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Die Bedeutung des Sortierens

Sortieren ist ein wichtiges Thema

I Sortieren wird häufig benutzt und hat viele Anwendungen.
I Sortierverfahren geben Ideen, wie man Algorithmen verbessern kann.
I Geniale und optimale Algorithmen wurden gefunden.

I Neben der Funktionsweise der Algorithmen widmen wir uns vor allem
der Laufzeitanalyse.
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Anwendungen des Sortierens

Beispiel (Suchen)

I Schnellere Suche ist die wohl häufigste Anwendung des Sortierens.
I Binäre Suche findet ein Element in O(log n).

Beispiel (Engstes Paar (closest pair))

I Gegeben seien n Zahlen. Finde das Paar mit dem geringstem Abstand.
I Nach dem Sortieren liegen die Paare nebeneinander.

Der Aufwand ist dann noch O(n).
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Noch einige Anwendungen

Beispiel (Eigenschaften von Datenobjekten)

I Sind alle n Elemente einzigartig oder gibt es Duplikate?
I Das k-t größte Element einer Menge?

Beispiel (Textkompression (Entropiekodierung))

I Sortiere die Buchstaben nach Häufigkeit des Auftretens um sie dann
effizient zu kodieren (d.h. mit möglichst kurzen Bitfolgen).
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Einige Hilfsbegriffe
Permutation
Eine Permutation einer Menge A = {a1, . . . , an} ist eine bijektive
Abbildung π : A→ A.

Totale Ordnung
Sei A = {a1, . . . , an} eine Menge. Die binäre Relation 6⊆ A× A ist eine
totale Ordnung (auf A) wenn für alle ai , aj , ak ∈ A gilt:
1. Antisymmetrie: ai 6 aj und aj 6 ai impliziert ai = aj .
2. Transitivität: ai 6 aj und aj 6 ak impliziert ai 6 ak .
3. Totalität: ai 6 aj oder aj 6 ai .

Beispiel
Die lexikographische Ordnung von Zeichenketten und die numerische
Ordnung von Zahlen sind totale Ordnungen.
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Sortierproblem

Das Sortier-Problem

Eingabe: 1. Ein Array E mit n Einträgen.
2. Die Einträge gehören zu einer Menge A mit totaler

Ordnung 6.

Ausgabe: Ein Array F mit n Einträgen, so dass
1. F[1], . . ., F[n] eine Permutation von E[1], . . ., E[n] ist
2. Für alle 0 < i < n gilt: F[i] 6 F[i+1].

Annahmen dieser Vorlesung

I Die zu sortierende Sequenz ist als Array organisiert, nicht als Liste.
I Die Elementaroperation ist ein Vergleich von Schlüsseln.
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Sortieralgorithmen

Beispiel (Einige Sortieralgorithmen)

Insertionsort, Bubblesort, Shellsort, Mergesort, Heapsort
Quicksort, Countingsort, Bucketsort, Radixsort, Stoogesort, usw.

Stabilität
Ein Sortieralgorithmus ist stabil wenn er die Reihenfolge der Elemente,
deren Sortierschlüssel gleich sind, bewahrt.
Wenn z.B. eine Liste alphabetisch sortierter Personendateien nach dem
Geburtsdatum neu sortiert wird, dann bleiben unter einem stabilen
Sortierverfahren alle Personen mit gleichem Geburtsdatum alphabetisch sortiert.

Wir werden erst einen einfachen Sortieralgorithmus betrachten.
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Dutch National Flag Problem (I)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/32

Sortieren Sortieren - Einführung

Dutch National Flag Problem (II)

Beispiel (Das niederländische Flaggen-Problem [Dijkstra, 1972])

Eingabe: 1. Ein Array E mit n Einträgen, wobei für alle 0 < i 6 n
E[i] == rot, E[i] == blau oder
E[i] == weiss

2. Ordnung: rot < weiss < blau

Ausgabe: Ein sortiertes Array mit den Einträgen aus E.

Erwünschte Worst-Case Zeitkomplexität: Θ(n).

Erwünschte Worst-Case Speicherkomplexität: Θ(1).
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Dutch National Flag Problem (III)
Hauptidee
Zerlege das Array E in 4 Regionen:

(1) 0 < i 6 r, (2) r < i < u, (3) u 6 i < b, und (4) b 6 i 6 n

für die Hilfsvariablen r, u und b, so dass folgende Invariante gilt:
1. E[1], . . ., E[r] ist die “rote” Region, d.h. für alle 0 < i 6 r

E[i] == rot.
2. E[r+1], . . ., E[u-1] ist die “weiße” Region, d.h. für alle r < i < u

E[i] == weiss.
3. E[u], . . ., E[b-1] ist unbekannte Region, d.h. für alle u 6 i < b

E[i] == rot oder E[i] == weiss oder E[i] == blau.
4. E[b], . . ., E[n] ist die “blaue” Region, d. h. für alle b 6 i 6 n

E[i] == blau.

Arrayelemente können mit der swap-Operation vertauscht werden.
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Dutch National Flag Problem (IV)
1 void DutchNationalFlag(Color E[], int n) {
2 int r = 0, b = n + 1; // rote und blaue Regionen sind leer
3 int u = 1; // weiße Region ist leer, die unbekannte == E
4 while (u < b) {
5 if (E[u] == rot) {
6 swap(E[r + 1], E[u]);
7 r = r + 1; // vergrößere die rote Region
8 u = u + 1; // verkleinere die unbekannte Region
9 }

10 if (E[u] == weiss) {
11 u = u + 1;
12 }
13 if (E[u] == blau) {
14 swap(E[b - 1], E[u]);

r bu

15 b = b - 1; // vergrößere die blaue Region
16 }
17 }
18 }

Frage: Ist DNF-Algorithmus ein stabiles Sortierverfahren? Antwort: Nein.
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Dutch National Flag Problem (V)

Speicherkomplexität
Die Worst-Case Speicherkomplexität vom DNF-Algorithmus ist Θ(1), da
die einzigen extra Variablen r, u und b sind.
DNF ist in-place, d. h. der Algorithmus arbeitet ohne zusätzlichen
Speicherplatz.

Zeitkomplexität
Betrachte als elementare Operationen Vergleiche der Form E[i] == ....
Die Worst-Case Zeitkomplexität ist Θ(n), da:
1. in jedem Durchlauf werden konstant viele Vergleiche durchgeführt
2. die Anzahl der Durchläufe ist Θ(n), da in jedem Durchlauf die Größe

des unbekannten Gebiets b - u um eins verkleinert wird.
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Sortieren durch Einfügen – Insertionsort
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Sortieren durch Einfügen – Insertionsort

0 12 17 17 19 8 25 3 6 69 26 4 2 13 34 41

als Nächstes einzusortieren
bereits sortiert noch unsortiert

I Durchlaufen des (unsortierten) Arrays von links nach rechts.
I Gehe zum ersten bisher noch nicht berücksichtigte Element.
I Füge es im sortierten Teil (links) nach elementweisem Vergleichen ein.
I Dieser Algorithmus funktioniert auch mit anderen linearen

Anordnungen, etwa Listen.
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Insertionsort – Animation und Algorithmus
3 8 17 17 19 25 26 41 6 69 12 4 2 13 34 0

1 void insertionSort(int E[]) {
2 int i,j;
3 for (i = 1; i < E.length; i++) {
4 int v = E[i]; // speichere E[i]
5 for (j = i; j > 0 && E[j-1] > v; j--) {
6 E[j] = E[j-1]; // schiebe Element j-1 nach rechts
7 }
8 E[j] = v; // füge E[i] an der richtigen Stelle ein
9 }

10 }

I Insertionsort ist in-place, d.h. der Algorithmus arbeitet ohne
zusätzlichen Speicherplatz.

I Insertionsort ist stabil, da die Reihenfolge der gleichwertigen
Arrayelemente unverändert bleibt.
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Insertionsort – Best- und Worst-Case-Analyse
Best-Case

I Im Best-Case ist das Array bereits sortiert.
I Pro Element ist daher nur ein Vergleich nötig.
⇒ Es gilt: B(n) = n − 1 ∈ Θ(n)

Worst-Case
I Im Worst-Case wird das einzusortierende Element immer ganz vorne

eingefügt.
I Es muss mit allen vorhergehenden Elementen verglichen werden.
I Das tritt etwa auf, wenn das Array umgekehrt vorsortiert war.
⇒ Zum Einsortieren des i-ten Elements sind im schlimmsten Fall

i Vergleiche nötig: W (n) =
n−1∑
i=1

i = n·(n−1)
2 ∈ Θ(n2)
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Insertionsort – Average-Case-Analyse (I)

Annahmen für die Average-Case-Analyse

I Alle Permutationen von Elementen treten in gleicher Häufigkeit auf.
I Die zu sortierenden Elemente sind alle verschieden.

Es gilt:

A(n) =
n−1∑
i=1

erwartete Anzahl an Vergleichen, um E[i] einzusortieren

Die erwartete Anzahl an Vergleichen, um den richtigen Platz für E[i] zu
finden wird dann wie folgt hergeleitet:
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Insertionsort – Average-Case-Analyse (II)
i∑

j=0
Pr
{

i-tes Element wird
an Position j eingefügt

}
· Anzahl Vergleiche, um E[i]
an Position j einzufügen

E[i] wird an beliebiger Position j
mit gleicher W’lichkeit eingefügt

=
i∑

j=0

1
i + 1 ·

Anzahl Vergleiche, um E[i]
an Position j einzufügen

Anzahl Vergleiche, um an Position 0
einzufügen ist i , sonst i−j+1.

=
1

i + 1 · i +
1

i + 1 ·
i∑

j=1
(i − j + 1)

Vereinfachen

=
i

i + 1 +
1

i + 1 ·
i∑

j=1
j =

i
i + 1 +

1
i + 1 ·

i ·(i+1)

2 =
i
2 + 1− 1

i + 1 .
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Insertionsort – Average-Case-Analyse (III)
Damit gilt für A(n):

A(n) =
n−1∑
i=1

( i
2 + 1− 1

i + 1

)
Auseinanderziehen
und Indexverschiebung

=
n · (n − 1)

4 + (n − 1)−
n∑

i=2

1
i

Verschieben des Summenstarts

=
n · (n − 1)

4 + n −
n∑

i=1

1
i

Harmonische Reihe:
n∑

i=1
(1/i) ≈ ln n

A(n) ≈ n · (n − 1)

4 + n − ln n ∈ Θ(n2)
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Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide-and-conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ähneln, jedoch von
kleinerer Größe sind.
Sie lösen die Teilprobleme rekursiv und kombinieren diese Lösungen dann,
um die Lösung des eigentlichen Problems zu erstellen.
Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.
Beherrsche die Teilprobleme durch rekursives Lösen. Hinreichend kleine

Teilprobleme werden direkt gelöst.
Verbinde die Lösungen der Teilprobleme zur Lösung des

Ausgangsproblems.
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Mergesort – Strategie

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

3 8 17 17 19 25 26 41 0 2 4 6 12 13 34 69

0 2 3 4 6 8 12 13 17 17 19 25 26 34 41 69

rekursiv Sortieren rekursiv SortierenMitte

Verschmelzen

Teile das Array in zwei – möglichst gleichgroße – Hälften.
Beherrsche: Sortiere die Teile durch rekursive Mergesort-Aufrufe.
Verbinde: Mische je 2 sortierte Teilsequenzen zu einem einzigen,

sortierten Array.
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Mergesort – Algorithm

1 void mergeSort(int E[], int left, int right) {
2 if (left < right) {
3 int mid = (left + right) / 2; // finde Mitte
4 mergeSort(E, left, mid); // sortiere linke Hälfte
5 mergeSort(E, mid + 1, right); // sortiere rechte Hälfte
6 // Verschmelzen der sortierten Hälften
7 merge(E, left, mid, right);
8 }
9 }
10 // Aufruf: mergeSort(E, 0, E.length-1);

I Verschmelzen kann man in Linearzeit. – Wie?
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Mergesort – Animation

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0
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Mergesort – Animation

41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

3 8 17 17 19 0 2 4 6 12

25 26 41 69 13 34
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Mergesort – Verschmelzen in Linearzeit
1 void merge(int E[], int left, int mid, int right) {
2 int a = left, b = mid + 1;
3 int Eold[] = E;
4 for (; left <= right; left++) {
5 if (a > mid) { // Wir wissen (Widerspruch): b <= right
6 E[left] = Eold[b];
7 b++;
8 } else if (b > right || Eold[a] <= Eold[b]) { // stabil: <=
9 E[left] = Eold[a];

10 a++;
11 } else { // Eold[a] > Eold[b]
12 E[left] = Eold[b];
13 b++;
14 }
15 }
16 }

I Mergesort ist stabil (vgl. Zeile 8), d. h. die Reihenfolge von Elementen
mit gleichem Schlüssel bleibt erhalten.
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Mergesort – Analyse
Worst-Case
Wir erhalten:

W (n) = W (bn/2c) + W (dn/2e) + n − 1 mit W (1) = 0.
Mit Hilfe des Mastertheorems ergibt sich: W (n) ∈ Θ(n · log n).

Best-Case, Average-Case
Das Worst-Case-Ergebnis gilt genauso im Best-Case, und damit auch im
Average-Case: W (n) = B(n) = A(n) ∈ Θ(n · log n).

Speicherbedarf
Θ(n) für die Kopie des Arrays beim Mergen. Θ(log n) für den Stack.

I Mergesort ist nicht in-place.
I Mit zusätzlichen Verschiebungen ist die Kopie des Arrays nicht nötig.
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Wie effizient kann man sortieren? (I)

E [1] < E [2]?

E [2] < E [3]?
Ja

E [1] < E [3]?
Ja Nein

Nein

Ja

E [1] < E [3]?

E [2] < E [3]?
Ja Nein

Ja Nein

Nein

Betrachte vergleichsbasierte Sortieralgorithmen als Entscheidungsbaum:
I Dieser beschreibt die Abfolge der durchgeführten Vergleiche.
I Sortieren verschiedener Eingabepermutationen ergibt also

verschiedene Pfade im Baum.
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Wie effizient kann man sortieren? (II)

Theorem
Vergleichsbasiertes Sortieren benötigt im Worst-Case mindestens
O(n log n) Vergleiche.

Beweis.
Es gilt:

I Anzahl Vergleiche im Worst-Case = Länge des längsten Pfades =
Baumhöhe k.

I Da wir binäre Vergleiche verwenden, ergibt sich ein Binärbaum mit n!
Blättern.

⇒ Mit n! 6 2k erhält man k > dlog(n!)e Vergleiche im Worst-Case.
Da dlog(n!)e ≈ n · log n − 1.4 · n geht es nicht besser als O(n · log n)!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/32


	Sortieren - Einführung
	Bedeutung des Sortierens
	Dutch National Flag Problem

	Sortieren durch Einfügen
	Mergesort
	Das Divide-and-Conquer Paradigma
	Mergesort

	Effizienteres Sortieren?

