Datenstrukturen und Algorithmen

Mastertheorem

Vorlesung 6: Mastertheorem (K4)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

24. April 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20
Mastertheorem Losen von Rekursionsgleichungen

Ubersicht

@ Losen von Rekursionsgleichungen
@ Substitutionsmethode
@ Rekursionsbaume
@ Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Mastertheorem

Ubersicht

@ Losen von Rekursionsgleichungen
@ Substitutionsmethode
@ Rekursionsbaume
@ Mastertheorem

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsgleichungen

Rekursionsgleichung

Fiir rekursive Algorithmen wird die Laufzeit meistens durch
Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die
eine Funktion durch ihre eigenen Funktionswerte fiir kleinere Eingaben
beschreibt.

» T(n)=T([(n—1)/2])+1 Binare Suche
» T(n)=T(n-1)+n—-1 Bubblesort
» T(n)=2-T(n/2)+n—1 Mergesort

» T(n)=7-T(n/2) + c-n? Strassen’s Matrixmultiplikation

Die zentrale Frage ist: Wie [6st man solche Rekursionsgleichungen?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Die Substitutionsmethode Die Substitutionsmethode: Beispiel

Betrachte folgende Rekursionsgleichung:

Substitutionsmethode T(1)=1

Die Substitutionsmethode besteht aus zwei Schritten: T(n)=2-T(n/2)+n firn>1.
1. Rate die Form der Losung, durch z.B.:
» Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen > Wir vermuten als Lésung T(n) € O(n - log n).

» Betrachtung des Rekursionsbaum ;
- _ _ _ _ » Dazu missen wir T(n) < c-n-log n zeigen, fir geeignete ¢ > 0.
2. Vollstandige Induktion um die Konstanten zu finden und zu zeigen,

dass die Lésung funktioniert, » Bestimme ob fiir ein geeignetes ng, fir n > ng, T(n) < c-n-log n gilt

» Stelle fest, dass T(1) =1 < c-1-logl = 0 verletzt ist.

» Esgilt: T(2) =4 < c-2log2und T(3)=5<c-3log3firc>1

» Uberpriife dann durch Substitution und Induktion (s. nichste Folie)
» Damit gilt fir jedes ¢ > 1 und n> ng > 1, dass T(n) < c-n-logn.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20
Die Substitutionsmethode: Beispiel Raten der Losung durch lteration

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein
T(n)=2-T(n/2)+nfirn>1und T(1)=1 Muster erkennt.

T(m) = 2-T(n/2) +n | Induktionshypothese

< 2(c'n/2-logn/2) +n T(n)=3-T(n/4)+n | Einsetzen
_ o nlogn/24 o R (o = o) =3-(3-T(n/16)+ n/4))+n | Nochmal einsetzen
- cmiogn n logn/2 =logn — log?2 =9-(3-T(n/64)+ n/16)) +3-n/4+n | Vereinfachen

3\? 3\! 3\°
= c-n-logn—c-n-log2+n = 27. T(n/64) + (A_l) -n+ (A_l) -n4+ <Z> -n
<cnlogn—cn+n | mit ¢ > 1 folgt sofort: loggn —1 ;
< e logis Wir nehmen T(1) = ¢ an und erhalten: T(n) = ;) <4> .n+c-n83

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Mastertheorem Lésen von Rekursionsgleichungen

Raten der Losung durch Rekursionsbaume

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch tiber
das aktuelle Rekursionsargument und die nichtrekursiven Kosten fiihrt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

» Die Wurzel stellt die zu analysierenden Kosten T (n) dar.
» Die Blatter stellen die Kosten der Basisfalle dar, z.B. T(0) oder T(1).

2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

3. Die Gesamtkosten := summieren lber die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr nitzlich, um eine Lésung zu raten, die dann
mit Hilfe der Substitutionsmethode iiberprift werden kann.
Der Baum selber reicht jedoch meistens nicht als Beweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20
Mastertheorem Losen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

())
n
T(n/4) T(n/4) T(n/4)
log, n /4 n/a n/a 3n/4
\
T(n/16)||T(n/16)||T(n/16)] T(n/16)||T(n/16)||T(n/16)| 9n/16
nj16 |[n/16 || n/16 nj16 |[n/16 || n/16 n
T TA)T() TQA)T(A) oo T(1) T(1) T(1) T(1) T(1)
< 3|og4n — nlog43 >
logyn—1 3\
_ . . plog, 3
T(n) = Z (4) n + c-n°
=0 <L — Gnesa.mtkousten
Summe iiber 1KOSten pro fiir die Blitter
alle Ebenen Ebene mit T(1) =c
Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Mastertheorem Lésen von Rekursionsgleichungen

Rekursionsbaum: Beispiel

Der Rekursionsbaum von T(n) = 3- T(n/4) + n sieht etwa so aus:

Aktuelles Nichtrekursive
. ======== » T(n) _
Rekursionsargument e Kosten

T(n/4) / T(n‘/4) \ T(n/4)

n/4 n/4 n/4
T(n/16)| [T(n/16)] [T(n/16)] T(n/16)| [T(n/16)| [T(n/16)
n/16 n/16 n/16 n/16 n/16 n/16
/ : \ / : \ / : \ / : \ / : \ / : \
Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Rekursionsbaum: Beispiel

Eine obere Schranke fiir die Komplexitat erhdlt man nun folgendermaBen:

loggn—1 i
T(n) = Z (4) -n+ c-n'ogs3 | Vernachlassigen kleinerer Terme
i=0
< Z (4) -n+c-n'es3 | Geometrische Reihe
i=0
1 log, 3
< —————-n+c-n° | Umformen

1 (3/4)

< 4.ntc. 510843 Asymptotische Ordnung bestimmen

setze ein, dass log, 3 < 1

T(n) € O(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20

Mastertheorem Lésen von Rekursionsgleichungen

Korrektheit

Wir kdnnen die Substitutionsmethode benutzen, um die Vermutung zu
bestatigen dass:

T(n) € O(n) eine obere Schranke von T(n)=3-T(n/4)+ n ist.

T(n)=3-T(n/4)+n | Induktionshypothese
<3d-n/4+n
3
= Zd-n +n
3 :
= Zd +1)-n | mit d > 4 folgt sofort:
<dn

Und wir stellen fest, dass es ein ng gibt, so dass T(ng) < d-ng ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Mastertheorem Losen von Rekursionsgleichungen

Das Mastertheorem

T(n):b'T(2)+f(”) mit b>1und ¢ > 1.

» Anzahl der Blatter im Rekursionsbaum: nf mit £ = log b/ log c.

Mastertheorem
Wenn Dann
1. f(n) € O(nf~*) fiir eine >0 T(n) € ©(nf)
2. f(n) € ©(nf) T(n) € ©(nE - log n)

3. f(n) € Q(nf*e) fiir ein e > 0 und T(n) € ©(f(n))
b-f(n/c) < d-f(n) fur d < 1 und
n hinreichend grof3

» Bemerke, dass das Mastertheorem nicht alle Falle abdeckt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Mastertheorem Lésen von Rekursionsgleichungen

Mastertheorem

Allgemeine Format der Rekursionsgleichung

Eine Rekursionsgleichung fiir die Komplexitatsanalyse sieht meistens
folgendermaBen aus:

T(n)=b-T (Z) + f(n)

wobei b > 0, ¢ > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

» Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf
» Jedes dieser Teilprobleme hat die GroBe ¢

» Die Kosten fiir das Aufteilen eines Problems und Kombinieren der
Teillésungen sind f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Mastertheorem Lésen von Rekursionsgleichungen

Das Mastertheorem verstehen

In jedem der 3 Falle wird die Funktion f(n) mit nf = n'°8® verglichen.

Mastertheorem: Intuition

Wenn Dann
T(n) € ©(nf)
T(n) € ©(nE - log n)

3. f(n) ist polynomial gréBer als n und er- T (n) € ©(f(n))
fullt b-f(n/c) < d-f(n)

Nicht abgedeckte Falle:

1. f(n) ist kleiner als nf, jedoch nicht polynomiell kleiner.

1. f(n) polynomial kleiner ist als nf

2. f(n) und nf die gleiche GroBe haben

2. f(n) ist groBer als nf, jedoch nicht polynomiell groBer.
3. f(n) ist polynomiell groBer als n, erfiillt nicht b-f(n/c) < d-f(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20

Mastertheorem Lésen von Rekursionsgleichungen

Anwendung des Mastertheorems

T(n)=4-T(n/2)+n
» Somit: b=4, c=2und f(n) =n; E =log4/log2 = 2.
» Da f(n) = n € O(n*¢), gilt Fall 1:| T(n) € ©(n?)

T(n)=4-T(n/2)+ n?
» Somit: b =4, c =2 und f(n) = n? E = log4/log2 = 2.
» Da f(n) = n*> ¢ O(n>~¢), gilt Fall 1 nicht.
» Aber weil f(n) = n? € ©(n?), gilt Fall 2: | T(n) € ©(n? - log n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20
Mastertheorem Losen von Rekursionsgleichungen

Das Mastertheorem ist nicht immer anwendbar

T(n)=4-T(n/2) + &

logn

» Also gilt: b=4, c =2 und f(n) = n?/logn; E = 2.

Fall 1 ist nicht anwendbar:
n?/logn ¢& O(n°~¢), da f(n)/n* = (log n)~t & O(n~*).

Fall 2 ist nicht anwendbar: n?/log n & ©(n?).
Fall 3 ist nicht anwendbar:

f(n) & Q(n2+5), da f(n)/n2 = (log n)_1 g O(n+5).

—> Das Mastertheorem hilft hier (iberhaupt nicht weiter!

» Durch Substitution erhilt man: | T(n) € ©(n? - loglog n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Mastertheorem Lésen von Rekursionsgleichungen

Anwendung des Mastertheorems

T(n) =4-T(n/2)+ nd
» Somit: b =4, c =2 und f(n) = n3 E = log4/log2 = 2.
» Wegen E = 2 gelten Falle 1 und 2 offenbar nicht.
Da f(n) = n® € Q(n**¢) fiir e = 1, kdnnte Fall 3 gelten.
Uberpriife: gilt f(n/2) < 4-f(n) fiir d < 1 und hinreichend grosse n?
Dies liefert %n3 < %-n3, und dies gilt fiir alle % < d <1 (und n)

v

v

v

v

Somit gilt Fall 3 tatsachlich und wir folgern: T(n) € ©(n%)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Mastertheorem Lésen von Rekursionsgleichungen

Mastertheorem: Beweis

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Lösen von Rekursionsgleichungen
	Substitutionsmethode
	Rekursionsbäume
	Mastertheorem

