n), oft abgekürzt dargestellt als fibRec(n) ∈ Θ(2n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der „Substitutionsmethode“
Problem

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n + 2) = TfibRec(n + 1) + TfibRec(n) + 3 für n > 0.

Lösung (mittels vollständiger Induktion)

TfibRec(n) = 3 · Fib(n + 1)− 3.

Fakt
2(n−2)/2 6 Fib(n) 6 2n−2 für n > 1.

Damit ergibt sich:
TfibRec(n) ∈ Θ(2n), oft abgekürzt dargestellt als fibRec(n) ∈ Θ(2n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der „Substitutionsmethode“
Problem

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n + 2) = TfibRec(n + 1) + TfibRec(n) + 3 für n > 0.

Lösung (mittels vollständiger Induktion)

TfibRec(n) = 3 · Fib(n + 1)− 3.

Fakt
2(n−2)/2 6 Fib(n) 6 2n−2 für n > 1.

Damit ergibt sich:
TfibRec(n) ∈ Θ(2n), oft abgekürzt dargestellt als fibRec(n) ∈ Θ(2n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der „Substitutionsmethode“
Problem

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n + 2) = TfibRec(n + 1) + TfibRec(n) + 3 für n > 0.

Lösung (mittels vollständiger Induktion)

TfibRec(n) = 3 · Fib(n + 1)− 3.

Fakt
2(n−2)/2 6 Fib(n) 6 2n−2 für n > 1.

Damit ergibt sich:
TfibRec(n) ∈ Θ(2n),

oft abgekürzt dargestellt als fibRec(n) ∈ Θ(2n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der „Substitutionsmethode“
Problem

TfibRec(0) = 0
TfibRec(1) = 0

TfibRec(n + 2) = TfibRec(n + 1) + TfibRec(n) + 3 für n > 0.

Lösung (mittels vollständiger Induktion)

TfibRec(n) = 3 · Fib(n + 1)− 3.

Fakt
2(n−2)/2 6 Fib(n) 6 2n−2 für n > 1.

Damit ergibt sich:
TfibRec(n) ∈ Θ(2n), oft abgekürzt dargestellt als fibRec(n) ∈ Θ(2n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus
Iterativer Algorithmus

1 int fibIter(int n) {
2 int f[n];
3 f[0] = 0; f[1] = 1;
4 for (int i = 2; i <= n; i++) {
5 f[i] = f[i-1] + f[i-2];
6 }
7 return f[n];
8 }

Die benötigte Anzahl arithmetischer Operationen TfibIter (n) ist:
TfibIter (0) = 0 und TfibIter (1) = 0

TfibIter (n + 2) = 3 · (n + 1) für n > 0.

Damit ergibt sich:
TfibIter (n) ∈ Θ(n), oder als Kurzschreibweise fibIter(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus
Iterativer Algorithmus

1 int fibIter(int n) {
2 int f[n];
3 f[0] = 0; f[1] = 1;
4 for (int i = 2; i <= n; i++) {
5 f[i] = f[i-1] + f[i-2];
6 }
7 return f[n];
8 }

Die benötigte Anzahl arithmetischer Operationen TfibIter (n) ist:
TfibIter (0) = 0 und TfibIter (1) = 0

TfibIter (n + 2) = 3 · (n + 1) für n > 0.

Damit ergibt sich:
TfibIter (n) ∈ Θ(n), oder als Kurzschreibweise fibIter(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus
Iterativer Algorithmus

1 int fibIter(int n) {
2 int f[n];
3 f[0] = 0; f[1] = 1;
4 for (int i = 2; i <= n; i++) {
5 f[i] = f[i-1] + f[i-2];
6 }
7 return f[n];
8 }

Die benötigte Anzahl arithmetischer Operationen TfibIter (n) ist:
TfibIter (0) = 0 und TfibIter (1) = 0

TfibIter (n + 2) = 3 · (n + 1) für n > 0.

Damit ergibt sich:
TfibIter (n) ∈ Θ(n), oder als Kurzschreibweise fibIter(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in Θ(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.
Iterativer Algorithmus

1 int fibIter2(int n) {
2 int a = 0; int b = 1;
3 for (int i = 2; i <= n; i++) {
4 c = a + b;
5 a = b;
6 b = c;
7 }
8 return b;
9 }

Der fibIter2 Algorithmus hat eine Speicherkomplexität in Θ(1) und
TfibIter2(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in Θ(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.
Iterativer Algorithmus

1 int fibIter2(int n) {
2 int a = 0; int b = 1;
3 for (int i = 2; i <= n; i++) {
4 c = a + b;
5 a = b;
6 b = c;
7 }
8 return b;
9 }

Der fibIter2 Algorithmus hat eine Speicherkomplexität in Θ(1) und
TfibIter2(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in Θ(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {
2 int a = 0; int b = 1;
3 for (int i = 2; i <= n; i++) {
4 c = a + b;
5 a = b;
6 b = c;
7 }
8 return b;
9 }

Der fibIter2 Algorithmus hat eine Speicherkomplexität in Θ(1) und
TfibIter2(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in Θ(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.
Iterativer Algorithmus

1 int fibIter2(int n) {
2 int a = 0; int b = 1;
3 for (int i = 2; i <= n; i++) {
4 c = a + b;
5 a = b;
6 b = c;
7 }
8 return b;
9 }

Der fibIter2 Algorithmus hat eine Speicherkomplexität in Θ(1) und
TfibIter2(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in Θ(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.
Iterativer Algorithmus

1 int fibIter2(int n) {
2 int a = 0; int b = 1;
3 for (int i = 2; i <= n; i++) {
4 c = a + b;
5 a = b;
6 b = c;
7 }
8 return b;
9 }

Der fibIter2 Algorithmus hat eine Speicherkomplexität in Θ(1) und
TfibIter2(n) ∈ Θ(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39

Rekursionsgleichungen Rekursionsgleichungen

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen
Es gilt für n > 0: (

Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)
·
(
Fib(n+1)
Fib(n)

)

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:(
Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)2

·
(
Fib(n)
Fib(n−1)

)
= . . . =

(
1 1
1 0

)n

·
(
Fib(2)
Fib(1)

)

I Wie können wir Matrixpotenzen effizient berechnen?
I Dies betrachten wir hier nicht ins Detail; geht in Θ(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Rekursionsgleichungen Rekursionsgleichungen

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen
Es gilt für n > 0: (

Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)
·
(
Fib(n+1)
Fib(n)

)

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:(
Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)2

·
(
Fib(n)
Fib(n−1)

)
= . . . =

(
1 1
1 0

)n

·
(
Fib(2)
Fib(1)

)

I Wie können wir Matrixpotenzen effizient berechnen?
I Dies betrachten wir hier nicht ins Detail; geht in Θ(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Rekursionsgleichungen Rekursionsgleichungen

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen
Es gilt für n > 0: (

Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)
·
(
Fib(n+1)
Fib(n)

)

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:(
Fib(n+2)
Fib(n+1)

)
=

(
1 1
1 0

)2

·
(
Fib(n)
Fib(n−1)

)
= . . . =

(
1 1
1 0

)n

·
(
Fib(2)
Fib(1)

)

I Wie können wir Matrixpotenzen effizient berechnen?
I Dies betrachten wir hier nicht ins Detail; geht in Θ(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Rekursionsgleichungen Rekursionsgleichungen

Binäre Exponentiation (iterative squaring) – Idee

1 int fibMat(int n) {
2 if (n == 0 || n == 1) { return n; }
3 int Fib2[2,2] = { {0, 1}, {1, 1} };
4 int Res[2,2] = iterSq(Fib2, n - 1); // Matrixpotenz
5 return Res[1,1]; // das Element Res[1,1]
6 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39

Rekursionsgleichungen Rekursionsgleichungen

Iterative Squaring – Analyse
1 int[2,2] iterSq(int A[2,2], int n) { // n > 0
2 int Res[2,2];
3 if (n == 1) {
4 return A;
5 } else if (n % 2) { // n ungerade
6 Res = matrixSquare(A, (n-1)/2);
7 return Res * Res * A;
8 } else { // n gerade
9 Res = matrixSquare(A, n/2);

10 return Res * Res;
11 }
12 }

Die benötigte Anzahl arithmetischer Operationen TiterSq(n) ist:
TiterSq(1) = 0

TiterSq(n+1) = TiterSq(bn/2c) + 3 für n > 0.

⇒ iterSq hat logarithmische Komplexität:
iterSq(·, n) ∈ Θ(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/39

Rekursionsgleichungen Rekursionsgleichungen

Praktische Konsequenzen

Beispiel
Größte lösbare Eingabelänge für angenommene 1 µs pro Operation:

Verfügbare Zeit Rekursiv Iterativ Matrix
1ms 14 500 1012
1 s 28 5 · 105 1012 000
1m 37 3 · 107 10700 000
1 h 45 1,8 · 109 10106

Lösbare EingabelängeVereinfachende Annahmen:
I Nur arithmetische Operationen wurden berücksichtigt.
I Die Laufzeit der arithmetischen Operationen ist fix, also nicht von

ihren jeweiligen Argumenten unabhängig.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case
Zur Ermittlung der Worst-Case Laufzeit T (n) zerlegen wir das Programm:

I Die Kosten aufeinanderfolgender Blöcke werden addiert.

I Von alternativen Blöcken wird das Maximum genommen.
I Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tsub1(f (n))

genommen, wobei f (n) die Länge der Parameter beim Funktionsaufruf
—abhängig von der Eingabelänge n des Programms— ist.

I Rekursive Aufrufe werden mit T (g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Länge der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case
Zur Ermittlung der Worst-Case Laufzeit T (n) zerlegen wir das Programm:

I Die Kosten aufeinanderfolgender Blöcke werden addiert.
I Von alternativen Blöcken wird das Maximum genommen.

I Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tsub1(f (n))
genommen, wobei f (n) die Länge der Parameter beim Funktionsaufruf
—abhängig von der Eingabelänge n des Programms— ist.

I Rekursive Aufrufe werden mit T (g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Länge der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case
Zur Ermittlung der Worst-Case Laufzeit T (n) zerlegen wir das Programm:

I Die Kosten aufeinanderfolgender Blöcke werden addiert.
I Von alternativen Blöcken wird das Maximum genommen.
I Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tsub1(f (n))

genommen, wobei f (n) die Länge der Parameter beim Funktionsaufruf
—abhängig von der Eingabelänge n des Programms— ist.

I Rekursive Aufrufe werden mit T (g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Länge der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case
Zur Ermittlung der Worst-Case Laufzeit T (n) zerlegen wir das Programm:

I Die Kosten aufeinanderfolgender Blöcke werden addiert.
I Von alternativen Blöcken wird das Maximum genommen.
I Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tsub1(f (n))

genommen, wobei f (n) die Länge der Parameter beim Funktionsaufruf
—abhängig von der Eingabelänge n des Programms— ist.

I Rekursive Aufrufe werden mit T (g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Länge der Aufrufparameter an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Übersicht

1 Binäre Suche
Was ist binäre Suche?
Worst-Case Analyse von Binärer Suche

2 Rekursionsgleichungen
Fibonacci-Zahlen
Ermittlung von Rekursionsgleichungen

3 Lösen von Rekursionsgleichungen
Die Substitutionsmethode
Rekursionsbäume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Einige Vereinfachungen
I Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen

wir häufig das Runden auf ganze Zahlen, z.B.:
T (n) = T (bn/2c) + T (dn/2e) + 3 wird T (n) = 2T (n/2) + 3.

I Manchmal wird angenommen, daß T (n) für kleine n konstant ist
anstatt genau festzustellen was T (0) und T (1) ist. Also z.B.:

T (0) = c und T (1) = c ′ statt T (0) = 4 und T (1) = 7.

I Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T (n) = T (
√
n) + n bedeutet T (n) = T (b

√
nc) + n.

I Grund: die Lösung wird typischerweise nur um einen konstanten
Faktor verändert, aber der Wachstumgrad bleibt unverändert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Einige Vereinfachungen
I Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen

wir häufig das Runden auf ganze Zahlen, z.B.:
T (n) = T (bn/2c) + T (dn/2e) + 3 wird T (n) = 2T (n/2) + 3.

I Manchmal wird angenommen, daß T (n) für kleine n konstant ist
anstatt genau festzustellen was T (0) und T (1) ist. Also z.B.:

T (0) = c und T (1) = c ′ statt T (0) = 4 und T (1) = 7.

I Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T (n) = T (
√
n) + n bedeutet T (n) = T (b

√
nc) + n.

I Grund: die Lösung wird typischerweise nur um einen konstanten
Faktor verändert, aber der Wachstumgrad bleibt unverändert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Einige Vereinfachungen
I Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen

wir häufig das Runden auf ganze Zahlen, z.B.:
T (n) = T (bn/2c) + T (dn/2e) + 3 wird T (n) = 2T (n/2) + 3.

I Manchmal wird angenommen, daß T (n) für kleine n konstant ist
anstatt genau festzustellen was T (0) und T (1) ist. Also z.B.:

T (0) = c und T (1) = c ′ statt T (0) = 4 und T (1) = 7.

I Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T (n) = T (
√
n) + n bedeutet T (n) = T (b

√
nc) + n.

I Grund: die Lösung wird typischerweise nur um einen konstanten
Faktor verändert, aber der Wachstumgrad bleibt unverändert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Einige Vereinfachungen
I Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen

wir häufig das Runden auf ganze Zahlen, z.B.:
T (n) = T (bn/2c) + T (dn/2e) + 3 wird T (n) = 2T (n/2) + 3.

I Manchmal wird angenommen, daß T (n) für kleine n konstant ist
anstatt genau festzustellen was T (0) und T (1) ist. Also z.B.:

T (0) = c und T (1) = c ′ statt T (0) = 4 und T (1) = 7.

I Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T (n) = T (
√
n) + n bedeutet T (n) = T (b

√
nc) + n.

I Grund: die Lösung wird typischerweise nur um einen konstanten
Faktor verändert, aber der Wachstumgrad bleibt unverändert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen

Einfache Fälle
Für einfache Fälle gibt es geschlossenen Lösungen, z. B. für k, c ∈ N:

T (0) = k
T (n+1) = c·T (n) für n > 0

hat die eindeutige Lösung T (n) = cn·k.

Und die Rekursionsgleichung:
T (0) = k

T (n+1) = T (n) + f (n) für n > 0

hat die eindeutige Lösung T (n) = T (0) +
n∑

i=1
f (i).

Bei der Zeitkomplexitätsanalyse treten solche Fälle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen

Einfache Fälle
Für einfache Fälle gibt es geschlossenen Lösungen, z. B. für k, c ∈ N:

T (0) = k
T (n+1) = c·T (n) für n > 0

hat die eindeutige Lösung T (n) = cn·k.
Und die Rekursionsgleichung:

T (0) = k
T (n+1) = T (n) + f (n) für n > 0

hat die eindeutige Lösung T (n) = T (0) +
n∑

i=1
f (i).

Bei der Zeitkomplexitätsanalyse treten solche Fälle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen

Einfache Fälle
Für einfache Fälle gibt es geschlossenen Lösungen, z. B. für k, c ∈ N:

T (0) = k
T (n+1) = c·T (n) für n > 0

hat die eindeutige Lösung T (n) = cn·k.
Und die Rekursionsgleichung:

T (0) = k
T (n+1) = T (n) + f (n) für n > 0

hat die eindeutige Lösung T (n) = T (0) +
n∑

i=1
f (i).

Bei der Zeitkomplexitätsanalyse treten solche Fälle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen
Allgemeine Format der Rekursionsgleichung
Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene
Lösung.

Der typischer Fall sieht folgendermaßen aus:

T (n) = b · T
(n
c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
I Jedes dieser Teilprobleme hat die Größe n

c
I Die Kosten für das Aufteilen eines Problems und Kombinieren der

Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen
Allgemeine Format der Rekursionsgleichung
Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene
Lösung.
Der typischer Fall sieht folgendermaßen aus:

T (n) = b · T
(n
c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
I Jedes dieser Teilprobleme hat die Größe n

c
I Die Kosten für das Aufteilen eines Problems und Kombinieren der

Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen
Allgemeine Format der Rekursionsgleichung
Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene
Lösung.
Der typischer Fall sieht folgendermaßen aus:

T (n) = b · T
(n
c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf

I Jedes dieser Teilprobleme hat die Größe n
c

I Die Kosten für das Aufteilen eines Problems und Kombinieren der
Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen
Allgemeine Format der Rekursionsgleichung
Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene
Lösung.
Der typischer Fall sieht folgendermaßen aus:

T (n) = b · T
(n
c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
I Jedes dieser Teilprobleme hat die Größe n

c

I Die Kosten für das Aufteilen eines Problems und Kombinieren der
Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Lösen von Rekursionsgleichungen
Allgemeine Format der Rekursionsgleichung
Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene
Lösung.
Der typischer Fall sieht folgendermaßen aus:

T (n) = b · T
(n
c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
I Jedes dieser Teilprobleme hat die Größe n

c
I Die Kosten für das Aufteilen eines Problems und Kombinieren der

Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Einige Hinweise

I diese Methode ist sehr leistungsfähig, aber
I kann nur angewendet werden in den Fallen in denen es relativ einfach

ist, die Form der Lösung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Einige Hinweise

I diese Methode ist sehr leistungsfähig, aber
I kann nur angewendet werden in den Fallen in denen es relativ einfach

ist, die Form der Lösung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Einige Hinweise

I diese Methode ist sehr leistungsfähig, aber
I kann nur angewendet werden in den Fallen in denen es relativ einfach

ist, die Form der Lösung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).

I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.

I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.

I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.

I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1

I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)

I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für eine geeignete n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
T (n) = 2 · T (n/2) + n für n > 1, und T (1) = 1

T (n) = 2 · T (n/2) + n Induktionshypothese

6 2 (c·n/2· log n/2) + n

= c·n· log n/2 + n log-Rechnung: (log ≡ log2)
log n/2 = log n − log 2

= c·n· log n − c·n· log 2 + n

6 c·n· log n − c·n + n mit c > 1 folgt sofort:

6 c·n· log n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollständigen Induktion bewiesen werden.
Das Problem ist gewöhnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation vernünftig um zu einer
Lösung zu geraten:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollständigen Induktion bewiesen werden.
Das Problem ist gewöhnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation vernünftig um zu einer
Lösung zu geraten:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Variablentransformation

Beispiel
T (n) = 2·T (

√
n) + log n für n > 0

T (n) = 2·T
(√

n
)

+ log n Variablentransformation m = log n

⇔ T (2m) = 2·T
(
2m/2

)
+ m Umbenennung T (2m) = S(m)

⇔ S(m) = 2·S(m/2) + m Lösung vorheriges Beispiels

⇔ S(m) 6 c·m· logm

⇔ S(m) ∈ O (m· logm) m = log n

⇔ T (n) ∈ O (log n· log log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Wir betrachten mehr in Detail wie man die Form der Lösung raten kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Wir betrachten mehr in Detail wie man die Form der Lösung raten kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Wir betrachten mehr in Detail wie man die Form der Lösung raten kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Iteration
Grundidee
Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Beispiel

T (n) = 3 · T (n/4) + n Einsetzen
= 3 · (3 · T (n/16) + n/4)) + n Nochmal einsetzen
= 9 · (3 · T (n/64) + n/16)) + 3 · n/4 + n Vereinfachen

= 27 · T (n/64) +

(3
4

)2
· n +

(3
4

)1
· n +

(3
4

)0
· n

Wir nehmen T (1) = c an und erhalten: T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Iteration
Grundidee
Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Beispiel

T (n) = 3 · T (n/4) + n Einsetzen
= 3 · (3 · T (n/16) + n/4)) + n Nochmal einsetzen
= 9 · (3 · T (n/64) + n/16)) + 3 · n/4 + n Vereinfachen

= 27 · T (n/64) +

(3
4

)2
· n +

(3
4

)1
· n +

(3
4

)0
· n

Wir nehmen T (1) = c an und erhalten: T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Iteration
Grundidee
Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Beispiel

T (n) = 3 · T (n/4) + n Einsetzen
= 3 · (3 · T (n/16) + n/4)) + n Nochmal einsetzen
= 9 · (3 · T (n/64) + n/16)) + 3 · n/4 + n Vereinfachen

= 27 · T (n/64) +

(3
4

)2
· n +

(3
4

)1
· n +

(3
4

)0
· n

Wir nehmen T (1) = c an und erhalten: T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Iteration
Grundidee
Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Beispiel

T (n) = 3 · T (n/4) + n Einsetzen
= 3 · (3 · T (n/16) + n/4)) + n Nochmal einsetzen
= 9 · (3 · T (n/64) + n/16)) + 3 · n/4 + n Vereinfachen

= 27 · T (n/64) +

(3
4

)2
· n +

(3
4

)1
· n +

(3
4

)0
· n

Wir nehmen T (1) = c an und erhalten: T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.

I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).
2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.

Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Beispiel
Der Rekursionsbaum von T (n) = 3 · T (n/4) + n sieht etwa so aus:

T (n)
n

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

T (n/4)
n/4

.

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

Aktuelles
Rekursionsargument

Nichtrekursive
Kosten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel
T (n)

n

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

T (n/4)
n/4

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

n

3n/4

9n/16

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log4 n

3log4 n = nlog4 3

T (n) =

log4n−1∑
i=0︸ ︷︷ ︸

Summe über
alle Ebenen

(3
4

)i
· n︸ ︷︷ ︸

Kosten pro
Ebene

+ c · nlog4 3︸ ︷︷ ︸
Gesamtkosten
für die Blätter
mit T (1) = c

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel
T (n)

n

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

T (n/4)
n/4

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

n

3n/4

9n/16

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log4 n

3log4 n = nlog4 3

T (n) =

log4n−1∑
i=0︸ ︷︷ ︸

Summe über
alle Ebenen

(3
4

)i
· n︸ ︷︷ ︸

Kosten pro
Ebene

+ c · nlog4 3︸ ︷︷ ︸
Gesamtkosten
für die Blätter
mit T (1) = c

Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Eine obere Schranke für die Komplexität erhält man nun folgendermaßen:

T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3 Vernachlässigen kleinerer Terme

<
∞∑
i=0

(3
4

)i
· n + c · nlog4 3 Geometrische Reihe

<
1

1− (3/4)
· n + c · nlog4 3 Umformen

< 4 · n + c · nlog4 3 Asymptotische Ordnung bestimmen
setze ein, dass log4 3 < 1

T (n) ∈ O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Korrektheit
Wir können die Substitutionsmethode benutzen, um die Vermutung zu
bestätigen dass:

T (n) ∈ O(n) eine obere Schranke von T (n) = 3 · T (n/4) + n ist.

T (n) = 3 · T (n/4) + n Induktionshypothese

6 3d ·n/4 + n

=
3
4d ·n + n

=

(3
4d + 1

)
·n mit d > 4 folgt sofort:

6 d ·n
Und wir stellen fest, dass es ein n0 gibt, so dass T (n0) 6 d ·n0 ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Korrektheit
Wir können die Substitutionsmethode benutzen, um die Vermutung zu
bestätigen dass:

T (n) ∈ O(n) eine obere Schranke von T (n) = 3 · T (n/4) + n ist.

T (n) = 3 · T (n/4) + n Induktionshypothese

6 3d ·n/4 + n

=
3
4d ·n + n

=

(3
4d + 1

)
·n mit d > 4 folgt sofort:

6 d ·n

Und wir stellen fest, dass es ein n0 gibt, so dass T (n0) 6 d ·n0 ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

Rekursionsgleichungen Lösen von Rekursionsgleichungen

Korrektheit
Wir können die Substitutionsmethode benutzen, um die Vermutung zu
bestätigen dass:

T (n) ∈ O(n) eine obere Schranke von T (n) = 3 · T (n/4) + n ist.

T (n) = 3 · T (n/4) + n Induktionshypothese

6 3d ·n/4 + n

=
3
4d ·n + n

=

(3
4d + 1

)
·n mit d > 4 folgt sofort:

6 d ·n
Und wir stellen fest, dass es ein n0 gibt, so dass T (n0) 6 d ·n0 ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

	Rekursionsgleichungen
	Fibonacci-Zahlen
	Ermittlung von Rekursionsgleichungen

	Lösen von Rekursionsgleichungen
	Die Substitutionsmethode
	Rekursionsbäume

