Quicksort

Datenstrukturen und Algorithmen

Vorlesung 9: Quicksort (K7)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

8. Mai 2012
RWTH

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/20
Ubersicht
© Quicksort

@ Das Divide-and-Conquer Paradigma

@ Partitionierung

@ Quicksort Algorithmus

o Komplexitatsanalyse
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/20

Ubersicht

© Quicksort
@ Das Divide-and-Conquer Paradigma
o Partitionierung
@ Quicksort Algorithmus
o Komplexitatsanalyse

@ Vergleich der Sortieralgorithmen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/20
Quicksort Quicksort

Divide-and-Conquer

Teile-und-Beherrsche Algorithmen (divide and conquer) teilen das Problem
in mehrere Teilprobleme auf, die dem Ausgangsproblem dhneln, jedoch von
kleinerer GroBe sind.

Sie losen die Teilprobleme rekursiv und kombinieren diese Lésungen dann,
um die Lésung des eigentlichen Problems zu erstellen.

Das Paradigma von Teile-und-Beherrsche umfasst 3 Schritte auf jeder
Rekursionsebene:

Teile das Problem in eine Anzahl von Teilproblemen auf.

Beherrsche die Teilprobleme durch rekursives Losen. Hinreichend kleine
Teilprobleme werden direkt gelost.

Verbinde die Losungen der Teilprobleme zur Losung des
Ausgangsproblems.

Beispiel: Mergesort (s. Vorlesung 7).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/20

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Quicksort — Idee Quicksort — Strategie
141]26[17]25[19(17/ 8| 3] 6 [69]12] 4 | 2 [13[34] 0 |
A

Pivot l Partitionierung

Mergesort sortiert zunachst rekursiv, danach verteilt er sozusagen die | 8 | 3 | 6 |12| 4 | D) |13| 0 |17_
Elemente an die richtigen Stellen. -— Yy e
< Pivot > Pivot

Bei Quicksort werden die Elemente zuerst auf die richtige Seite (,,Halfte")

des Arrays gebracht, dann wird jeweils rekursiv sortiert. Teile Wahle ein Pivotelement aus dem zu sortierenden Array

. o . und partitioniere das zu sortierende Array in zwei Teile auf:

Quicksort wurde 1961 von Tony Hoare (GroBbritanien) entwickelt. P]]) y
1. Kleiner als das Pivotelement, sowie

2. mindestens so groB wie das Pivotelement.

Beherrsche: Sortiere die Teile rekursiv und setze dann das Pivotelement
zwischen die sortierten Teile.

Verbinde: Da die Teilfelder in-place sortiert werden ist keine Arbeit
nétig, um sie zu verbinden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/20
Partitionierung (1) Partitionierung (11) Pivot
|

v
Sobald ein Pivot ausgewahlt ist, kann das Array in O(n) partitioniert | J | 2 |17|25|19| L | 4 | E |13| 2 |12|26|69|41|34|17‘
werden, z. B. folgendermaBen: left Such right
> Arbeite mit drei Bereichen: ,,< Pivot", ,,> Pivot" und ,,ungepriift”. uche

» Schiebe die linke Grenze nach rechts, solange das zusatzliche Element

< Pivot ist. [8]6[17[25[19] 0] 4|3 [13] 2 [12]26]69]41[34]17]
+— >

<+ .
» Schiebe die rechte Grenze nach links, solange das zusaztliche Element < Pivot Ileft right > Pivot
> Pivot ist. Tausch
» Tausche das links gefundene mit dem rechts gefundenen Element.
» Fahre fort, bis sich die Grenzen treffen. | 8 | 6 |12|25|19| 0 | 4 | 3 |13| 2 |17
<+ , B
(Es gibt auch andere Verfahren.) < Pivot |left right > Pivot
Such
Das obige Schema ist adhnlich zu Dijkstra’'s Dutch National Flag Problem. uehe

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/20

Quicksort Quicksort

Partitionierung — Algorithmus

1 int partition(int E[], int left, int right) {

2 // Wihle einfaches Pivotelement
3 int ppos = right, pivot = E[ppos];
4+ while (true) {
5 // Bilineare Suche
6 while (left < right && E[left] < pivot) left++;
7 while (left < right && E[right] >= pivot) right--;
8 if (left >= right) {
9 break;
10 }
1 swap(E[left], E[right]);
2}
13 swap(E[left], E[ppos]);
14 return left; // gib neue Pivotposition als Splitpunkt zurick
15 }
Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/20

Quicksort — Platzbedarf

Auf den ersten Blick sieht Quicksort nach einem in-place
Sortieralgorithmus aus. — Nicht ganz:

>

Die rekursiven Aufrufe bendtigen Speicherplatz fir alle 1eft und
right Parameter.

Im Worst-Case wird durch die Partitionierung nur ein Element
abgespalten.

Dann wird fiir diese n Elemente ©(n) Platz auf dem Stack benétigt.

Man kann den Platzbedarf aber auf ©(log n) reduzieren
(sieche Aufgabe 7-4 im Buch).

Hauptidee: sortiere nur das groBte Teilarray rekursiv, die kleineren
iterativ.

Theorem

Die Platzkomplexitat von Quicksort ist in ©(log n).

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 11/20

Quicksort — Algorithmus und Animation

void quickSort(int E[], int left, int right) {

if (left < right) {
int i = partition(E, left, right);
// i ist Position des Split-punktes (Pivot)
quickSort(E, left, i - 1); // sortiere den linken Teil
quickSort(E, i + 1, right); // sortiere den rechten Teil

}

Joost-Pieter Katoen

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 10/20

Quicksort — Worst-Case Analyse

> Im Worst-Case wird als Pivot immer das kleinste oder groBte Element

im Array genommen.
Dadurch ist das Partitionieren maximal unbalanciert:
Ein Teil ist leer, der andere enthalt alle verbleibenden Elemente.

Das passiert etwa, wenn das Array bereits auf- oder absteigend
sortiert ist.

Der Rekursionsbaum fir Quicksort enthalt n—1 Ebenen.

- n-(n—1)

Man erhalt: W(n) = i-1)= ———~/
() =3 -1 = "5

Das ist aber genauso schlecht, wie Insertionsort, Mergesort, usw.

€ 0(n?)

Wenn das Array bereits aufsteigend sortiert ist, braucht Insertionsort
nur O(n).

Die Worst-Case Laufzeit von Quicksort ist in ©(n?).

Datenstrukturen und Algorithmen 12/20

Quicksort — Best-Case Analyse

» Divide-and-conquer funktioniert besonders gut, wenn die Aufteilung
so gleichmaBig wie moglich geschieht.

» Wenn wir also das Array mit n Elementen in zwei der GroBe n/2
teilen, so erhalten wir log n Ebenen im Rekursionsbaum.

» Die Partitionierung hat eine lineare Zeitkomplexitat, d.h. jede Ebene
braucht O(n) Zeit.

» Man erhilt: T(n) =2-T(n/2)+ c-n fir n>1mit T(1) = 1.

» Anwendung des Mastertheorems liefert: T(n) € ©(n-logn).
Die Ausbalanciertheit der beiden Halften der Zerlegung in jeder
Rekursionsstufe erzeugt also einen asymptotisch schnelleren Algorithmus.

Fazit: Wenn man eine Aufgabe zerlegt, ist es am Besten, in gleich groBe
Teile zu teilen.

Die best-case Laufzeit von Quicksort ist in ©(n-log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/20
Quicksort Quicksort

Quicksort — Average-Case-Analyse (I)

» Annahmen:

1. das Pivotelement kann in O(1) Zeit gewahlt werden
2. alle Elemente in der zu sortierenden Array E sind unterschiedlich
3. alle mogliche Permutationen haben die gleiche Wahrscheinlichkeit

» Elemente in den Teilarrays sind noch nicht verglichen worden
= Permutationen in Teilarrays haben die gleiche Wahrscheinlichkeit

» Partitionierung eines Arrays mit n—1 Elemente fordert n—1 Vergleiche
» Wir erhalten damit fiir n > 1 folgende Rekursionsgleichung:
n—1

A(n) =n—1+ Z Pr{Pivot endet an Stelle i} - (A(i) + A(n—i—1))
i=0

wobei A(0) = A(1) = 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/20

Quicksort — Balancierte Zerlegung

» Die mittlere Laufzeit von Quicksort ist viel ndher an der des besten
Falls als an der schlechtesten Falls.

» Schlissel zum Verstandnis: wie schlagt sich die Balanciertheit der
Zerlegung sich in der Rekursionsgleichung nieder?

> Betrachte z. B. eine Zerlegung im Verhaltnis 9:1. Dann erhalt man fir
n>1:
T(n) < T(9n/10) + T(n/10) + c-n

> Rekursionsbaumanalyse liefert: T(n) € O(n-log n).

> Diese 9:1 "unbalancierte” Zerlegung liefert asymptotisch die gleiche
Zeit wie bei einer Aufteilung zu gleichen Teilen!

» Eine Aufteilung im Verhaltnis 99:1 liefert ebenso: T(n) € O(n-log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/20
Quicksort Quicksort

Quicksort — Average-Case-Analyse (l1)
n—1
A(n):n—1+2%-(A(i)~I—A(n—i—1))
i=0
| S A —i—1)=A(n—1)+ A(n—2) + ...+ A(0)

n712
:n—1+Z;-A(i).
i=1

Intermezzo: wir wollen >~; A(/) loswerden; folgender Trick hilft:
n-An)—(n=1)-An—-1)=2-Aln-1)+2-(n—-1)
| teile durch n- (n+ 1) und setze A'(n) = A(n)/(n+ 1)
2-(n—1
A(n)=A(n-1)+ nEZ—i—l; mit A’(0) =1 | Umformen

_-2-(i—1)
_;i-(i—i—l)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16,/20

Quicksort Quicksort Quicksort Vergleich der Sortieralgorithmen

Quicksort — Average-Case-Analyse (l11) Ubersicht
2-(i—-1
A'(n) = ; I((II—|—1)) | calculus

1 ° 1

:2-2_——2- — | calculus
— i+l —~ i(i+1)
1 2 n 1 . .

=2. ; o 2+ il 2. 2 =) | harmonische Reihe

<2-Inn 2n | A(n)=A 1

< — () = A(n)(n+1)

@ Vergleich der Sortieralgorithmen

Da die Best-Case Laufzeit in Q(n-log n) liegt, folgt folgender Satz:

Die mittlere Laufzeit von Quicksort ist in ©(n- log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/20
Komplexitat von Sortieralgorithmen Einige Bemerkungen

> Insertion Sort ist einfach und ziemlich effizient fiir kleinere Arrays und
fast sortierte Eingaben. Wird haufig benutzt als Unterprogramm fiir
andere Sortieralgorithmen fiir kleinere Instanzen.

Worst-Case Average-Case Platzbedarf Stabil » Mergesort ist ein sehr effizientes Sortierverfahren und wird u.a.

Insertionsort o(n?) o(n?) in-place J benutzt in Perl, Python, und Java. Ist leicht anpassbar fiir Listen und

Selectionsort ~ ©(n?) O(n?) in-place N* ist stabil.

Onfichesr o(n?) O(n - log n) O(log n) N* » Heapsort ist ein sehr effizientes Sortierverfahren, was jedoch
schwieriger auf Listen anzupassen ist und O(n-log n) braucht fir fast

Mergesort O(n - logn) O(n - logn) O(n) J sortierte Eingaben.

Heapsort ©(n-logn) ©(n-logn) in-place N » Quicksort ist typischerweise ein effizientes Verfahren. Die Wahl des
Pivots ist wichtig. Nicht stabil, und nicht so effizient auf fast sortierte
Eingaben.

» Einige Variationen:
» Introsort: setzt Quicksort ein bis zu einer gewissen Rekursionstiefe und
benutzt dann Heapsort.
» Smoothsort: (komplizierte) Variation von Heapsort die fast O(n)
braucht fiir fast sortierten Eingaben.

* es gibt Varianten die stabil sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/20 Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/20

	Quicksort
	Das Divide-and-Conquer Paradigma
	Partitionierung
	Quicksort Algorithmus
	Komplexitätsanalyse

	Vergleich der Sortieralgorithmen

