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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?
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Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
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Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]
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Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element X.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element X schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Wir halbieren den Suchraum in jedem Durchlauf.
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Binare Suche

1 bool binSearch(int E[], int n, int K) {
2 int left = 0, right = n - 1;

3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab
5 if (E[mid] == K) { return true; }

6 if (E[mid] > K) { right = mid - 1; }

7 if (E[mid] < K) { left = mid + 1; }

8}

9 return false;

10 }
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Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
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Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

s m—1 = |(I+0)/2) =1 = |[(r=1)/2) = [(n—1)/2]
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]
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Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Abklrzungen: m = mid, r = right, | = left

GroBe des undurchsuchten Arrays

Im nachsten Durchlauf ist die GréBe des Arrays m — | oder r — m.
Hierbei ist m = |(/ +r)/2].
Die neue GroBe ist also:

»m—1 = [(+n)/2] -1 = [(r=1)/2] = [(n=-1)/2]

oder

>r—m=r—[(l+n/2] = [(r=1/2] = [(n-1)/2]

Im schlimmsten Fall ist die neue GroBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39



Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
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Rekursionsgleichungen

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:

B B 0 falls n=20
(n) = { 1+ 5S([(n—1)/2]) falls n>0
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.
Wir erhalten die Rekursionsgleichung:
0 falls n =10
S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4
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Rekursionsgleichungen Binare Suche

Rekursionsgleichung fiir Bindre Suche

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche.

Wir erhalten die Rekursionsgleichung:
0 falls n=0

S(n) =
1+ S([(n—1)/2]) fallsn>0

Die ersten Werten sind:

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Wir haben letztes Mal abgeleitet: S(n) = |log n] + 1.
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

(k—1)—-1|
| =
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

=N
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_% _ sz_ﬂ T S I =Y
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_1l _ sz_ﬂ R NS N

Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n —1)/2]), dass:

S(2k-1) = 1+5(2k1-1)
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Losen der Rekursionsgleichung

Betrachte den Spezialfall n =2k — 1.

Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

{(2k _21)_1l _ sz_ﬂ R NS N

Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n —1)/2]), dass:

S(2k-1) = 1+5(2K*~-1) und damit S(2k—1) = k+5(2° - 1) = k.
=0
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Bindre Suche — Analyse
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Bindre Suche — Analyse
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Vermutung: S(2%) = 1+ S(2¢1).
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Bindre Suche — Analyse

1
1

n |

S(n) |
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0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39



Bindre Suche — Analyse

1
1

n |

S(n) |

0 2 3 45 6 7 8
0 2 2 3 3 3 3 4
Vermutung: S(2%) = 1+ S(2¢1).

S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,

Oder: falls k — 1 < logn < k.
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

n|0 1 2 3 45 6 7 8
S(nylo 1 2 2 3 3 3 3 4

Vermutung: S(2%) = 1+ S(2¢1).
S(n) steigt monoton, also S(n) = k falls 2k~ < n < 2k,
Oder: falls k — 1 < logn < k.

Dann ist S(n) = |logn| + 1.
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Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/39



Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0

Induktion tiber n:
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Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:

Basis: S(1) = 1 = |[logl] +1
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+5([(n—1)/2]) =
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+S5([(n—=1)/2]) = 1+ |log[(n—1)/2]] +1
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].
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Rekursionsgleichungen Binare Suche

Bindre Suche — Analyse

Wir vermuten S(n) = |logn| + 1 fir n >0
Induktion lber n:
Basis: S(1) = 1 = |[logl] +1

Induktionsschritt: Sei n > 1. Dann:

S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2]] +1
Man kann zeigen (Hausaufgabe): |log[(n—1)/2]] +1 = [logn].

Damit: S(n) = [logn] + 1 fiir n > 0.
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Bindre Suche — Analyse

Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n| + 1.
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Ubersicht

© Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen
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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
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Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.
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Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele
» T(n)=T(n-1)+1 Lineare Suche
» T(n)=T([(n-1)/2]) +1 Binare Suche
» T(n)=T(n-1)+n-1 Bubblesort
» T(n)=2-T(n/2)+n—-1 Mergesort
» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation
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Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.
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Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:
Fib(0) =0
Fib(1) =1
Fib(n + 2) = Fib(n + 1) + Fib(n)  fiir n > 0.
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Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen

Betrachte das Wachstum einer Kaninchenpopulation:
» Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
> Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
> Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

» Sie sterben nie und héren niemals auf.

LGsung

Die Anzahl der Kaninchenpaare lsst sich wie folgt berechnen:

Fib(0) = 0
Fib(1) = 1
Fib(n+ 2) = Fib(n+ 1) + Fib(n)  fiir n > 0.
n|0 1 2 3 45 6 7 8 9
Fib(n) [0 1 1 2 3 5 8§ 13 21 34
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n == || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer
Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
Tfibrec(0) =0
Tfibrec(1) =0
ThibRec(n+2)

Ttibrec(n+1) + Thiprec(n) +3  fiir n > 0.
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Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (n==0 || n==1) {

3 return n;

4}

5 return fibRec(n - 1) + fibRec(n - 2);
6}

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer

Operationen Tfprec(n) ist durch folgende Rekursionsgleichung gegeben:
TiibRec(0) = 0
Tfibrec(1) =0

TﬁbRec(n+2) = Tf,-bRec(n—i-l) + Tf,-bReC(n) +3 firn>0.

Zur Ermittlung der Zeitkomplexitatsklasse von fibRec l6st man diese
Gleichung.
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Analyse: Anwendung der ,,Substitutionsmethode*
Tiibrec(0) =0

Thibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.
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Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Rekursionsgleichungen Rekursionsgleichungen

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bRec(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39



Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(27),
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Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Tf,‘bRec(n + 2) = Tf,'bRec(n + 1) -+ Tf,'bReC(n) +3  fiirn>0.

Losung (mittels vollstandiger Induktion)

Tf,-bRec(n) =3- Fib(n + 1) — 3.

2(n=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(2"), oft abgekiirzt dargestellt als fibRec(n) € ©(2").
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Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6

7 return f[n];

8}
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Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {
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4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];
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7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
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Thbiter(n+2)=3-(n+1) firn>0.
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Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (dmt i = 2; 1 <= n; i++) {
5 flil = f[i-1] + f[i-2];

6

7 return f[n];

8}

Die benétigte Anzahl arithmetischer Operationen Tipje (1) ist:
7_fiblter(o) =0 und Tﬁblter(]-) =0
Thbiter(n+2)=3-(n+1) firn>0.

Damit ergibt sich:
Ttipirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39



Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).
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Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39



Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £[i-1] und £ [i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {

2 int a = 0; int b = 1;

3 for (int i = 2; i <= n; i++) {
4 c =a+b;

5 a = b;
6
7
8
9

b (o
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Thibiter2(n) € O(n).
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Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Fib(n+2)\ (1 1 Fib(n+1)
Fib(n+1)) — \1 0) \ Fib(n)

Es gilt fur n > 0:
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Fib(n+2)\ (1 1 Fib(n+1)
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Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:

Fib(n+2)\ (1 1\° (Fib(n) \ (1 1\" (Fib(2)
(Fib(n+1)>_<1 0) '(Fib(n—1)>_'“_<1 o) '(Fib(l))
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Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fur n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~ \1 o) "\ Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fib(n+2)) _ (1 1\* (Fib(n) \ (1 1\" [(Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) " \1 0 Fib(1)

> Wie kénnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)
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Bindre Exponentiation (iterative squaring) — Idee

1 int fibMat(int n) {
2 if (n==0 || n ==1) { return n; }
3 int Fib2([2,2] = { {0, 1}, {1, 1} };

4 int Res[2,2] = iterSq(Fib2, n - 1); // Matrizpotenz
5 return Res[1,1]; // das Element Res[1,1]

6t
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Rekursionsgleichungen Rekursionsgleichungen

Iterative Squaring — Analyse

1int[2,2] iterSq(int A[2,2], int n) { // n > 0
int Res[2,2];
if (n==1) {
return A;
} else if (n % 2) { // n ungerade
Res = matrixSquare(A, (n-1)/2);
return Res * Res * A;
} else { // n gerade
Res = matrixSquare(A, n/2);
return Res x Res;
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Die benétigte Anzahl arithmetischer Operationen Titersq(n) ist:
Titequ(l) =0
Titersq(n+1) = Titersq(n/2]) +3  fiir n > 0.
= iterSq hat logarithmische Komplexitat:
iterSq(-, n) € ©(log n).
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Praktische Konsequenzen

GroBte losbare Eingabelange fiir angenommene 1 ps pro Operation:

Verfligbare Zeit Rekursiv  Iterativ.  Matrix

1ms 14 500 10%2
1ls 28 5.10° 1012000
1m 37 3-107 10700000
1h 45 1,8-10° 10%°°

Vereinfachende Annahmen: Lezbere Enzzlosl Ziss

> Nur arithmetische Operationen wurden beriicksichtigt.

» Die Laufzeit der arithmetischen Operationen ist fix, also nicht von
ihren jeweiligen Argumenten unabhangig.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

» Die Kosten aufeinanderfolgender Blocke werden addiert.
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Rekursionsgleichungen von Programmcode ableiten

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tg,p1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder
die von n abgeleitete Lange der Aufrufparameter an.
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Ubersicht

© Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
@ Rekursionsbaume
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Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.
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Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und lésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T([n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T(n) fir kleine n konstant ist
anstatt genau festzustellen was 7(0) und T(1) ist. Also z.B.:

T(0)=cund T(1)=c" statt T(0)=4und T(1)=7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n) = T(v/n)+n bedeutet T(n)= T(|/n])+n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.
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Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
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T(0) =k
T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k
T(n+1)=T(n)+f(n) firn=0
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Losen von Rekursionsgleichungen

Einfache Fille

Fir einfache Falle gibt es geschlossenen Losungen, z. B. fir k,c € N:
T(0) =k

T(n+l)=cT(n) firn=0
hat die eindeutige Losung T (n) = c"-k.
Und die Rekursionsgleichung:

T(0)=k

T(n+1)=T(n)+f(n) firn=0
hat die eindeutige Losung T(n) = T(0) + Z f(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Falle jedoch selten auf.
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Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.
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Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:
T(n)y=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.
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Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T <Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Einige Hinweise

» diese Methode ist sehr leistungsfahig, aber

» kann nur angewendet werden in den Fallen in denen es relativ einfach
ist, die Form der Lésung zu erraten.
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.

» Wir vermuten als Lésung T(n) € O(n - log n).
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Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

v
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Betrachte folgende Rekursionsgleichung:
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T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).

» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.

v

Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-log n gilt.
Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

Es gilt: T(2) =4 < c-2log2 und T(3) =5 < c-3log3 firc>1
Uberpriife dann durch Substitution und Induktion (s. nichste Folie)

v

v

v
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Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:
T(1) =1
T(n)=2-T(n/2)+n firn> 1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fiir geeignete ¢ > 0.
> Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5 < c-3log3 firc>1
» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fiir jedes ¢ > 1 und n > ny > 1, dass T(n) < c-n-log n.
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Die Substitutionsmethode: Beispiel

Beispiel
T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese
< 2(cn/2-logn/2) +n

log-Rechnung: (log = log,)

:C'n‘logn/2+n |ogn/2:|0gn—|og2

=c-n-logn—c-n-log2+n
< cnlogn—cn+n | mit ¢ > 1 folgt sofort:

< cn-logn
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Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.
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Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstindigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:
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Die Substitutionsmethode: Variablentransformation

T(n) =2-T (y/n) + logn fiir n >0

(ﬁ) + log n | Variablentransformation m = log n
=2 (2'"/2) +m | Umbenennung T(2") = S(m)

=2-5(m/2)+m | Lsung vorheriges Beispiels

(m-log m) | m=logn
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Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lésung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lésung funktioniert.

|
Wir betrachten mehr in Detail wie man die Form der Losung raten kann.
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Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.
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Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n
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T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

=27-T(n/64) + (i)Q- n+ (3)1- n+ (i)o- n

log,n—1 3\/
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

T(n)=3-T(n/4)+n | Einsetzen
=3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
=9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen

3)\? 3\ 3\°
~or Tiasony+ (2 ons (2 s (2
log,n—1 f
Wir nehmen T(1) = ¢ an und erhalten: T(n) = Z (4) n+c-n'o8sd
i=0
Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.
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Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.
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1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
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» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39



Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch lber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren liber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr niitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberpriift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) =3 - T(n/4) + n sieht etwa so aus:

Aktuelles > T Nichtrekursive
Rekursionsargument o la---"" " Kosten
l
(/) = (/) . of4)
n/4 n/4 n/4
T(n/16)| |T(n/16)| | T(n/16) T(n/16)| |T(n/16)| | T(n/16)
n/16 n/16 nji6 | n/16 n/16 n/16
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

7(n) ;
T(n/4) 7(1/4) T(n/4)
logy n /4 n/a n/a 3n/4
T(n/16)| [T(n/16)| [T(n/16)] T(n/16)| | T(n/16)|[T(n/16)] 4, 14
n/16 n/16 n/16 n/16 n/16 n/16
TA)TQ) T@) TA) T(L) oo T()TA)T(1) T(1) T(1)
< 3loggn — plogs 3 >
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Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

7(n) ;
T(n/4) 7(1/4) T(n/4)
logy n /4 n/a n/a 3n/4
T(n/16)| [T(n/16)| [T(n/16)] T(n/16)| | T(n/16)|[T(n/16)] 4, 14
n/16 n/16 n/16 n/16 n/16 n/16
T TAQ)TQA)TA)T(A) e T()T(1) T(1) T(1) T(1)
< 3loggn — plogs 3 >
logyn—1 3\
T(n) = ; (4) ‘n 4+ c-n'os3

—— ~—— Gesamtkosten
Summe iiber KOSten pro  fiir die Blitter
alle Ebenen Ebene mit T(1) =c¢
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Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhalt man nun folgendermaBen:

logyn—1 i
T(n) = Z (4) -n+ c-n'°3 | Vernachlissigen kleinerer Terme

i=0
o) 3 i
< Z (4) -n+c-n'°s3 | Geometrische Reihe
i=0
1 log, 3
< -n—+ c- nosts | Umformen

3 Asymptotische Ordnung bestimmen
setze ein, dass log, 3 < 1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/39



Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.
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T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-:n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n
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Korrektheit

Wir kdénnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n) =3 T(n/4) + n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-n/4+n

3
— 24.

2 n—+n

3 .

= Zd +1):n | mit d > 4 folgt sofort:
< d-n

Und wir stellen fest, dass es ein ny gibt, so dass T(ng) < d-ng ist.
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