
Heapsort

Datenstrukturen und Algorithmen
Vorlesung 8: Heapsort (K6)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

04. Mai 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/23

Heapsort

Übersicht

1 Heaps

2 Heapaufbau

3 Heapsort

4 Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/23

Heapsort Heaps

Übersicht

1 Heaps

2 Heapaufbau

3 Heapsort

4 Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/23

Heapsort Heaps

Heaps

Heap (Haufen)

Ein Heap ist ein Binärbaum, der Elemente mit Schlüsseln enthält und in
ein Array eingebettet ist. Die Heap-Bedingung für Max-Heaps fordert:

I Der Schlüssel eines Knotens ist stets größer als (bzw. mindestens so
groß wie) die Schlüssel seiner Kinder.

Weiter gilt:
I Alle Ebenen, abgesehen von evtl. der untersten, sind komplett gefüllt.
I Die Blätter befinden sich damit alle auf einer (höchstens zwei)

Ebene(n).
I Die Blätter der untersten Ebene sind linksbündig angeordnet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/23

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/


Heapsort Heaps

Arrayeinbettung eines Heaps

Arrayeinbettung
Das Array a wird wie folgt als
Binärbaum aufgefasst:

I Die Wurzel liegt in a[0].
I Das linke Kind von a[i] liegt

in a[2 * i + 1].
I Das rechte Kind von a[i] liegt

in a[2 * i + 2].

Beispiel

16

14

8

2 4

7

1

10

9 3

16 14 10 8 7 9 3 2 4 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

I Durch die möglichst vollständige Füllung der Ebenen werden „Löcher“
im Array vermieden.

I Vergrößert man den Baum um ein Element, so wird das Array gerade
um ein Element länger.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/23

Heapsort Heaps

Heaps – Eigenschaften

Lemma
Vergrößert man den Schlüssel der Wurzel, dann bleibt der Baum ein Heap.

Lemma
Jedes Array „ist ein Heap“ ab Position bn

2c.

I Ein Heap hat bn
2c innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/23

Heapsort Heapaufbau

Übersicht

1 Heaps

2 Heapaufbau

3 Heapsort

4 Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/23

Heapsort Heapaufbau

Naiver Heapaufbau
10

3

2

9 4

14

15

7

8 16

10 3 7 2 14 8 16 9 4 15

Heapaufbau, naiv
Der Heap wird von oben nach unten (top-down) aufgebaut, indem

I ein neues Element möglichst weit links angefügt wird und
I rekursiv nach oben getauscht wird, solange es größer als sein

Elternknoten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/23



Heapsort Heapaufbau

Naiver Heapaufbau – Algorithmus und Analyse
1 void bubble(int E[], int pos) {
2 while (pos > 0) {
3 int parent = (pos - 1) / 2;
4 if (E[parent] > E[pos]) {
5 break;
6 }
7 swap(E[parent], E[pos]);
8 pos = parent;
9 }

10 }

Die Höhe k eines Heaps mit n Elementen ist beschränkt durch:
n 6 2k+1 − 1 ⇒ k = blog nc

I Damit kostet jedes Einfügen k ≈ log n Vergleiche.
⇒ Zum Aufbau eines Heaps mit n Elementen benötigt man Θ(n · log n)

Vergleiche.

Es geht effizienter: heapify (auch: sink, fixheap) [Floyd 1964]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/23

Heapsort Heapaufbau

Heapify – Strategie
Betrachte E[i] unter der Annahme, der rechte und linke Teilbaum ist
bereits ein Heap.

I E[i] kann kleiner als seine Kinder sein.
I Wir wollen die beiden Teilbäume – Heaps – zusammen mit E[i] zu

einem (Gesamt-)Heap verschmelzen.
I Dazu lassen wir E[i] in den Heap hineinsinken, so dass der Teilbaum

mit Wurzel E[i] ein Heap ist.

Heapify

I Finde das Maximum der Werte E[i] und seiner Kinder.
I Ist E[i] bereits das größte Element, dann ist dieser gesamte Teilbaum

auch ein Heap. Fertig.
I Andernfalls tausche E[i] mit dem größten Element und führe Heapify

in diesem Unterbaum weiter aus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/23

Heapsort Heapaufbau

Heapify – Algorithmus und Beispiel

1 void heapify(int E[], int n, int pos) {
2 int next = 2 * pos + 1;
3 while (next < n) {
4 if (next + 1 < n &&
5 E[next + 1] > E[next]) {
6 next = next + 1;
7 }
8 if (E[pos] > E[next]) {
9 break;

10 }
11 swap(E[pos], E[next]);
12 pos = next;
13 next = 2 * pos + 1;
14 }
15 }

16

12

14

2 8

7

1

10

9 3

16 12 10 14 7 9 3 2 8 1

0

1 2

3 4 5 6

7 8 9

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/23

Heapsort Heapaufbau

Heapaufbau – Algorithmus und Beispiel
Strategie: Wandle das Array von unten nach oben (bottom-up) in einen
Heap um.

2

7

9

3 4

15

14

16

8 10

1 void buildHeap(int E[]) {
2 for (int i = E.length / 2 - 1; i >= 0; i--) {
3 heapify(E, E.length, i);
4 }
5 }

Nach jedem Aufruf von heapify(E, E.length, i) sind die Knoten i, . . . ,
E.length - 1 schon Wurzeln von Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/23



Heapsort Heapaufbau

Konstruktion eines Heaps

Lemma
Der Algorithmus buildHeap ist korrekt und terminiert.

I Initialisierung: Jeder Knoten i = bn/2c, bn/2c+ 1 ist ein Blatt und
damit Wurzel eines trivialen Heaps.

I Schleifeninvariante: Zu Beginn der for-Schleife ist jeder Knoten
i+1, . . . ,E .length die Wurzel eines Heaps.

I In jeder Iteration sind alle Kinder des Knotens i bereits Wurzeln eines
Heaps (Schleifeninvariante).

⇒ Bedingung für den Aufruf von heapify ist erfüllt.
I Dekrementierung von i stellt Schleifeninvariante wieder her.
I Terminierung: Bei i = 0 ist gemäß Schleifeninvariante jeder Knoten

1, 2, . . . , n die Wurzel eines Heaps.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/23

Heapsort Heapsort

Übersicht

1 Heaps

2 Heapaufbau

3 Heapsort

4 Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/23

Heapsort Heapsort

Heapsort – Algorithmus und Beispiel
8

26

25

3 6

19

0 12

34

17

4 2

17

13

8 26 34 25 19 17 17 3 6 0 12 4 2 13 41 69

1 void heapSort(int E[]) {
2 buildHeap(E);
3 for (int i = E.length - 1; i > 0; i--) {
4 swap(E[0], E[i]);
5 heapify(E, i, 0);
6 }
7 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/23

Heapsort Heapsort

Heapsort – Analyse

I Die Worst-Case Komplexität von Heapify ist maximal 2 · blog nc für n
Knoten.

I für einen Heap mit Level k, gibt es 2 · k Vergleiche im Worst-Case
I Die Worst-Case Komplexität von buildHeap ist Θ(n) (Beweis: nächste

Folie)

I Für Heapsort erhalten wir somit:

W (n) = (
n−1∑
i=1

2 ·blog ic)+n 6 2 ·(
n−1∑
i=1

log n)+n = 2 · (n − 1) · log n + n

⇒W (n) ∈ O(n · log n)

I Es wird kein zusätzlicher Speicherplatz benötigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/23



Heapsort Heapsort

Heapsort – Heapeigenschaften

Lemma
Ein n-elementiger Heap hat die Höhe blog nc.

Lemma
Ein Heap hat maximal dn/2h+1e Knoten mit der Höhe h.

Beweise siehe Übung 5.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/23

Heapsort Heapsort

Heapsort – Komplexitätsanalyse

Die Worst-Case Komplexität von buildHeap ist Θ(n)
Beweis:

I Die Laufzeit von Heapify für einen Knoten der Höhe h ist in O(h).
I dn/2h+1e = Anzahl der Knoten mit Höhe h.

Daraus folgt für buildHeap:

blg nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n blg nc∑
h=0

h
2h

 |
∞∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2

= O
(
n
∞∑

h=0

h
2h

)
= O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/23

Heapsort Heapsort

Heapsort – Zusammenfassung

I Heapsort sortiert in O(n· log n)

I Heapsort ist ein in-place Algorithmus.
I Heapsort ist nicht stabil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/23

Heapsort Anwendung: Prioritätswarteschlangen

Übersicht

1 Heaps

2 Heapaufbau

3 Heapsort

4 Anwendung: Prioritätswarteschlangen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/23



Heapsort Anwendung: Prioritätswarteschlangen

Erinnerung: Die Prioritätswarteschlange (I)

I Betrachte Elemente, die mit einem Schlüssel (key) versehen sind.
I Jeder Schlüssel sei höchstens an ein Element vergeben.
I Schlüssel werden als Priorität betrachtet.
I Die Elemente werden nach ihrer Priorität sortiert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/23

Heapsort Anwendung: Prioritätswarteschlangen

Erinnerung: Die Prioritätswarteschlange (II)

Prioritätswarteschlange (priority queue)

I void insert(PriorityQueue pq, int e, int k) fügt das Element e
mit dem Schlüssel k in pq ein.

I int getMin(PriorityQueue pq) gibt das Element mit dem kleinsten
Schlüssel zurück; benötigt nicht-leere pq.

I void delMin(PriorityQueue pq) entfernt das Element mit dem
kleinsten Schlüssel; benötigt nicht-leere pq.

I int getElt(PriorityQueue pq, int k) gibt das Element e mit dem
Schlüssel k aus pq zurück; k muss in pq enthalten sein.

I void decrKey(PriorityQueue pq, int e, int k) setzt den Schlüssel
von Element e auf k; e muss in pq enthalten sein.
k muss außerdem kleiner als der bisherige Schlüssel von e sein.

Mit Heaps ist eine effiziente Implementierung möglich.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/23

Heapsort Anwendung: Prioritätswarteschlangen

Drei Prioritätswarteschlangenimplementierungen

Implementierung

Operation unsortiertes Array sortiertes Array Heap

isEmpty(pq) Θ(1) Θ(1) Θ(1)
insert(pq,e,k) Θ(1) Θ(n)∗ Θ(log n)
getMin(pq) Θ(n) Θ(1) Θ(1)
delMin(pq) Θ(n)∗ Θ(1) Θ(log n)
getElt(pq,k) Θ(n) Θ(log n)† Θ(n)
decrKey(pq,e,k) Θ(1) Θ(n)∗ Θ(log n)

∗Beinhaltet das Verschieben aller Elemente „rechts“ von k.
†Mittels binärer Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/23


	Heaps
	Heapaufbau
	Heapsort
	Anwendung: Prioritätswarteschlangen

