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Motivation

Suchbdume unterstiitzen Operationen auf dynamische Mengen, wie:

» Suchen, Einfiigen, Léschen, Abfragen (z. B. Nachfolger oder
minimales Element)

Die Basisoperationen auf bindre Suchbdume benétigen eine Laufzeit, die
proportional zur Hohe des Baums ist.

Fiir vollstandige bindre Baume mit n Elemente, liefert dies eine Laufzeit
O(log n) fir eine Basisoperation.

Fir ein Baum der einer linearen Kette entspricht, dies ist jedoch ©(n).

Wir werden spater bindre Suchbdume kennen lernen, deren Laufzeit immer
O(log n) ist (s. nachste Vorlesung).
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Binare Suchbiume

Binare Suchbidume

Binare Suchbaume (1)

Binarer Suchbaum

Ein binadrer Suchbaum (BST) ist ein Bindrbaum, der Elemente mit
Schlisseln enthélt, wobei der Schlissel jedes Knotens

> mindestens so groB ist, wie jeder Schlissel im linken Teilbaum und

> hochstens so groB ist, wie jeder Schliissel im rechten Teilbaum.

o "

Zwei bindre Suchbdume, die jeweils
die Schliissel 2, 3,5, 6,7, 9
enthalten.
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Bindre Suchbaume (I11)
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Beispiel (Bindrer Suchbaum in C/C++)

1 typedef struct _node* Node;

2 struct _node {

3 int key;

4 Node left, right;

5 Node parent;

6 // ... evutl. eigene Datenfelder
7};

9 struct _tree {
10 Node root;
1 };

2 typedef struct _treex Tree;

-
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Binare Suchbaume (I1)

]
Knoten in einem binaren Suchbaum bestehen aus vier Feldern:

» Einem Schlissel — dem ,Wert" des Knotens,

» einem (moglicherweise leeren) linken und rechten Teilbaum (bzw.
Zeiger darauf), sowie

» einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).

null
i A T Vater/Mutter
Schlussel-______I>12 €l von B und C
el
N2 b
Linkes Kind B parent Rechtes Kind
vonA "mo--- 6 (@ C[® [225lq----""" von A
/P Q\ /ﬁ Q\
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Sortieren in linearer Zeit?

Sortieren

Eine Inorder Traversierung eines binaren Suchbaumes gibt alle Schliissel im
Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der
BST-Eigenschaft.

Beispiel Inorder Traversierung BST am Overheadprojektor.

Zeitkomplexitat

Da die Zeitkomplexitat einer Inorder Traversierung eines Baumes mit n
Knoten ©(n) ist, liefert uns dies einen Sortieralgorithmus in ©(n).

Dies setzt jedoch voraus, dass alle Daten als ein BST gespeichert sind.
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Suche nach Schlussel kK im BST — kK =10

1 Node bstSearch(Node root, int k) {
2  while (root) {

3 if (k < root.key) {

4 root = root.left;

5 } else if (k > root.key) {

6

7

8

9

root = root.right;
} else { // k == root.key

return root;
}
D ©

1 return null; // nicht gefunden

12}

Die Worst-Case Komplexitat ist linear in der Hohe h des Baumes: ©(h).
» Fir einen kettenartigen Baum mit n Knoten ergibt das ©(n).

> Ist der BST so balanciert wie méglich, erhalt man ©(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.
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Einfiigen eines Knotens mit Schliissel kK — Strategie

Man kann einen neuen Knoten mit Schliissel k in den BST ¢t einfiigen,

ohne die BST-Eigenschaft zu zerstéren:

Suche einen geeigneten, freien Platz:
Wie bei der reguldren Suche, auBer dass, selbst bei gefundenem
Schlissel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes
Kind erreicht ist.

Hange den neuen Knoten an:
Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

» Komplexitat: ©(h), wegen der Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/29

Suche nach Schliissel k im BST — k = 18 (erfolglos)

1 Node bstSearch(Node root, int k) {
2 while (root) {

3 if (k < root.key) {

4 root = root.left;

5 } else if (k > root.key) {

6 root = root.right;

7 } else { // k == root.key

8 return root;

9 3

0}

1 return null; // nicht gefunden .
12}

Die Worst-Case Komplexitat ist linear in der Hohe h des Baumes: ©(h).
» Fir einen kettenartigen Baum mit n Knoten ergibt das ©(n).

> Ist der BST so balanciert wie méglich, erhalt man ©(log n).

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.
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Einfiigen von 18 in den BST t — Beispiel
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bstIns(t, Node(18))_
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Einfiigen in einen BST — Algorithmus Abfragen im BST: Minimum
1 void bstIns(Tree t, Node node) { // Fiige node in den Baum t ein
"7/ Siche freien ot
3 Node root = t.root, parent = null; . . . . .
+ while (root) { Wir suchen den Knoten mit kleinstem Schliissel im durch root gegebenen
5 parent = root; (Té”—)Baunm
6 if (node.key < root.key) {
L e
8 } else { osung
13 } root = root.right; 1 Node bstMin(Node root) { // root != null
o 2 while (root.left) {
w1} /7 Einfugen 3 root = root.left;
12 node.parent = parent; .}
13 if (!parent) { // t war leer => neue Wurzel
5 return root;
14 t.root = node; }
15} else if (node.key < parent.key) { // richtige Seite ... o
16 parent.left = node;
17} else { . . i
. parent.Tight = node; » Komplexitat: ©(h) bei Baumhohe h.
v} » Analog kann das Maximum gefunden werden.
20 }
Abfragen im BST: Nachfolger (1) Abfragen im BST: Nachfolger (1)
Wir suchen den Nachfolger-Knoten von node, also den bei Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten. Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key. Dessen Schliissel ist mindestens so groB wie node.key.
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node . key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

node
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthilt.

» Komplexitat: ©(h) bei Baumhdohe h.
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node . key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthalt.
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Abfragen im BST: Nachfolger (1)

Wir suchen den Nachfolger-Knoten von node, also den bei
Inorder-Traversierung als nachstes zu besuchenden Knoten.
Dessen Schliissel ist mindestens so groB wie node.key.

Der rechte Teilbaum existiert:
Der Nachfolger ist der kleinste Knoten
im rechten Teilbaum.

Andernfalls:
Der Nachfolger ist der jiingste Vorfahre,
dessen linker Teilbaum node enthilt.

» Komplexitat: ©(h) bei Baumhdohe h.
» Analog kann der Vorganger gefunden werden.
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Abfragen im BST: Nachfolger (II) Ersetzen von Knoten im BST

1 // Ersetzt old im Baum t durch node (ohne Sortierung!)
2 void bstReplace(Tree t, Node old, Node node) {

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum. 3 _// node == null nur erlaubt, wenn old keine Kinder hatte
4 if (node) {
5 // dbernimm linken Teilbaum
Der Nachfolger ist der jiingste Vorfahre, dessen linker Teilbaum node 6 I}Ode~1eft = old.left; 1 // fige den Knoten ein
enthalt. 7 if (node.left) { 19 if (lold.parent) {
8 node.left.parent = node; // war die Wurzel
9 } - .
1 Node bstSucc(Node node) { // node != null o /) rechten Teilbaum 21 ) tirooFf— node;
> if (node.right) { : - e 2 else 1
X X 11 node.rlght = old.rlght, 23 (Old == old. arent.left) {
. } Feturn betiin(node. right): 12 if (node.right) { 24 // war Zz’nkze}.)s Kind
4 .
13 node.right.parent = node; = .
5 // Abbruch, wenn node nicht mehr rechtes Kind ist (also linkes!) 14 } gut-p 25 3 Old.p?rent.left I}l{o.de,
6 // oder node.parent leer ist (also kein Nachfolger existiert). 15 // Vater (node!=null) 26 eize //tre?hﬁtes_ ’Z'n:ii .
7 while (node.parent && node.parent.right == node) { 6 node.parent = old.parent; 2 3 old.parent.right = node;
8 node = node.parent; v} ’_+ 28}
o} 29
10 return node.parent; |
u } Das Ersetzen eines Knotens hat die Zeitkomplexitat ©(1).
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Ersetzen von Knoten im BST (1) Ersetzen von Knoten im BST (Il)

1 // Tauscht den Knoten old gegen node aus;
2 // die Kinder von old sind weiter im BST!

1 // Ersetzt im Baum t den Teilbaum old durch 3 void bstSwap(Tree t, Node old, Node node) {
2 // den Teilbaum node (ohne Sortierung!) s // ubernimm linken Teilbaum

3 void bstReplace(Tree t, Node old, Node node) { 5 node.left = old.left; // auch méglich: swap()
4 if (node) { // erlaube node == null! 6 if (node.left) {

5 ) node.parent = old.parent; 7 node.left.parent = node;

6 s 1}

7 if (lold.parent) { // war die Wurzel o // rechten Teilbaum

8 t.root = node; 10 node.right = old.right;

9 1} else if (old == old.parent.left) { 1 if (node.right) {

10 // war linkes Kind 12 node.right.parent = node;

11 old.parent.left = node; 13 F

12} else { // rechtes Kind 14 // fige den Knoten ein

13 old.parent.right = node; 15 bstReplace(t, old, node);

VR 16 }

15 }

|
Das Ersetzen eines Knotens hat die Zeitkomplexitat ©(1).
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Loschen im BST: Die beiden einfachen Fille

A
‘b ‘A

4 @ @D
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Loschen im BST — Strategie

Loschen
Um Knoten node aus dem BST zu I6schen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.

» Der gesuchte Nachfolger hat kein linkes Kind.
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Loschen im BST: Der aufwandigere Fall

"
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Loschen im BST — Algorithmus

%

@ @D
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1 // Entfernt node aus dem Baum.

2 // Danach kann node gqf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {
4 if (node.left && node.right) { // zwei Kinder
Node tmp = bstMin(node.right);
bstDel(t, tmp); // hichstens ein Kind, rechts

} else if (node.left) { // ein Kind, links
bstReplace(t, node, node.left);

5
6
7 bstSwap(t, node, tmp);
8
9

10 1} else { // ein Kind, oder kein Kind (node.right == null)

11 bstReplace(t, node, node.right);

12}
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Komplexitat der Operationen auf BSTs

Operation Zeit

bstSearch ©(h)
bstSucc ©(h)
bstMin ©(h)
bstIns O(h)
bstDel ©(h)

> Alle Operationen sind linear in der Hohe h des BSTs.
» Die Hohe ist log n, wenn der Baum nicht zu ,unbalanciert” ist.

» Man kann einen binaren Baum mittels Rotationen wieder balancieren.
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Ubersicht

© Rotationen
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Zufillig erzeugte binare Suchbaume

Zufallig erzeugte BST

Ein zufallig erzeugter BST mit n Elementen ist ein BST, der durch das
Einfiigen von n (unterschiedliche) Schlissel in zufélliger Reihenfolge in
einem anfangs leeren Baum entsteht.

Annahme: jede der n! moglichen Einfligungsordnungen hat die gleiche
Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Hohe eines zufallig erzeugten BSTs mit n Elementen ist
O(log n).

Fazit: Im Schnitt verhélt sich eine bindre Suchbaum wie ein (fast)
balancierte Suchbaum.
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Binare Suchbiume Rotationen

leftRotate — Konzept und Beispiel

A —1\ N leftRotate(1)

rightRotate(2)
“«—

Beispiel

‘\/@ Mte(S)
S T B

eD ® 06
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Rotationen

Rotationen: Eigenschaften und Komplexitat

1 ° leftRotate(1)

rightRotate(2)
«——

Lemma

>

>

Ein rotierter BST ist ein BST

Die Inorder-Traversierung beider Baume bleibt unverandert.

Zeitkomplexitat

Die Zeitkomplexitat von Links- oder Rechtsrotieren ist in ©(1).
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Rotationen — AVL-Baum

An welchen Knoten miissen die Rotationen durchgefiihrt werden?

AVL-Baum

>

Joost-Pieter Katoen

Ein AVL-Baum ist ein balancierter BST, bei dem fiir jeden Knoten die
Hohe der beiden Teilbdume hochstens um 1 differiert.

Bei AVL-Baumen wird die Hohe der Teilbdume der Knoten balanciert.

Dazu wird (in einem zusatzlichem Datenfeld) an jedem Knoten tiber
die Hohe dieses Unterbaums Buch gefiihrt.

Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.
Dies ist in ©(h) moglich!

Dadurch bleibt stets h = ©(log n) und ©(log n) kann fir die
Operationen auf dem BST garantiert werden.

Eine andere Méglichkeit, um Baume zu balancieren sind
Rot-Schwarz-Baume (nachste Vorlesung).
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leftRotate — Algorithmus

1 void leftRotate(Tree t, Node nodel) { // analog: rightRotate()

© 0w N O B~ W N

10

Node node2 = nodel.right;

// Baum B verschieben

nodel.right = node2.left;

if (nodel.right) {
nodel.right.parent = nodel;

A

}
// node2 wieder einhdngen
node2.parent = nodel.parent;
if (!'nodel.parent) { // nodel war die Wurzel

t.root = node2;
} else if (nodel == nodel.parent.left) { // war linkes Kind

node2.parent.left = node2; 2
} else { // war rechtes Kind

node2.parent.right = node2; 1
} A
// nmodel einhdngen

node2.left = nodel;
nodel.parent = node2;
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