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Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fiir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

» T(n)=T([(n—1)/2])+1 Binare Suche
» T(n)=T(n-1)+n—-1 Bubblesort
» T(n)=2-T(n/2)+n—1 Mergesort

» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Die zentrale Frage ist: Wie [6st man solche Rekursionsgleichungen?
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Die Substitutionsmethode Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:

Substitutionsmethode T(1)=1

Die Substitutionsmethode besteht aus zwei Schritten: T(n)=2-T(n/2)+n firn>1.
1. Rate die Form der Losung, durch z.B.:
» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen > Wir vermuten als Lésung T(n) € O(n - log n).

» Betrachtung des Rekursionsbaum ; . . . .
- _ _ _ _ » Dazu missen wir T(n) < c-n-log n zeigen, fir geeignete ¢ > 0.
2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,

dass die Lésung funktioniert, » Bestimme ob fiir ein geeignetes ng, fir n > ng, T(n) < c-n-log n gilt

» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

» Esgilt: T(2) =4 < c-2log2und T(3)=5<c-3log3firc>1

» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fir jedes ¢ > 1 und n> ng > 1, dass T(n) < c-n-logn.
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Die Substitutionsmethode: Beispiel Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
T(n)=2-T(n/2)+nfirn>1und T(1)=1 Muster erkennt.

T(m) = 2-T(n/2) +n | Induktionshypothese

< 2(c'n/2-logn/2) +n T(n)=3-T(n/4)+n | Einsetzen
_ o nlogn/24 o R (o = o) =3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
- cmiogn n logn/2 =logn — log?2 =9-(3-T(n/64)+ n/16)) +3-n/4+n | Vereinfachen

3\? 3\! 3\°
= c-n-logn—c-n-log2+n = 27. T(n/64) + (A_l) -n+ (A_l) -n4+ <Z> -n
<cnlogn—cn+n | mit ¢ > 1 folgt sofort: loggn —1 ;
< e logis Wir nehmen T(1) = ¢ an und erhalten: T(n) = ;) <4> .n+c-n83

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.
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Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch tiber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren lber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr nitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberprift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.
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Rekursionsbaum: Beispiel

() )
n
T(n/4) T(n/4) T(n/4)
log, n /4 n/a n/a 3n/4
\
T(n/16)||T(n/16)||T(n/16)] T(n/16)||T(n/16)||T(n/16)| 9n/16
nj16 |[ n/16 || n/16 nj16 |[ n/16 || n/16 n
T TA)T() TQA)T(A) oo T(1) T(1) T(1) T(1) T(1)
< 3|og4n — nlog43 >
logyn—1 3\
_ . . plog, 3
T(n) = Z (4) n + c-n°
=0 <L — Gnesa.mtkousten
Summe iiber 1KOSten pro  fiir die Blitter
alle Ebenen Ebene mit T(1) =c
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Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) = 3- T(n/4) + n sieht etwa so aus:

Aktuelles Nichtrekursive
. ======== » T(n) _
Rekursionsargument e Kosten

T(n/4) / T(n‘/4) \ T(n/4)

n/4 n/4 n/4
T(n/16)| [T(n/16)] [T(n/16)] T(n/16)| [T(n/16)| [T(n/16)
n/16 n/16 n/16 n/16 n/16 n/16
/ : \ / : \ / : \ / : \ / : \ / : \
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Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhdlt man nun folgendermaBen:

loggn—1 i
T(n) = Z (4) -n+ c-n'ogs3 | Vernachlassigen kleinerer Terme
i=0
< Z (4) -n+c-n'es3 | Geometrische Reihe
i=0
1 log, 3
< —————-n+c-n° | Umformen

1 (3/4)

< 4.ntc. 510843 Asymptotische Ordnung bestimmen

setze ein, dass log, 3 < 1

T(n) € O(n).
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Korrektheit

Wir kdnnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n)=3-T(n/4)+ n ist.

T(n)=3-T(n/4)+n | Induktionshypothese
<3d-n/4+n
3
= Zd-n +n
3 :
= Zd +1)-n | mit d > 4 folgt sofort:
<dn

Und wir stellen fest, dass es ein ng gibt, so dass T(ng) < d-ng ist.
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Das Mastertheorem

T(n):b'T(2)+f(”) mit b>1und ¢ > 1.

» Anzahl der Blatter im Rekursionsbaum: nf mit £ = log b/ log c.

Mastertheorem
Wenn Dann
1. f(n) € O(nf~*) fiir eine >0 T(n) € ©(nf)
2. f(n) € ©(nf) T(n) € ©(nE - log n)

3. f(n) € Q(nf*e) fiir ein e > 0 und T(n) € ©(f(n))
b-f(n/c) < d-f(n) fur d < 1 und
n hinreichend grof3

» Bemerke, dass das Mastertheorem nicht alle Falle abdeckt.
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Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T (Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).
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Das Mastertheorem verstehen

In jedem der 3 Falle wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
T(n) € ©(nf)
T(n) € ©(nE - log n)

3. f(n) ist polynomial gréBer als n und er- T (n) € ©(f(n))
fullt b-f(n/c) < d-f(n)

Nicht abgedeckte Falle:

1. f(n) ist kleiner als nf, jedoch nicht polynomiell kleiner.

1. f(n) polynomial kleiner ist als nf

2. f(n) und nf die gleiche GroBe haben

2. f(n) ist groBer als nf, jedoch nicht polynomiell groBer.
3. f(n) ist polynomiell groBer als n, erfiillt nicht b-f(n/c) < d-f(n).
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Anwendung des Mastertheorems

T(n)=4-T(n/2)+n
» Somit: b=4, c=2und f(n) =n; E =log4/log2 = 2.
» Da f(n) = n € O(n*¢), gilt Fall 1:| T(n) € ©(n?)

T(n)=4-T(n/2)+ n?
» Somit: b =4, c =2 und f(n) = n? E = log4/log2 = 2.
» Da f(n) = n*> ¢ O(n>~¢), gilt Fall 1 nicht.
» Aber weil f(n) = n? € ©(n?), gilt Fall 2: | T(n) € ©(n? - log n)
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Das Mastertheorem ist nicht immer anwendbar

T(n)=4-T(n/2) + &

logn

» Also gilt: b=4, c =2 und f(n) = n?/logn; E = 2.

Fall 1 ist nicht anwendbar:
n?/logn ¢& O(n°~¢), da f(n)/n* = (log n)~t & O(n~*).

Fall 2 ist nicht anwendbar: n?/log n & ©(n?).
Fall 3 ist nicht anwendbar:

f(n) & Q(n2+5), da f(n)/n2 = (log n)_1 g O(n+5).

—> Das Mastertheorem hilft hier (iberhaupt nicht weiter!

» Durch Substitution erhilt man: | T(n) € ©(n? - loglog n)
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Anwendung des Mastertheorems

T(n) =4-T(n/2)+ nd
» Somit: b =4, c =2 und f(n) = n3 E = log4/log2 = 2.
» Wegen E = 2 gelten Falle 1 und 2 offenbar nicht.
Da f(n) = n® € Q(n**¢) fiir e = 1, kdnnte Fall 3 gelten.
Uberpriife: gilt f(n/2) < 4-f(n) fiir d < 1 und hinreichend grosse n?
Dies liefert %n3 < %-n3, und dies gilt fiir alle % < d <1 (und n)

v

v

v

v

Somit gilt Fall 3 tatsachlich und wir folgern: T(n) € ©(n%)
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Mastertheorem: Beweis
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