Rekursionsgleichungen

Datenstrukturen und Algorithmen

Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

20. April 2012
RWTH

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/39
Ubersicht
© Binire Suche

@ Was ist binare Suche?

@ Worst-Case Analyse von Binérer Suche
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/39

Ubersicht

© Binare Suche
@ Was ist binare Suche?
@ Worst-Case Analyse von Binérer Suche

©

Rekursionsgleichungen
@ Fibonacci-Zahlen
@ Ermittlung von Rekursionsgleichungen

()

Losen von Rekursionsgleichungen
@ Die Substitutionsmethode
@ Rekursionsbaume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/39

Rekursionsgleichungen Binare Suche

Binare Suche

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Eintragen, und das gesuchte Element K.
Ausgabe: Ist K in E enthalten?

Da E sortiert ist, konnen wir das gesuchte Element K schneller suchen.
Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Halfte von E, falls K < E[mid]
2. suche in der rechten Halfte von E, falls K > E[mid]

Fazit:

Wir halbieren den Suchraum in jedem Durchlauf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/39

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Rekursionsgleichungen Binare Suche Rekursionsgleichungen Binare Suche

Binare Suche Binare Suche — Analyse

Abkiirzungen: m = mid, r = right, | = left

bool binSearch(int E[], int n, int K) { GroBe des undurchsuchten Arrays

1

2 int left = 0, right =n - 1; Im nachsten Durchlauf ist die GroBe des Arrays m — [oder r — m.
3 while (left <= right) {

4 int mid = floor((left + right) / 2); // runde ab Hierbei ist m = (/4 r)/2].

5 if (E[mid] == K) { return true; } . A F

6 if (E[mid] > K) { right = mid - 1; } Die neue Groge ist also:

7 if (E[mid] < K) { left = mid + 1; } »m—1 = |[(I+r)/2] -1 = [(r=1)/2] = [(n—1)/2]
8}

9 return false; oder

10} »r—m=r—[(I+r)/2] = [(r—=1/2] = [(n—1)/2]

Im schlimmsten Fall ist die neue GréBe des Arrays also:

[(n—1)/2]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/39
Rekursionsgleichung fiir Binare Suche Losen der Rekursionsgleichung

Sei S(n) die maximale Anzahl der Schleifendurchlaufe bei einer erfolglosen
Suche. Betrachte den Spezialfall n = 2k — 1.

Wir erhalten die Rekursionsgleichung: Da die maximale neue GroBe des Arrays [(n—1)/2] ist, leiten wir her:

0 falls n=20 (2"—1)—1-‘ _ Fk—ﬂ _ k—1 _ k-1
n) — -t | = =]2 —-1] =2 — 1.
S(n) { 1+5S([(n—1)/2]) fallsn>0 ’V 2 2

Di ten Werten sind:
e ersten THerten sin Daher gilt fiir k > 0 nach der Definition S(n) =1+ S([(n—1)/2]), dass:

n|0 1 2 3 45 6 7 8
Smyjo 1 2 2 3 3 3 3 4) 1) .
S(2k—1) = 1452~ 1=1) und damit S(2k—1) = k+5(2° —1) = k.
=0
Wir haben letztes Mal abgeleitet: S(n) = |logn| + 1.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/39

Rekursionsgleichungen Binare Suche Rekursionsgleichungen Binare Suche

Binare Suche — Analyse Binare Suche — Analyse

Wir vermuten S(n) = [logn| + 1 fir n >0

n|0 1 2 3 45 6 7 8
S(n ‘ 01 2 2 3 3 3 3 4 Induktion Gber n:
Vermutung: S(2%) = 1+ S(2k71). Basis: S(1) = 1 = |logl|+1
S(n) steigt monoton, also S(n) = k falls 2571 < n < 2k Induktionsschritt: Sei n > 1. Dann:
S(n) = 1+S5([(n—1)/2]) = 1+ |log[(n—1)/2 1

Oder: falls k=1 < logn < k. Man kanﬁ ieigen (Eau(s[a(ufgabe)z)/: L)ogf(n ——‘_IL)/;[J(+1 :)/U])Jg—:J

Dann ist S(n) = [logn] 1. Damit: S(n) = |logn]| + 1 fir n > 0.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/39 Joost:Pieter Katoen Datenstrukturen und Algorithmen 10/39
Binire Suche — Analyse Ubersicht

. . e o) - © Rekursionsgleichungen
Die Worst Case Zeitkomplexitat der binaren Suche ist W(n) = |log n]| + 1. o Fibonacci-Zahlen

@ Ermittlung von Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/39

Rekursionsgleichungen Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fiir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

Beispiele

» T(n)=T(n-1)+1 Lineare Suche

» T(n)=T([(n—1)/2])+1 Binare Suche
» T(n)=T(n-1)+n—-1 Bubblesort
> T(n)=2T(n/2)+n—1 Mergesort

» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/39
Rekursionsgleichungen Rekursionsgleichungen

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

1 int fibRec(int n) {

2 if (m==0 1|l n==1) {

3 return n;

4 }

5 return fibRec(n - 1) + fibRec(n - 2);
6t

Die zur Berechnung von fibRec(n) bendtigte Anzahl arithmetischer
Operationen Tprec(n) ist durch folgende Rekursionsgleichung gegeben:

(
Tiibrec(0) = 0
TiibRec(1) = 0
Ttibrec(n+2) = Thibrec(n+1) + Thibrec(n) +3 fiir n > 0.
Zur Ermittlung der Zeitkomplexitatsklasse von fibRec |6st man diese
Gleichung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/39

Rekursionsgleichungen Rekursionsgleichungen

Fibonacci-Zahlen
Betrachte das Wachstum einer Kaninchenpopulation:
> Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.

» Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.

v

Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

Sie sterben nie und héren niemals auf.

Die Anzahl der Kaninchenpaare lasst sich wie folgt berechnen:

v

Fib(0) = 0
Fib(1) = 1
Fib(n + 2) = Fib(n + 1) + Fib(n) fiir n > 0.
n|l0 1 2 3 45 6 7 8 9
Fib(n) |0 1 1 2 3 5 8 13 21 34
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/39

Analyse: Anwendung der ,,Substitutionsmethode*

Ttibrec(0) =0
Tfibrec(1) =0
Ttibrec(n + 2) = Thiprec(n + 1) + Tfiprec(n) +3 fiir n > 0.

Losung (mittels vollstandiger Induktion)

Tf,-bReC(n) =3. Fib(n + 1) — 3.

2(=2)/2 < Fib(n) < 2"2 fiir n > 1.

Damit ergibt sich:
Thibrec(n) € ©(2"), oft abgekirzt dargestellt als fibRec(n) € ©(2").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus

Iterativer Algorithmus

1 int fibIter(int n) {

2 int f[n];

3 f[0] = 0; f[1] = 1;

4 for (int i = 2; i <= n; i++) {
5 f[i] = £[i-1] + £[i-2];

6

7 return f[n];

8 }

Die benétigte Anzahl arithmetischer Operationen Tfpjee (n) ist:
Ttibiter(0) =0 und Tripyrer(1) = 0
Thpiter(n +2) =3-(n+1) firn>0.

Damit ergibt sich:

Ttipirer(n) € ©(n), oder als Kurzschreibweise fiblter(n) € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/39
Rekursionsgleichungen Rekursionsgleichungen

Ein Matrixpotenz-Algorithmus

Matrixdarstellung der Fibonacci-Zahlen

Es gilt fir n > 0:
Fib(n+2)\ _ (1 1\ (Fib(n+1)
Fib(n+1)) ~\1 0 Fib(n)
Damit lasst sich Fib(n+2) durch Matrixpotenzierung berechnen:
Fi(n+2)) _ (1 1* (Fib(n) \ (1 1\" [Fib(2)
Fib(n+1)) \1 0 Fib(n—1)) ""° \1 0 Fib(1)

> Wie kdnnen wir Matrixpotenzen effizient berechnen?

» Dies betrachten wir hier nicht ins Detail; geht in ©(log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/39

Rekursionsgleichungen Rekursionsgleichungen

Ein iterativer Algorithmus (2)
Jedoch: der fibIter Algorithmus hat eine Speicherkomplexitat in ©(n).

Beobachtung: jeder Durchlauf “benutzt” nur die Werte £ [i-1] und £[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

1 int fibIter2(int n) {
2 dint a = 0; int b = 1;

3 for (dnt i = 2; i <= n; i++) {
4 [a + b;

5 a b;
6
7
8
9

b c;
}

return b;

}

Der fibIter2 Algorithmus hat eine Speicherkomplexitat in ©(1) und
Ttibiter2(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/39
Rekursionsgleichungen Rekursionsgleichungen

Binare Exponentiation (iterative squaring) — Idee

1 int fibMat(int n) {

2 if (m == 0 || n ==1) { return n; }

3 int Fib2[2,2] = { {0, 1}, {1, 1} };

4 int Res[2,2] = iterSq(Fib2, n - 1); // Matrizpotenz
s return Res[1,1]; // das Element Res[1,1]

6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/39

Rekursionsgleichungen Rekursionsgleichungen Rekursionsgleichungen Rekursionsgleichungen

Iterative Squaring — Analyse Praktische Konsequenzen
1 int[2,2] iterSq(int A[2,2], int n) { // n > 0

3 if (n==1) {

4 return A; GroBte I6sbare Eingabeldnge fir angenommene 1 ps pro Operation:

5) else if (n % 2) { // n ungerade

6 Res = matrixSquare(A, (n-1)/2); Verfligbare Zeit Rekursiv Iterativ Matrix

7 return Res * Res * A; 12

s 1} else { // n gerade 1ms 14 500 10

9 Res = matrixSquare(A, n/2); ls 28 5.10° 1012000

10 return Res * Res; 1m 37 3.107 10700000

un r 6

2} 1h 45 1,8-10° 100

Die benétigte Anzahl arithmetischer Operationen Tijse,sq(n) ist: Vereinfachende Annahmen: Losbare Eingabelange

Titersq(1) =0 » Nur arithmetische Operationen wurden beriicksichtigt.

Titersq(n+1) = Titersq(|n/2]) +3 fiir n > 0. » Die Laufzeit der arithmetischen Operationen ist fix, also nicht von

= iterSq hat logarithmische Komplexitat: ihren jeweiligen Argumenten unabhangig.

iterSq(-, n) € ©(logn).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/39
Rekursionsgleichungen von Programmcode ableiten Ubersicht

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:
» Die Kosten aufeinanderfolgender Blocke werden addiert.
» Von alternativen Blocken wird das Maximum genommen.

» Beim Aufruf von Unterprogrammen (etwa sub1()) wird Tgyp1(f(n))
genommen, wobei f(n) die Lange der Parameter beim Funktionsaufruf
—abhangig von der Eingabeldnge n des Programms— ist.

» Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder © Lésen von Rekursionsgleichungen

die von n abgeleitete Lange der Aufrufparameter an. o Die Substitutionsmethode
@ Rekursionsbaume

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Einige Vereinfachungen

» Wenn wir Rekursionsgleichungen aufstellen und Iésen, vernachlassigen
wir haufig das Runden auf ganze Zahlen, z.B.:

T(n)=T(|n/2])+ T([n/2])+3 wird T(n)=2T(n/2)+ 3.

» Manchmal wird angenommen, daB T (n) fir kleine n konstant ist
anstatt genau festzustellen was T(0) und T (1) ist. Also z.B.:

T(0)=cund T(1)=¢ statt T(0)=4und T(1)=T7.

» Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente
haben, z.B.:

T(n)=T(v/n)+n bedeutet T(n)= T([/n])+ n.

» Grund: die Lésung wird typischerweise nur um einen konstanten
Faktor verandert, aber der Wachstumgrad bleibt unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/39

Rekursionsgleichungen Losen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Allgemeine Format der Rekursionsgleichung

Im allgemeinen Fall — der hier haufig auftritt — gibt es keine geschlossene
Losung.

Der typischer Fall sieht folgendermaBen aus:

T(n)=b-T (2) +f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind 7(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Losen von Rekursionsgleichungen

Einfache Fille
Fiir einfache Falle gibt es geschlossenen Losungen, z. B. fiir k,c € N:
T(0) =k
T(n+1)=c-T(n) fiurn>=>0
hat die eindeutige Losung T (n) = c"-k.

Und die Rekursionsgleichung:
T(0) =k
T(n+1l)=T(n)+f(n) firn>0

hat die eindeutige Lésung T(n) = T(0) + > £(i).
i=1

Bei der Zeitkomplexitatsanalyse treten solche Falle jedoch selten auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/39
Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Losung, durch z.B.:

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
» Betrachtung des Rekursionsbaum

2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,
dass die Losung funktioniert.

Einige Hinweise

> diese Methode ist sehr leistungsfahig, aber

» kann nur angewendet werden in den Fallen in denen es relativ einfach
ist, die Form der Lésung zu erraten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:
T(1)=1
T(n)=2-T(n/2)+n firn>1.
» Wir vermuten als Lésung T(n) € O(n - log n).
» Dazu missen wir T(n) < c-n-log n zeigen, fir geeignete ¢ > 0.
» Bestimme ob fiir eine geeignete ng, fir n > ng, T(n) < c-n-logn gilt.
» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.
» Esgilt: T(2) =4 < c-2log2und T(3) =5< c-3log3 firc>1
» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fir jedes ¢ > 1 und n> ng > 1, dass T(n) < c-n-logn.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/39

Rekursionsgleichungen Losen von Rekursionsgleichungen

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal
nicht mit der vollstandigen Induktion bewiesen werden.

Das Problem ist gewohnlich, dass die Induktionsannahme nicht streng
genug ist.

2. Manchmal ist eine Variablentransformation verniinftig um zu einer
Losung zu geraten:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

T(n)=2-T(n/2)+nfirn>1und T(1)=1

T(n)= 2-T(n/2)+n | Induktionshypothese

<2(c-n/2-logn/2)+n
log-Rechnung: (log = lo
=c-n-logn/2+n & g (log g)
logn/2 = log n — log 2
=c-n-logn—c-n-log2+n
<cnlogn—cn+n | mit ¢ > 1 folgt sofort:
< cn-logn
Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/39

Die Substitutionsmethode: Variablentransformation

T(n)=2-T (v/n) + log n fir n >0

T(n)=2-T (v/n) +logn | Variablentransformation m = log n

)
& T(2™) =2T (2"’/2) +m | Umbenennung T(2™) = S(m)
)

< S(m)=2.5(m/2) +m | Lésung vorheriges Beispiels
< S(m) < c-m-logm
& S(m) € O(m-log m) | m=logn

< T(n) € O(log n-loglog n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/39

Die Substitutionsmethode Raten der Losung durch lteration

Substitutionsmethode Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein

Die Substitutionsmethode besteht aus zwei Schritten: Muster erkennt.

e o e

» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen

» Betrachtung des Rekursionsbaum T(n)=3-T(n/4)+n | Einsetzen
2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen, =3-(3-T(n/16) +n/4))+n | Nochmal einsetzen
dass die Losung funktioniert. =9-(3-T(n/64)+ n/16)) +3-n/4+ n | Vereinfachen
3\? 3\! 3\°
oty + (3 ms (3 ns ()

. log,n—1
Wir betrachten mehr in Detail wie man die Form der Losung raten kann. E

i

Wir nehmen T (1) = ¢ an und erhalten: T(n) = Z (4) -n+ c-n'oes3
i=0

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/39
Raten der Losung durch Rekursionsbaume Rekursionsbaum: Beispiel

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch tber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

Beispiel
Der Rekursionsbaum von T(n) = 3- T(n/4) + n sieht etwa so aus:

. . . Aktuelles Nichtrekursive
1. Jeder Knoten stellt die Kosten eines Teilproblems dar. Rl > T(n) e [Kemr
» Die Wurzel stellt die zu analysierenden Kosten T(n) dar. n_
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1). T / T(,"M) \ T/
2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes. n/4 n/4 n/4
. Die Gesamtkosten := ieren iiber die Kosten aller Ebenen. | |
3. Die Gesamtkosten := summieren iiber die Kosten aller Ebenen T/ TG/ [Tams)] T(7165] [T(n/16)] [T(o/16)

: . . . n/16 n/16 n/16 n/16 n/16 n/16
Wichtiger Hinweis //: - //: - //: X //: X //: - //: -

Ein Rekursionsbaum ist sehr nitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode Uberpriift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/39

Rekursionsgleichungen Lésen von Rekursionsgleichungen Rekursionsgleichungen Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel Rekursionsbaum: Beispiel
T(n) i
n Eine obere Schranke fiir die Komplexitat erhdlt man nun folgendermaBen:
g, 1 T(n/4) T(n/4) T(n/4) 30/ o1 50
4 4 4 4
n/ n/ i T(n) = Z (4) - n4 c-nloss3 | Vernachlassigen kleinerer Terme
T(n/16)|[T(n/16)][T(n/16)] . T{(n/16)||T(n/16) | T(n/16)] __ 4, /14 -
16 16 16 16 16 16 i
/”/: . /”/: . /”/: . /”/: \ /”/: . /”/: . < i (3>I- n+c-nos3 | Geometrische Reihe
i=0 4
T TAQ)TA)TQA)TA) oo T T(A)T(A) T(A)T())
< 3logsn _ plog,3 > < T8 G/2) .n+c-nos3 | Umformen
logyn —1 ~ < 4.noc.nloes3 Asymp'_coti;che IOrdr;’unglbestimmen
T(n)= (4) .n + c-n'oss3 setze ein, dass log, 3 <
i=0 ~——— Gesamtkosten T(n) € O(n).
Summe iiber KOSten pro fiir die Blitter
alle Ebenen Ebene mit T(1) =c
Joost-Pieter Katoen Datenstrukturen und Algorithmen 37/39 Joost-Pieter Katoen Datenstrukturen und Algorithmen 38/39

Korrektheit

Wir kdnnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n)=3-T(n/4)+ n ist.

T(n)=3-T(n/4)+n | Induktionshypothese

<3d-:n/d+n

3
— 24

2 n—+n

3 .

= Zd +1)-n | mit d > 4 folgt sofort:
<d-n

Und wir stellen fest, dass es ein ng gibt, so dass T(ng) < d-ng ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/39

	Binäre Suche
	Was ist binäre Suche?
	Worst-Case Analyse von Binärer Suche

	Rekursionsgleichungen
	Fibonacci-Zahlen
	Ermittlung von Rekursionsgleichungen

	Lösen von Rekursionsgleichungen
	Die Substitutionsmethode
	Rekursionsbäume

