
Mastertheorem

Datenstrukturen und Algorithmen
Vorlesung 6: Mastertheorem (K4)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

24. April 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

Mastertheorem

Übersicht

1 Lösen von Rekursionsgleichungen
Substitutionsmethode
Rekursionsbäume
Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Mastertheorem Lösen von Rekursionsgleichungen

Übersicht

1 Lösen von Rekursionsgleichungen
Substitutionsmethode
Rekursionsbäume
Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Mastertheorem Lösen von Rekursionsgleichungen

Rekursionsgleichungen
Rekursionsgleichung
Für rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.
Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben
beschreibt.

Beispiele

I T (n) = T (d(n−1)/2e) + 1 Binäre Suche
I T (n) = T (n−1) + n − 1 Bubblesort
I T (n) = 2·T (n/2) + n − 1 Mergesort
I T (n) = 7·T (n/2) + c·n2 Strassen’s Matrixmultiplikation

Die zentrale Frage ist: Wie löst man solche Rekursionsgleichungen?
Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Mastertheorem Lösen von Rekursionsgleichungen

Die Substitutionsmethode

Substitutionsmethode
Die Substitutionsmethode besteht aus zwei Schritten:
1. Rate die Form der Lösung, durch z.B.:

I Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
I Betrachtung des Rekursionsbaum

2. Vollständige Induktion um die Konstanten zu finden und zu zeigen,
dass die Lösung funktioniert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Mastertheorem Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
Betrachte folgende Rekursionsgleichung:

T (1) = 1
T (n) = 2 · T (n/2) + n für n > 1.

I Wir vermuten als Lösung T (n) ∈ O(n · log n).
I Dazu müssen wir T (n) 6 c·n· log n zeigen, für geeignete c > 0.
I Bestimme ob für ein geeignetes n0, für n > n0, T (n) 6 c·n· log n gilt.
I Stelle fest, dass T (1) = 1 6 c·1· log 1 = 0 verletzt ist.
I Es gilt: T (2) = 4 6 c·2 log 2 und T (3) = 5 6 c·3 log 3 für c > 1
I Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
I Damit gilt für jedes c > 1 und n > n0 > 1, dass T (n) 6 c·n· log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Mastertheorem Lösen von Rekursionsgleichungen

Die Substitutionsmethode: Beispiel

Beispiel
T (n) = 2 · T (n/2) + n für n > 1, und T (1) = 1

T (n) = 2 · T (n/2) + n Induktionshypothese

6 2 (c·n/2· log n/2) + n

= c·n· log n/2 + n log-Rechnung: (log ≡ log2)
log n/2 = log n − log 2

= c·n· log n − c·n· log 2 + n

6 c·n· log n − c·n + n mit c > 1 folgt sofort:

6 c·n· log n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Mastertheorem Lösen von Rekursionsgleichungen

Raten der Lösung durch Iteration
Grundidee
Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
Muster erkennt.

Beispiel

T (n) = 3 · T (n/4) + n Einsetzen
= 3 · (3 · T (n/16) + n/4)) + n Nochmal einsetzen
= 9 · (3 · T (n/64) + n/16)) + 3 · n/4 + n Vereinfachen

= 27 · T (n/64) +

(3
4

)2
· n +

(3
4

)1
· n +

(3
4

)0
· n

Wir nehmen T (1) = c an und erhalten: T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Mastertheorem Lösen von Rekursionsgleichungen

Raten der Lösung durch Rekursionsbäume
Grundidee
Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über
das aktuelle Rekursionsargument und die nichtrekursiven Kosten führt.

Rekursionsbaum
1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

I Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
I Die Blätter stellen die Kosten der Basisfälle dar, z.B. T (0) oder T (1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann
mit Hilfe der Substitutionsmethode überprüft werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Mastertheorem Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Beispiel
Der Rekursionsbaum von T (n) = 3 · T (n/4) + n sieht etwa so aus:

T (n)
n

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

T (n/4)
n/4

.

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

Aktuelles
Rekursionsargument

Nichtrekursive
Kosten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Mastertheorem Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel
T (n)

n

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

T (n/4)
n/4

T (n/4)
n/4

T (n/16)
n/16

T (n/16)
n/16

T (n/16)
n/16

n

3n/4

9n/16

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log4 n

3log4 n = nlog4 3

T (n) =

log4n−1∑
i=0︸ ︷︷ ︸

Summe über
alle Ebenen

(3
4

)i
· n︸ ︷︷ ︸

Kosten pro
Ebene

+ c · nlog4 3︸ ︷︷ ︸
Gesamtkosten
für die Blätter
mit T (1) = c

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Mastertheorem Lösen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Eine obere Schranke für die Komplexität erhält man nun folgendermaßen:

T (n) =

log4n−1∑
i=0

(3
4

)i
· n + c · nlog4 3 Vernachlässigen kleinerer Terme

<
∞∑

i=0

(3
4

)i
· n + c · nlog4 3 Geometrische Reihe

<
1

1− (3/4)
· n + c · nlog4 3 Umformen

< 4 · n + c · nlog4 3 Asymptotische Ordnung bestimmen
setze ein, dass log4 3 < 1

T (n) ∈ O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Mastertheorem Lösen von Rekursionsgleichungen

Korrektheit
Wir können die Substitutionsmethode benutzen, um die Vermutung zu
bestätigen dass:

T (n) ∈ O(n) eine obere Schranke von T (n) = 3 · T (n/4) + n ist.

T (n) = 3 · T (n/4) + n Induktionshypothese

6 3d ·n/4 + n

=
3
4d ·n + n

=

(3
4d + 1

)
·n mit d > 4 folgt sofort:

6 d ·n
Und wir stellen fest, dass es ein n0 gibt, so dass T (n0) 6 d ·n0 ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Mastertheorem Lösen von Rekursionsgleichungen

Mastertheorem

Allgemeine Format der Rekursionsgleichung
Eine Rekursionsgleichung für die Komplexitätsanalyse sieht meistens
folgendermaßen aus:

T (n) = b · T
(n

c

)
+ f (n)

wobei b > 0, c > 1 gilt und f (n) eine gegebene Funktion ist.

Intuition:
I Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
I Jedes dieser Teilprobleme hat die Größe n

c
I Die Kosten für das Aufteilen eines Problems und Kombinieren der

Teillösungen sind f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Mastertheorem Lösen von Rekursionsgleichungen

Das Mastertheorem

T (n) = b · T
(n

c

)
+ f (n) mit b > 1 und c > 1.

I Anzahl der Blätter im Rekursionsbaum: nE mit E = log b/ log c.

Mastertheorem
Wenn Dann

1. f (n) ∈ O(nE−ε) für ein ε > 0 T (n) ∈ Θ(nE)

2. f (n) ∈ Θ(nE) T (n) ∈ Θ(nE · log n)

3. f (n) ∈ Ω(nE+ε) für ein ε > 0 und
b·f (n/c) 6 d ·f (n) für d < 1 und
n hinreichend groß

T (n) ∈ Θ(f (n))

I Bemerke, dass das Mastertheorem nicht alle Fälle abdeckt.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Mastertheorem Lösen von Rekursionsgleichungen

Das Mastertheorem verstehen
In jedem der 3 Fälle wird die Funktion f (n) mit nE = nlogc b verglichen.

Mastertheorem: Intuition
Wenn Dann

1. f (n) polynomial kleiner ist als nE T (n) ∈ Θ(nE)

2. f (n) und nE die gleiche Größe haben T (n) ∈ Θ(nE · log n)

3. f (n) ist polynomial größer als nE und er-
füllt b·f (n/c) 6 d ·f (n)

T (n) ∈ Θ(f (n))

Nicht abgedeckte Fälle:

1. f (n) ist kleiner als nE , jedoch nicht polynomiell kleiner.
2. f (n) ist größer als nE , jedoch nicht polynomiell größer.
3. f (n) ist polynomiell größer als nE , erfüllt nicht b·f (n/c) 6 d ·f (n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Mastertheorem Lösen von Rekursionsgleichungen

Anwendung des Mastertheorems

Beispiel
T (n) = 4 · T (n/2) + n

I Somit: b = 4, c = 2 und f (n) = n; E = log 4/ log 2 = 2.
I Da f (n) = n ∈ O(n2−ε), gilt Fall 1: T (n) ∈ Θ(n2)

Beispiel
T (n) = 4 · T (n/2) + n2

I Somit: b = 4, c = 2 und f (n) = n2; E = log 4/ log 2 = 2.
I Da f (n) = n2 6∈ O(n2−ε), gilt Fall 1 nicht.
I Aber weil f (n) = n2 ∈ Θ(n2), gilt Fall 2: T (n) ∈ Θ(n2 · log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Mastertheorem Lösen von Rekursionsgleichungen

Anwendung des Mastertheorems

Beispiel
T (n) = 4·T (n/2) + n3

I Somit: b = 4, c = 2 und f (n) = n3; E = log 4/ log 2 = 2.
I Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.
I Da f (n) = n3 ∈ Ω(n2+ε) für ε = 1, könnte Fall 3 gelten.
I Überprüfe: gilt f (n/2) 6 d

4 ·f (n) für d < 1 und hinreichend grosse n?
I Dies liefert 1

8n3 6 d
4 ·n

3, und dies gilt für alle 1
2 6 d < 1 (und n)

I Somit gilt Fall 3 tatsächlich und wir folgern: T (n) ∈ Θ(n3)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Mastertheorem Lösen von Rekursionsgleichungen

Das Mastertheorem ist nicht immer anwendbar
Beispiel
T (n) = 4 · T (n/2) + n2

log n
I Also gilt: b = 4, c = 2 und f (n) = n2/ log n; E = 2.

Fall 1 ist nicht anwendbar:
n2/ log n 6∈ O(n2−ε), da f (n)/n2 = (log n)−1 6∈ O(n−ε).

Fall 2 ist nicht anwendbar: n2/ log n 6∈ Θ(n2).

Fall 3 ist nicht anwendbar:
f (n) 6∈ Ω(n2+ε), da f (n)/n2 = (log n)−1 6∈ O(n+ε).

⇒ Das Mastertheorem hilft hier überhaupt nicht weiter!
I Durch Substitution erhält man: T (n) ∈ Θ(n2 · log log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Mastertheorem Lösen von Rekursionsgleichungen

Mastertheorem: Beweis

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Lösen von Rekursionsgleichungen
	Substitutionsmethode
	Rekursionsbäume
	Mastertheorem

