
Quicksort

Datenstrukturen und Algorithmen
Vorlesung 9: Quicksort (K7)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

8. Mai 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20

Quicksort

Übersicht

1 Quicksort
Das Divide-and-Conquer Paradigma
Partitionierung
Quicksort Algorithmus
Komplexitätsanalyse

2 Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20

Quicksort Quicksort

Übersicht

1 Quicksort
Das Divide-and-Conquer Paradigma
Partitionierung
Quicksort Algorithmus
Komplexitätsanalyse

2 Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem ähneln, jedoch von
kleinerer Größe sind.
Sie lösen die Teilprobleme rekursiv und kombinieren diese Lösungen dann,
um die Lösung des eigentlichen Problems zu erstellen.
Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.
Beherrsche die Teilprobleme durch rekursives Lösen. Hinreichend kleine

Teilprobleme werden direkt gelöst.
Verbinde die Lösungen der Teilprobleme zur Lösung des

Ausgangsproblems.
Beispiel: Mergesort (s. Vorlesung 7).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/


Quicksort Quicksort

Quicksort – Idee

Mergesort sortiert zunächst rekursiv, danach verteilt er sozusagen die
Elemente an die richtigen Stellen.

Bei Quicksort werden die Elemente zuerst auf die richtige Seite („Hälfte“)
des Arrays gebracht, dann wird jeweils rekursiv sortiert.

Quicksort wurde 1961 von Tony Hoare (Großbritanien) entwickelt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20

Quicksort Quicksort

Quicksort – Strategie
41 26 17 25 19 17 8 3 6 69 12 4 2 13 34 0

8 3 6 12 4 2 13 0 17 41 26 17 69 25 19 34

Pivot Partitionierung

< Pivot > Pivot

Teile Wähle ein Pivotelement aus dem zu sortierenden Array
und partitioniere das zu sortierende Array in zwei Teile auf:
1. Kleiner als das Pivotelement, sowie
2. mindestens so groß wie das Pivotelement.

Beherrsche: Sortiere die Teile rekursiv und setze dann das Pivotelement
zwischen die sortierten Teile.

Verbinde: Da die Teilfelder in-place sortiert werden ist keine Arbeit
nötig, um sie zu verbinden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20

Quicksort Quicksort

Partitionierung (I)

Sobald ein Pivot ausgewählt ist, kann das Array in O(n) partitioniert
werden, z. B. folgendermaßen:

I Arbeite mit drei Bereichen: „< Pivot“, „> Pivot“ und „ungeprüft“.
I Schiebe die linke Grenze nach rechts, solange das zusätzliche Element

< Pivot ist.
I Schiebe die rechte Grenze nach links, solange das zusäztliche Element

> Pivot ist.
I Tausche das links gefundene mit dem rechts gefundenen Element.
I Fahre fort, bis sich die Grenzen treffen.

(Es gibt auch andere Verfahren.)
Das obige Schema ist ähnlich zu Dijkstra’s Dutch National Flag Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20

Quicksort Quicksort

Partitionierung (II)

8 6 17 25 19 0 4 3 13 2 12 26 69 41 34 17

8 6 17 25 19 0 4 3 13 2 12 26 69 41 34 17

8 6 12 25 19 0 4 3 13 2 17 26 69 41 34 17

Suche

Tausch

Suche

Pivot

< Pivot > Pivot

< Pivot > Pivot

left right

left right

left right

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20



Quicksort Quicksort

Partitionierung – Algorithmus

1 int partition(int E[], int left, int right) {
2 // Wähle einfaches Pivotelement
3 int ppos = right, pivot = E[ppos];
4 while (true) {
5 // Bilineare Suche
6 while (left < right && E[left] < pivot) left++;
7 while (left < right && E[right] >= pivot) right--;
8 if (left >= right) {
9 break;

10 }
11 swap(E[left], E[right]);
12 }
13 swap(E[left], E[ppos]);
14 return left; // gib neue Pivotposition als Splitpunkt zurück
15 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Quicksort Quicksort

Quicksort – Algorithmus und Animation

0 2 3 6 13 8 4 12 17 25 17 26 69 41 34 19

left right

01

1 void quickSort(int E[], int left, int right) {
2 if (left < right) {
3 int i = partition(E, left, right);
4 // i ist Position des Split-punktes (Pivot)
5 quickSort(E, left, i - 1); // sortiere den linken Teil
6 quickSort(E, i + 1, right); // sortiere den rechten Teil
7 }
8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/20

Quicksort Quicksort

Quicksort – Platzbedarf
Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. – Nicht ganz:

I Die rekursiven Aufrufe benötigen Speicherplatz für alle left und
right Parameter.

I Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

I Dann wird für diese n Elemente Θ(n) Platz auf dem Stack benötigt.
I Man kann den Platzbedarf aber auf Θ(log n) reduzieren

(siehe Aufgabe 7-4 im Buch).
I Hauptidee: sortiere nur das größte Teilarray rekursiv, die kleineren

iterativ.

Theorem
Die Platzkomplexität von Quicksort ist in Θ(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/20

Quicksort Quicksort

Quicksort – Worst-Case Analyse
I Im Worst-Case wird als Pivot immer das kleinste oder größte Element

im Array genommen.
I Dadurch ist das Partitionieren maximal unbalanciert:
I Ein Teil ist leer, der andere enthält alle verbleibenden Elemente.
I Das passiert etwa, wenn das Array bereits auf- oder absteigend

sortiert ist.
⇒ Der Rekursionsbaum für Quicksort enthält n−1 Ebenen.

I Man erhält: W (n) =
n∑

i=1
(i − 1) =

n · (n − 1)

2 ∈ Θ(n2)

I Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.
I Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort

nur O(n).

Theorem
Die Worst-Case Laufzeit von Quicksort ist in Θ(n2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/20



Quicksort Quicksort

Quicksort – Best-Case Analyse
I Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung

so gleichmäßig wie möglich geschieht.
I Wenn wir also das Array mit n Elementen in zwei der Größe n/2

teilen, so erhalten wir log n Ebenen im Rekursionsbaum.
I Die Partitionierung hat eine lineare Zeitkomplexität, d.h. jede Ebene

braucht O(n) Zeit.
I Man erhält: T (n) = 2·T (n/2) + c·n für n > 1 mit T (1) = 1.
I Anwendung des Mastertheorems liefert: T (n) ∈ Θ(n· log n).

Die Ausbalanciertheit der beiden Hälften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.
Fazit: Wenn man eine Aufgabe zerlegt, ist es am Besten, in gleich große
Teile zu teilen.
Theorem
Die best-case Laufzeit von Quicksort ist in Θ(n· log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20

Quicksort Quicksort

Quicksort – Balancierte Zerlegung

I Die mittlere Laufzeit von Quicksort ist viel näher an der des besten
Falls als an der schlechtesten Falls.

I Schlüssel zum Verständnis: wie schlägt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

I Betrachte z. B. eine Zerlegung im Verhältnis 9:1. Dann erhält man für
n > 1:

T (n) 6 T (9n/10) + T (n/10) + c·n

I Rekursionsbaumanalyse liefert: T (n) ∈ O(n· log n).
I Diese 9:1 “unbalancierte” Zerlegung liefert asymptotisch die gleiche

Zeit wie bei einer Aufteilung zu gleichen Teilen!
I Eine Aufteilung im Verhältnis 99:1 liefert ebenso: T (n) ∈ O(n· log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20

Quicksort Quicksort

Quicksort – Average-Case-Analyse (I)

I Annahmen:
1. das Pivotelement kann in O(1) Zeit gewählt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mögliche Permutationen haben die gleiche Wahrscheinlichkeit

I Elemente in den Teilarrays sind noch nicht verglichen worden
⇒ Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

I Partitionierung eines Arrays mit n−1 Elemente fordert n−1 Vergleiche
I Wir erhalten damit für n > 1 folgende Rekursionsgleichung:

A(n) = n−1 +
n−1∑
i=0

Pr{Pivot endet an Stelle i} · (A(i) + A(n−i−1))

wobei A(0) = A(1) = 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort Quicksort

Quicksort – Average-Case-Analyse (II)
A(n) = n − 1 +

n−1∑
i=0

1
n · (A(i) + A(n − i − 1))

∑n−1
i=0 A(n − i − 1) = A(n − 1) + A(n − 2) + . . . + A(0)

= n − 1 +
n−1∑
i=1

2
n · A(i).

Intermezzo: wir wollen
∑

i A(i) loswerden; folgender Trick hilft:
n · A(n)− (n − 1) · A(n − 1) = 2 · A(n − 1) + 2 · (n − 1)

teile durch n · (n + 1) und setze A′(n) = A(n)/(n + 1)

A′(n) = A′(n − 1) +
2 · (n − 1)

n · (n + 1)
mit A′(0) = 1 Umformen

=
n∑

i=1

2 · (i − 1)

i · (i + 1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/20



Quicksort Quicksort

Quicksort – Average-Case-Analyse (III)

A′(n) =
n∑

i=1

2 · (i − 1)

i · (i + 1)
calculus

= 2 ·
n∑

i=1

1
i+1 − 2 ·

n∑
i=1

1
i ·(i+1)

calculus

= 2 ·
n∑

i=1

1
n − 2 +

2
n+1 − 2 ·

n∑
i=1

1
i ·(i+1)

harmonische Reihe

6 2 · ln n − 2n
n+1 A′(n) = A(n)/(n+1)

A(n) ∈ O(n· log n)

Da die Best-Case Laufzeit in Ω(n· log n) liegt, folgt folgender Satz:
Theorem
Die mittlere Laufzeit von Quicksort ist in Θ(n· log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20

Quicksort Vergleich der Sortieralgorithmen

Übersicht

1 Quicksort
Das Divide-and-Conquer Paradigma
Partitionierung
Quicksort Algorithmus
Komplexitätsanalyse

2 Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20

Quicksort Vergleich der Sortieralgorithmen

Komplexität von Sortieralgorithmen

Worst-Case Average-Case Platzbedarf Stabil
Insertionsort Θ(n2) Θ(n2) in-place J
Selectionsort Θ(n2) Θ(n2) in-place N∗

Quicksort Θ(n2) Θ(n · log n) Θ(log n) N∗

Mergesort Θ(n · log n) Θ(n · log n) Θ(n) J
Heapsort Θ(n · log n) Θ(n · log n) in-place N

∗ es gibt Varianten die stabil sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20

Quicksort Vergleich der Sortieralgorithmen

Einige Bemerkungen
I Insertion Sort ist einfach und ziemlich effizient für kleinere Arrays und

fast sortierte Eingaben. Wird häufig benutzt als Unterprogramm für
andere Sortieralgorithmen für kleinere Instanzen.

I Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.
benutzt in Perl, Python, und Java. Ist leicht anpassbar für Listen und
ist stabil.

I Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n· log n) braucht für fast
sortierte Eingaben.

I Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

I Einige Variationen:
I Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und

benutzt dann Heapsort.
I Smoothsort: (komplizierte) Variation von Heapsort die fast O(n)

braucht für fast sortierten Eingaben.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20


	Quicksort
	Das Divide-and-Conquer Paradigma
	Partitionierung
	Quicksort Algorithmus
	Komplexitätsanalyse

	Vergleich der Sortieralgorithmen

