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Binäre Suchbäume Binäre Suchbäume

Motivation

Suchbäume unterstützen Operationen auf dynamische Mengen, wie:
I Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder

minimales Element)

Die Basisoperationen auf binäre Suchbäume benötigen eine Laufzeit, die
proportional zur Höhe des Baums ist.
Für vollständige binäre Bäume mit n Elemente, liefert dies eine Laufzeit
Θ(log n) für eine Basisoperation.
Für ein Baum der einer linearen Kette entspricht, dies ist jedoch Θ(n).
Wir werden später binäre Suchbäume kennen lernen, deren Laufzeit immer
Θ(log n) ist (s. nächste Vorlesung).
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Binäre Suchbäume (I)

Binärer Suchbaum
Ein binärer Suchbaum (BST) ist ein Binärbaum, der Elemente mit
Schlüsseln enthält, wobei der Schlüssel jedes Knotens

I mindestens so groß ist, wie jeder Schlüssel im linken Teilbaum und
I höchstens so groß ist, wie jeder Schlüssel im rechten Teilbaum.
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Zwei binäre Suchbäume, die jeweils
die Schlüssel 2, 3, 5, 6, 7, 9
enthalten.
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Binäre Suchbäume (II)

Knoten in einem binären Suchbaum bestehen aus vier Feldern:

I Einem Schlüssel – dem „Wert“ des Knotens,
I einem (möglicherweise leeren) linken und rechten Teilbaum (bzw.

Zeiger darauf), sowie
I einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).
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Binäre Suchbäume (III)

Beispiel (Binärer Suchbaum in C/C++)

1 typedef struct _node* Node;
2 struct _node {
3 int key;
4 Node left, right;
5 Node parent;
6 // ... evtl. eigene Datenfelder
7 };

9 struct _tree {
10 Node root;
11 };
12 typedef struct _tree* Tree;
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Sortieren in linearer Zeit?

Sortieren
Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im
Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der
BST-Eigenschaft.

Beispiel
Beispiel Inorder Traversierung BST am Overheadprojektor.

Zeitkomplexität
Da die Zeitkomplexität einer Inorder Traversierung eines Baumes mit n
Knoten Θ(n) ist, liefert uns dies einen Sortieralgorithmus in Θ(n).
Dies setzt jedoch voraus, dass alle Daten als ein BST gespeichert sind.
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Suche nach Schlüssel k im BST
1 Node bstSearch(Node root, int k) {
2 while (root) {
3 if (k < root.key) {
4 root = root.left;
5 } else if (k > root.key) {
6 root = root.right;
7 } else { // k == root.key
8 return root;
9 }

10 }
11 return null; // nicht gefunden
12 }

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: Θ(h).
I Für einen kettenartigen Baum mit n Knoten ergibt das Θ(n).
I Ist der BST so balanciert wie möglich, erhält man Θ(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.
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Suche nach Schlüssel k im BST – k = 18 (erfolglos)
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Einfügen eines Knotens mit Schlüssel k – Strategie

Einfügen
Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen,
ohne die BST-Eigenschaft zu zerstören:
Suche einen geeigneten, freien Platz:

Wie bei der regulären Suche, außer dass, selbst bei gefundenem
Schlüssel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes
Kind erreicht ist.

Hänge den neuen Knoten an:
Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

I Komplexität: Θ(h), wegen der Suche.
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Kind erreicht ist.

Hänge den neuen Knoten an:
Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

I Komplexität: Θ(h), wegen der Suche.
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Einfügen von 18 in den BST t – Beispiel
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Binäre Suchbäume Binäre Suchbäume

Einfügen in einen BST – Algorithmus
1 void bstIns(Tree t, Node node) { // Füge node in den Baum t ein
2 // Suche freien Platz
3 Node root = t.root, parent = null;
4 while (root) {
5 parent = root;
6 if (node.key < root.key) {
7 root = root.left;
8 } else {
9 root = root.right;

10 }
11 } // Einfügen
12 node.parent = parent;
13 if (!parent) { // t war leer => neue Wurzel
14 t.root = node;
15 } else if (node.key < parent.key) { // richtige Seite ...
16 parent.left = node;
17 } else {
18 parent.right = node;
19 }
20 }
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Binäre Suchbäume Binäre Suchbäume

Abfragen im BST: Minimum

Problem
Wir suchen den Knoten mit kleinstem Schlüssel im durch root gegebenen
(Teil-)Baum.

Lösung

1 Node bstMin(Node root) { // root != null
2 while (root.left) {
3 root = root.left;
4 }
5 return root;
6 }
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17 31

I Komplexität: Θ(h) bei Baumhöhe h.
I Analog kann das Maximum gefunden werden.
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Binäre Suchbäume Binäre Suchbäume

Abfragen im BST: Nachfolger (I)
Problem
Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nächstes zu besuchenden Knoten.

Dessen Schlüssel ist mindestens so groß wie node.key.

Lösung

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jüngste Vorfahre,
dessen linker Teilbaum node enthält.
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node

I Komplexität: Θ(h) bei Baumhöhe h.
I Analog kann der Vorgänger gefunden werden.
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Binäre Suchbäume Binäre Suchbäume

Abfragen im BST: Nachfolger (II)

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jüngste Vorfahre, dessen linker Teilbaum node
enthält.

1 Node bstSucc(Node node) { // node != null
2 if (node.right) {
3 return bstMin(node.right);
4 }
5 // Abbruch, wenn node nicht mehr rechtes Kind ist (also linkes!)
6 // oder node.parent leer ist (also kein Nachfolger existiert).
7 while (node.parent && node.parent.right == node) {
8 node = node.parent;
9 }

10 return node.parent;
11 }
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Binäre Suchbäume Binäre Suchbäume

Ersetzen von Knoten im BST
1 // Ersetzt old im Baum t durch node (ohne Sortierung!)
2 void bstReplace(Tree t, Node old, Node node) {
3 // node == null nur erlaubt, wenn old keine Kinder hatte
4 if (node) {
5 // übernimm linken Teilbaum
6 node.left = old.left;
7 if (node.left) {
8 node.left.parent = node;
9 }

10 // rechten Teilbaum
11 node.right = old.right;
12 if (node.right) {
13 node.right.parent = node;
14 }
15 // Vater (node!=null)
16 node.parent = old.parent;
17 } →

Das Ersetzen eines Knotens hat die Zeitkomplexität Θ(1).
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18 // füge den Knoten ein
19 if (!old.parent) {
20 // war die Wurzel
21 t.root = node;
22 } else if
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24 // war linkes Kind
25 old.parent.left = node;
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28 }
29 }
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Binäre Suchbäume Binäre Suchbäume

Ersetzen von Knoten im BST (I)

1 // Ersetzt im Baum t den Teilbaum old durch
2 // den Teilbaum node (ohne Sortierung!)
3 void bstReplace(Tree t, Node old, Node node) {
4 if (node) { // erlaube node == null!
5 node.parent = old.parent;
6 }
7 if (!old.parent) { // war die Wurzel
8 t.root = node;
9 } else if (old == old.parent.left) {

10 // war linkes Kind
11 old.parent.left = node;
12 } else { // rechtes Kind
13 old.parent.right = node;
14 }
15 }
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Binäre Suchbäume Binäre Suchbäume

Ersetzen von Knoten im BST (II)
1 // Tauscht den Knoten old gegen node aus;
2 // die Kinder von old sind weiter im BST!
3 void bstSwap(Tree t, Node old, Node node) {
4 // übernimm linken Teilbaum
5 node.left = old.left; // auch möglich: swap()
6 if (node.left) {
7 node.left.parent = node;
8 }
9 // rechten Teilbaum

10 node.right = old.right;
11 if (node.right) {
12 node.right.parent = node;
13 }
14 // füge den Knoten ein
15 bstReplace(t, old, node);
16 }

Das Ersetzen eines Knotens hat die Zeitkomplexität Θ(1).
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Binäre Suchbäume Binäre Suchbäume

Löschen im BST: Die beiden einfachen Fälle
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Binäre Suchbäume Binäre Suchbäume

Löschen im BST: Der aufwändigere Fall

3 20

17 31

6

15

10 14

12

165

3 20

17 31

6 15

10 14

12

165

3 20

17 31

6
15

10 14

12

16

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29



Binäre Suchbäume Binäre Suchbäume

Löschen im BST – Strategie

Löschen
Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
ursprünglichen Position und ersetzen node durch den Nachfolger.

I Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.
I Der gesuchte Nachfolger hat kein linkes Kind.
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Binäre Suchbäume Binäre Suchbäume

Löschen im BST – Algorithmus

1 // Entfernt node aus dem Baum.
2 // Danach kann node ggf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {
4 if (node.left && node.right) { // zwei Kinder
5 Node tmp = bstMin(node.right);
6 bstDel(t, tmp); // höchstens ein Kind, rechts
7 bstSwap(t, node, tmp);
8 } else if (node.left) { // ein Kind, links
9 bstReplace(t, node, node.left);

10 } else { // ein Kind, oder kein Kind (node.right == null)
11 bstReplace(t, node, node.right);
12 }
13 }
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Binäre Suchbäume Binäre Suchbäume

Komplexität der Operationen auf BSTs

Operation Zeit

bstSearch Θ(h)

bstSucc Θ(h)

bstMin Θ(h)

bstIns Θ(h)

bstDel Θ(h)

I Alle Operationen sind linear in der Höhe h des BSTs.

I Die Höhe ist log n, wenn der Baum nicht zu „unbalanciert“ ist.
I Man kann einen binären Baum mittels Rotationen wieder balancieren.
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Binäre Suchbäume Binäre Suchbäume

Zufällig erzeugte binäre Suchbäume

Zufällig erzeugte BST
Ein zufällig erzeugter BST mit n Elementen ist ein BST, der durch das
Einfügen von n (unterschiedliche) Schlüssel in zufälliger Reihenfolge in
einem anfangs leeren Baum entsteht.
Annahme: jede der n! möglichen Einfügungsordnungen hat die gleiche
Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Höhe eines zufällig erzeugten BSTs mit n Elementen ist
O(log n).

Fazit: Im Schnitt verhält sich eine binäre Suchbaum wie ein (fast)
balancierte Suchbaum.
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Binäre Suchbäume Rotationen

Übersicht

1 Binäre Suchbäume
Suche
Einfügen
Einige Operationen (die das Löschen vereinfachen)
Löschen

2 Rotationen
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Binäre Suchbäume Rotationen

leftRotate – Konzept und Beispiel
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Binäre Suchbäume Rotationen

Rotationen: Eigenschaften und Komplexität

A

AB BC
C

1
2 1

2leftRotate(1)

rightRotate(2)

Lemma
I Ein rotierter BST ist ein BST
I Die Inorder-Traversierung beider Bäume bleibt unverändert.

Zeitkomplexität
Die Zeitkomplexität von Links- oder Rechtsrotieren ist in Θ(1).
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Binäre Suchbäume Rotationen

leftRotate – Algorithmus
1 void leftRotate(Tree t, Node node1) { // analog: rightRotate()
2 Node node2 = node1.right;
3 // Baum B verschieben
4 node1.right = node2.left;
5 if (node1.right) {
6 node1.right.parent = node1;
7 }
8 // node2 wieder einhängen
9 node2.parent = node1.parent;

10 if (!node1.parent) { // node1 war die Wurzel
11 t.root = node2;
12 } else if (node1 == node1.parent.left) { // war linkes Kind
13 node2.parent.left = node2;
14 } else { // war rechtes Kind
15 node2.parent.right = node2;
16 }
17 // node1 einhängen
18 node2.left = node1;
19 node1.parent = node2;
20 }

A
B C

1
2

A B
C

1
2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/29



Binäre Suchbäume Rotationen

Rotationen – AVL-Baum
An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum
I Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die

Höhe der beiden Teilbäume höchstens um 1 differiert.
I Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
I Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über

die Höhe dieses Unterbaums Buch geführt.
I Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.

Dies ist in Θ(h) möglich!
I Dadurch bleibt stets h = Θ(log n) und Θ(log n) kann für die

Operationen auf dem BST garantiert werden.

I Eine andere Möglichkeit, um Bäume zu balancieren sind
Rot-Schwarz-Bäume (nächste Vorlesung).
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