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Ubersicht

© Binire Suchbiume
@ Suche
o Einfligen
e Einige Operationen (die das Léschen vereinfachen)
@ Loschen

© Rotationen
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Motivation

Suchbiume unterstiitzen Operationen auf dynamische Mengen, wie:

» Suchen, Einfligen, Léschen, Abfragen (z. B. Nachfolger oder
minimales Element)

Die Basisoperationen auf binare Suchbaume benétigen eine Laufzeit, die
proportional zur Hohe des Baums ist.

Fir vollstandige bindre Baume mit n Elemente, liefert dies eine Laufzeit
©(log n) fiir eine Basisoperation.

Fiir ein Baum der einer linearen Kette entspricht, dies ist jedoch ©(n).

Wir werden spater bindre Suchbidume kennen lernen, deren Laufzeit immer
O(log n) ist (s. nachste Vorlesung).
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Bindre Suchbaume (1)

Binarer Suchbaum

Ein binarer Suchbaum (BST) ist ein Binarbaum, der Elemente mit
Schlisseln enthalt, wobei der Schliissel jedes Knotens

» mindestens so groB ist, wie jeder Schliissel im linken Teilbaum und

> hochstens so groB ist, wie jeder Schliissel im rechten Teilbaum.
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Bindre Suchbaume (1)

Binarer Suchbaum

Ein binarer Suchbaum (BST) ist ein Binarbaum, der Elemente mit
Schlisseln enthalt, wobei der Schliissel jedes Knotens

» mindestens so groB ist, wie jeder Schliissel im linken Teilbaum und

> hochstens so groB ist, wie jeder Schliissel im rechten Teilbaum.

Zwei binare Suchbiaume, die jeweils
die Schlissel 2, 3, 5,6, 7, 9
enthalten.
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Bindre Suchbaume (1)

|
Knoten in einem binaren Suchbaum bestehen aus vier Feldern:
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Bindre Suchbaume (1)
-

Knoten in einem binidren Suchbaum bestehen aus vier Feldern:
» Einem Schliissel — dem ,Wert" des Knotens,

» einem (moglicherweise leeren) linken und rechten Teilbaum (bzw.
Zeiger darauf), sowie
» einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).
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Bindre Suchbaume (1)
-

Knoten in einem binidren Suchbaum bestehen aus vier Feldern:
» Einem Schliissel — dem ,Wert" des Knotens,

» einem (moglicherweise leeren) linken und rechten Teilbaum (bzw.
Zeiger darauf), sowie
» einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).
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Bindre Suchbiume

Binare Suchbaume

Binare Suchbaume (I11)

Beispiel (Bindarer Suchbaum in C/C++)

1 typedef struct _node* Node;
2 struct _node {
3 int key;

9 struct _tree {
10 Node root;
1 };

12 typedef struct _treex Tree;

Joost-Pieter Katoen

4 Node left, right;

5 Node parent;

6 // ... evtl. etgene Datenfelder
7}
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Bindre Suchbiume

Binare Suchbaume

Sortieren in linearer Zeit?

Sortieren

Eine Inorder Traversierung eines bindren Suchbaumes gibt alle Schliissel im
Suchbaum in sortierter Reihenfolge aus.
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Sortieren in linearer Zeit?

Sortieren

Eine Inorder Traversierung eines binaren Suchbaumes gibt alle Schliissel im
Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der
BST-Eigenschaft.

Beispiel

Beispiel Inorder Traversierung BST am Overheadprojektor.

Zeitkomplexitat

Da die Zeitkomplexitat einer Inorder Traversierung eines Baumes mit n
Knoten ©(n) ist, liefert uns dies einen Sortieralgorithmus in ©(n).

Dies setzt jedoch voraus, dass alle Daten als ein BST gespeichert sind.
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Bindre Suchbiume Binare Suchbaume

Suche nach Schlissel kK im BST

Node bstSearch(Node root, int k) {
while (root) {
if (k < root.key) {
root = root.left;
} else if (k > root.key) {
root = root.right;
} else { // k == root.key
return root;
}
}
return null; // nicht gefunden

© O N O U A W N R
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Suche nach Schlissel kK im BST — kK =10

1 Node bstSearch(Node root, int k) {
2 while (root) {

3 if (k < root.key) {

4 root = root.left;

5 } else if (k > root.key) {

6 root = root.right;

7 } else { // k == root.key

8 return root;

9 }

0}

1 return null; // nicht gefunden
12}
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Suche nach Schliissel kK im BST — k = 18 (erfolglos)

Node bstSearch(Node root, int k) {
while (root) {
if (k < root.key) {
root = root.left;
} else if (k > root.key) {
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12}

© O N O U A W N R
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Die Worst-Case Komplexitat ist linear in der Hohe h des Baumes: ©(h).
> Fir einen kettenartigen Baum mit n Knoten ergibt das ©(n).

> Ist der BST so balanciert wie moglich, erhalt man ©(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.
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Man kann einen neuen Knoten mit Schliissel k in den BST ¢t einfligen,

ohne die BST-Eigenschaft zu zerstéren:

Suche einen geeigneten, freien Platz:
Wie bei der reguldren Suche, auBer dass, selbst bei gefundenem
Schlissel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes
Kind erreicht ist.

Hange den neuen Knoten an:
Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

» Komplexitat: ©(h), wegen der Suche.
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Einfiigen von 18 in den BST t — Beispiel

ﬁ(t S
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Bindre Suchbiume Binare Suchbaume

Einfiigen in einen BST — Algorithmus

1 void bstIns(Tree t, Node node) { // Fige node in den Baum t ein
2 // Suche freien Platz

3 Node root = t.root, parent = null;

4 while (root) {

5 parent = root;
6
7
8
9

if (node.key < root.key) {
root = root.left;
} else {
root = root.right;
10 }
1} // Einfiugen
12 node.parent = parent;
13 if (!parent) { // t war leer => neue Wurzel

14 t.root = node;

15} else if (node.key < parent.key) { // richtige Seite ...
16 parent.left = node;

17} else {

18 parent.right = node;

19}

20 }
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Bindre Suchbiume Binare Suchbaume

Abfragen im BST: Minimum

Wir suchen den Knoten mit kleinstem Schlissel im durch root gegebenen
(Teil-)Baum.
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
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dessen linker Teilbaum node enthilt.
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schlissel ist mindestens so groB wie node.key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthilt.

» Komplexitat: ©(h) bei Baumhohe h.
> Analog kann der Vorganger gefunden werden.
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Bindre Suchbiume Binare Suchbaume

Abfragen im BST: Nachfolger (Il)

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Der Nachfolger ist der jiingste Vorfahre, dessen linker Teilbaum node
enthalt.

1 Node bstSucc(Node node) { // node /= null

2 if (node.right) {

3 return bstMin(node.right);

4« ¥

5 // Abbruch, wenn node nicht mehr rechtes Kind ist (also linkes!)
6 // oder node.parent leer ist (also kein Nachfolger ezistiert).

7 while (node.parent && node.parent.right == node) {
8 node = node.parent;
°o 7

10 return node.parent;

1}

Joost-Pieter Katoen Datenstrukturen und Algorithmen
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Bindre Suchbiume Binare Suchbaume

Ersetzen von Knoten im BST

1 // Ersetzt old tm Baum t durch node (ohne Sortierung!)
2 void bstReplace(Tree t, Node old, Node node) {

3 // node == null nur erlaubt, wenn old keine Kinder hatte
4 if (node) {

5 // ubernimm linken Teilbaum
6 node.left = old.left;

7 if (node.left) {

8 node.left.parent = node;

9 }

10 // rechten Teilbaum

1 node.right = old.right;

12 if (node.right) {

13 node.right.parent = node;
14 }

15 // Vater (node!=null)

16 node.parent = old.parent;
7} —

.
Das Ersetzen eines Knotens hat die Zeitkomplexitat ©(1).
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Ersetzen von Knoten im BST

1 // Ersetzt old tm Baum t durch node (ohne Sortierung!)
2 void bstReplace(Tree t, Node old, Node node) {

3 // node == null nur erlaubt, wenn old keine Kinder hatte

4 if (node) {

5 // ubernimm linken Teilbaum

6 I}ode.left = old.left; 8 // fige den Knoten ein

7 if (node.left) { 10 if (lold.parent) {

8 node.left.parent = node; - // war die Wurzel

9 + 21 t.root = node;

10 // rechten Teilbaum » 7} else if

n node.right = old.right; 23 (old == old.parent.left) {
12 if (node.right) { 2 // war linkes Kind

13 node.right.parent = node; , old.parent.left = node;
14 i 26 I else { // rechtes Kind
15 // Vater (node!=null) 27 old.parent.right = node;
16 node.parent = old.parent; % }

17 F — 0}

|
Das Ersetzen eines Knotens hat die Zeitkomplexitat ©(1).
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Bindre Suchbiume Binare Suchbaume

Ersetzen von Knoten im BST (1)

1 // Ersetzt im Baum t den Teilbaum old durch

2 // den Teilbaum node (ohne Sortierung!)

3 void bstReplace(Tree t, Node old, Node node) {
4 if (node) { // erlaube node == null!

5 node.parent = old.parent;

6

7 if (lold.parent) { // war die Wurzel

8 t.root = node;

9 } else if (old == old.parent.left) {

10 // war linkes Kind

1 old.parent.left = node;
12} else { // rechtes Kind
13 old.parent.right = node;
14}
15
Joost-Pieter Katoen Datenstrukturen und Algorithmen
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Bindre Suchbiume Binare Suchbaume

Ersetzen von Knoten im BST (Il)

1 // Tauscht den Knoten old gegen node aus;
2 // die Kinder won old sind weiter im BST!
3 void bstSwap(Tree t, Node old, Node node) {

// ubernimm linken Teilbaum

node.left = old.left; // auch méglich: swap()

if (node.left) {
node.left.parent = node;

}

// rechten Teilbaum

node.right = old.right;

if (node.right) {
node.right.parent = node;

}

// fige den Knoten ein

bstReplace(t, old, node);

.
Das Ersetzen eines Knotens hat die Zeitkomplexitat ©(1).
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Loschen im BST: Der aufwandigere Fall
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Bindre Suchbiume Binare Suchbaume

Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:
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node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.
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Bindre Suchbiume Binare Suchbaume

Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.

» Der gesuchte Nachfolger hat kein linkes Kind.
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Bindre Suchbiume Binare Suchbaume

Loschen im BST — Algorithmus

1 // Entfernt node aus dem Baum.

2 // Danach kann node ggf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {

4 1if (node.left && node.right) { // zwei Kinder

5 Node tmp = bstMin(node.right);

6 bstDel(t, tmp); // hichstens ein Kind, rechts

7 bstSwap(t, node, tmp);

8 } else if (node.left) { // ein Kind, links

9 bstReplace(t, node, node.left);

10 } else { // ein Kind, oder kein Kind (node.right == null)
1 bstReplace(t, node, node.right);

12}
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Bindre Suchbiume

Binare Suchbaume

Komplexitdat der Operationen auf BSTs

Operation Zeit

bstSearch O(h)
bstSucc ©(h)
bstMin ©(h)
bstIns O(h)
bstDel ©(h)

» Alle Operationen sind linear in der Hoéhe h des BSTs.
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Bindre Suchbiume Binare Suchbaume

Komplexitdat der Operationen auf BSTs

Operation Zeit

bstSearch ©(h)
bstSucc ©(h)
bstMin ©(h)
bstIns O(h)
bstDel ©(h)

» Alle Operationen sind linear in der Hoéhe h des BSTs.
» Die Hohe ist log n, wenn der Baum nicht zu ,,unbalanciert” ist.

» Man kann einen bindren Baum mittels Rotationen wieder balancieren.
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Bindre Suchbiume Binare Suchbaume

Zufidllig erzeugte bindre Suchbaume
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Bindre Suchbiume

Binare Suchbaume

Zufidllig erzeugte bindre Suchbaume

Zufallig erzeugte BST

Ein zufallig erzeugter BST mit n Elementen ist ein BST, der durch das

Einfiigen von n (unterschiedliche) Schliissel in zufélliger Reihenfolge in
einem anfangs leeren Baum entsteht.
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Bindre Suchbiume

Binare Suchbaume

Zufidllig erzeugte bindre Suchbaume

Zufallig erzeugte BST

Ein zufallig erzeugter BST mit n Elementen ist ein BST, der durch das
Einfiigen von n (unterschiedliche) Schliissel in zufélliger Reihenfolge in
einem anfangs leeren Baum entsteht.

Annahme: jede der n! moglichen Einfligungsordnungen hat die gleiche
Wabhrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Hohe eines zufallig erzeugten BSTs mit n Elementen ist
O(log n).
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Bindre Suchbiume

Binare Suchbaume

Zufidllig erzeugte bindre Suchbaume

Zufallig erzeugte BST

Ein zufallig erzeugter BST mit n Elementen ist ein BST, der durch das
Einfiigen von n (unterschiedliche) Schliissel in zufélliger Reihenfolge in
einem anfangs leeren Baum entsteht.

Annahme: jede der n! moglichen Einfligungsordnungen hat die gleiche
Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Hohe eines zufallig erzeugten BSTs mit n Elementen ist
O(log n).

Fazit: Im Schnitt verhalt sich eine bindre Suchbaum wie ein (fast)
balancierte Suchbaum.
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Ubersicht

© Rotationen
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Bindre Suchbiume Rotationen

leftRotate — Konzept und Beispiel

A 71\ o leftRotate(1)

rightRotate(2)
%
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Bindre Suchbiume Rotationen

leftRotate — Konzept und Beispiel

A 71\ o leftRotate(1)

rightRotate(2)
%

\ Ieft Rotate(5) m
8D
Soé

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Beispiel



Bindre Suchbiume Rotationen

Rotationen: Eigenschaften und Komplexitat
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Bindre Suchbiume Rotationen

Rotationen: Eigenschaften und Komplexitat

Lemma

» Ein rotierter BST ist ein BST
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Bindre Suchbiume Rotationen

Rotationen: Eigenschaften und Komplexitat

1 o leftRotate(1)

rightRotate(2)
%

Lemma

» Ein rotierter BST ist ein BST

> Die Inorder-Traversierung beider Baume bleibt unverandert.

Zeitkomplexitat

Die Zeitkomplexitat von Links- oder Rechtsrotieren ist in ©(1).
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Bindre Suchbiume Rotationen

leftRotate — Algorithmus

1 void leftRotate(Tree t, Node nodel) { // analog: rightRotate()
Node node2 = nodel.right;
// Baum B verschieben
nodel.right = node2.left;
if (nodel.right) {
nodel.right.parent = nodel;
}
// node2 wieder einhdngen
node2.parent = nodel.parent;
if ('nodel.parent) { // nodel war die Wurzel
t.root = node2;
} else if (nodel == nodel.parent.left) { // war linkes Kind
node2.parent.left = node2; 2
} else { // war rechtes Kind

node2.parent.right = node2; 1
) A
// model einhdngen
node2.left = nodel; e
nodel.parent = node2;
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Rotationen — AVL-Baum

An welchen Knoten miissen die Rotationen durchgefiihrt werden?
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» Dazu wird (in einem zusatzlichem Datenfeld) an jedem Knoten iiber
die Hohe dieses Unterbaums Buch gefiihrt.

» Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.
Dies ist in ©(h) maglich!

» Dadurch bleibt stets h = ©(log n) und O(log n) kann fiir die
Operationen auf dem BST garantiert werden.
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Rotationen — AVL-Baum

An welchen Knoten miissen die Rotationen durchgefiihrt werden?

AVL-Baum

» Ein AVL-Baum ist ein balancierter BST, bei dem fiir jeden Knoten die
Hoéhe der beiden Teilbaume hdéchstens um 1 differiert.

» Bei AVL-Baumen wird die Hohe der Teilbdume der Knoten balanciert.

» Dazu wird (in einem zusatzlichem Datenfeld) an jedem Knoten iiber
die Hohe dieses Unterbaums Buch gefiihrt.

» Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.
Dies ist in ©(h) maglich!

» Dadurch bleibt stets h = ©(log n) und O(log n) kann fiir die
Operationen auf dem BST garantiert werden.

» Eine andere Moglichkeit, um B&ume zu balancieren sind
Rot-Schwarz-Baume (nachste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29



	Binäre Suchbäume
	Suche
	Einfügen
	Einige Operationen (die das Löschen vereinfachen)
	Löschen

	Rotationen

