Datenstrukturen und Algorithmen

Vorlesung 8: Heapsort (K6)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

04. Mai 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/23
Ubersicht
© Heaps
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/23

Heapsort

Ubersicht

@ Heaps

© Heapaufbau

© Heapsort

@ Anwendung: Prioritatswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/23
Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binarbaum, der Elemente mit Schlisseln enthalt und in
ein Array eingebettet ist. Die Heap-Bedingung fiir Max-Heaps fordert:

» Der Schliissel eines Knotens ist stets groBer als (bzw. mindestens so
groB wie) die Schliissel seiner Kinder.

Weiter gilt:
> Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefiillt.

» Die Blatter befinden sich damit alle auf einer (hochstens zwei)
Ebene(n).

> Die Blatter der untersten Ebene sind linksbiindig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/23

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Heapsort Heaps

Arrayeinbettung eines Heaps

0

Das Array a wird wie folgt als

Bindrbaum aufgefasst:

>

>

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/23
Ubersicht

Die Wurzel liegt in a[0].

Das linke Kind von ali] liegt
inafl2 * i + 1].

Das rechte Kind von ali] liegt

inafl2 x i + 2].

01 2 3 45 6 7 8 9

Durch die moglichst vollstandige Fillung der Ebenen werden ,, Lécher”
im Array vermieden.

VergroBert man den Baum um ein Element, so wird das Array gerade
um ein Element langer.

@ Heapaufbau

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/23

Heapsort

Heaps

Heaps — Eigenschaften

Lemma

VergréBert man den Schliissel der Wurzel, dann bleibt der Baum ein Heap.

Lemma

Jedes Array ,,ist ein Heap" ab Position |3].

2

» Ein Heap hat [7] innere Knoten.

Joost-Pieter Katoen

Heapsort

Naiver Heapau

Datenstrukturen und Algorithmen

Heapaufbau

fbau

X
)\

1w ®
OROR®D

Etl 8[16[9[4]15

6/23

Heapaufbau, naiv

Der Heap wird von oben nach unten (top-down) aufgebaut, indem
> ein neues Element moglichst weit links angefiigt wird und

» rekursiv nach oben getauscht wird, solange es groBer als sein

Elternknoten ist.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen

8/23

Heapsort Heapaufbau

Naiver Heapaufbau — Algorithmus und Analyse

1 void bubble(int E[], int pos) {
2 while (pos > 0) {

3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {

5 break;

6 }

7 swap (E[parent], E[pos]);

8 pos = parent;

9o 1}

10 }

Die Hohe k eines Heaps mit n Elementen ist beschrankt durch:
n<2x -1 = k=|logn]
» Damit kostet jedes Einfiigen k ~ log n Vergleiche.

= Zum Aufbau eines Heaps mit n Elementen benétigt man ©(n - log n)

Vergleiche.
Es geht effizienter: heapify (auch: sink, fixheap) [Floyd 1964]
Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/23

Heapify — Algorithmus und Beispiel

1 void heapify(int E[], int n, int pos) {
2 int next = 2 * pos + 1;

3 while (next < n) {

4 if (next + 1 < n &&

5 E[next + 1] > E[next]) {
6 next = next + 1;

7

8

9

}
if (E[pos] > E[next]) {
break;
10 }
1 swap (E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;

w3
15 } S

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/23

Heapify — Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

» E[i] kann kleiner als seine Kinder sein.

» Wir wollen die beiden Teilbdume — Heaps — zusammen mit E[i] zu
einem (Gesamt-)Heap verschmelzen.

» Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum
mit Wurzel E[i] ein Heap ist.

Heapify

» Finde das Maximum der Werte E[i] und seiner Kinder.

> Ist E[i] bereits das groBte Element, dann ist dieser gesamte Teilbaum
auch ein Heap. Fertig.

» Andernfalls tausche E[i] mit dem groBten Element und fiihre Heapify
in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/23
Heapsort Heapaufbau

Heapaufbau — Algorithmus und Beispiel

Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
heapify(E, E.length, i);

3
4 %
5

}

Nach jedem Aufruf von heapify(E, E.length, i) sind die Knoten i, ...
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/23

Heapsort Heapaufbau

Konstruktion eines Heaps

Der Algorithmus buildHeap ist korrekt und terminiert.

» Initialisierung: Jeder Knoten i = [n/2], [n/2] + 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

» Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1,..., E.length die Wurzel eines Heaps.

> In jeder lteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

= Bedingung fiir den Aufruf von heapify ist erfiillt.
» Dekrementierung von i stellt Schleifeninvariante wieder her.

» Terminierung: Bei i = 0 ist gemaB Schleifeninvariante jeder Knoten

1,2,...,n die Wurzel eines Heaps.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/23

Heapsort — Algorithmus und Beispiel

8 [26[34
S

1 void heapSort(int E[]) {

2 buildHeap(E);

3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[il);
5

6

7

heapify(E, i, 0);
}
}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/23

Heapsort Heapsort

Ubersicht
© Heapsort
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/23

Heapsort — Analyse

» Die Worst-Case Komplexitit von Heapify ist maximal 2 - |log n| fir n
Knoten.

» fiir einen Heap mit Level k, gibt es 2 - k Vergleiche im Worst-Case

» Die Worst-Case Komplexitat von buildHeap ist ©(n) (Beweis: nichste
Folie)

» Fiir Heapsort erhalten wir somit:
n—1 n—1
W(n) = (Z 2-|logi]|)+n< 2(2 logn)+n=2-(n—1)-logn+n
i=1 i=1
= W(n) € O(n-logn)

» Es wird kein zusatzlicher Speicherplatz benétigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/23

Heapsort — Heapeigenschaften

Ein n-elementiger Heap hat die Héhe [logn|.

Ein Heap hat maximal [n/2"1] Knoten mit der Héhe h.

Beweise sieche Ubung 5.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/23
Heapsort Heapsort

Heapsort — Zusammenfassung

» Heapsort sortiert in O(n- log n)
» Heapsort ist ein in-place Algorithmus.

» Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/23

Heapsort Heapsort

Heapsort — Komplexitatsanalyse

Die Worst-Case Komplexitat von buildHeap ist ©(n)
Beweis:

» Die Laufzeit von Heapify fiir einen Knoten der Hohe h ist in O(h).

» [n/2M1] = Anzahl der Knoten mit Hohe h.
Daraus folgt fir buildHeap:

lgn) - lgn) o py 1/2
> || o) - O("Zzh> D

h=0

I

a
N

S
M2
N =
N——

h=0
= O(n)
Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/23
Heapsort Anwendung: Prioritatswarteschlangen

Ubersicht

@ Anwendung: Priorititswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/23

Heapsort Anwendung: Prioritatswarteschlangen

Erinnerung: Die Prioritatswarteschlange (1)

» Betrachte Elemente, die mit einem Schliissel (key) versehen sind.
» Jeder Schlissel sei hochstens an ein Element vergeben.
» Schlissel werden als Prioritat betrachtet.
> Die Elemente werden nach ihrer Prioritat sortiert.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/23
Drei Prioritatswarteschlangenimplementierungen
Implementierung
Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) o(1) O(1) O(1)
insert(pq,e,k) o(1) O(n)* O(log n)
getMin(pq) ©(n) o(1) O(1)
delMin(pq) ©(n)* o(1) O(log n)
getElt (pq,k) O(n) O(logn)T O(n)
decrKey(pq,e,k) o(1) O(n)* O©(log n)
*Beinhaltet das Verschieben aller Elemente ,rechts” von k.
TMittels binarer Suche.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/23

Joost-Pieter Katoen

Erinnerung: Die Prioritatswarteschlange (I1)

Prioritatswarteschlange (priority queue)

void insert(PriorityQueue pq, int e, int k) fligt das Element e
mit dem Schliissel k in pq ein.

int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schliissel zuriick; bendtigt nicht-leere pq.

void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schliissel; bendtigt nicht-leere pq.

int getElt(PriorityQueue pg, int k) gibt das Element e mit dem
Schlissel k aus pq zuriick; k muss in pq enthalten sein.

void decrKey(PriorityQueue pq, int e, int k) setzt den Schliissel

von Element e auf k; e muss in pq enthalten sein.
k muss auBerdem kleiner als der bisherige Schliissel von e sein.

Mit Heaps ist eine effiziente Implementierung moglich.

Datenstrukturen und Algorithmen 22/23

	Heaps
	Heapaufbau
	Heapsort
	Anwendung: Prioritätswarteschlangen

