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Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
2. Die Wurzel ist schwarz.
3. Jedes (externe) Blatt, d. h. null, ist schwarz.

4. Ein roter Knoten hat nur schwarze Kinder.
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Rot-Schwarz-Eigenschaft
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Ol =R CORIND

Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.
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Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
Die Wurzel ist schwarz.
Jedes (externe) Blatt, d. h. null, ist schwarz.

Ein roter Knoten hat nur schwarze Kinder.

Ol =R CORIND

Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.

Solche Baume heiBen dann Rot-Schwarz-Bdume (RBT, red-black tree).

» Anders als bei den bekannten BST wird hier zur Vereinfachung null
als , externes" Blatt, insbesondere ohne Daten, behandelt.
> In Algorithmen verwenden wir daher null.color (== BLACK).
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Rot-Schwarz-Baume (2)

roter Knoten mit
Schwarz-Hoéhe 3 ™~

(schwarze) externe Knoten

» Die Schwarz-Hohe bh(x) eines Knotens x ist die Anzahl schwarzer
Knoten bis zu einem (externen) Blatt, x ausgenommen.

» Die Schwarz-Héhe eines externen Blattes bh(null) = 0.
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Rot-Schwarz-Baume

Rot-Schwarz Baume

Rot-Schwarz-Baume (3)

Zeichnet man die roten Knoten auf der selben Héhe wie ihren Vater, dann
erhalt man:

T 7

» Die externen Knoten werden in Zeichnungen oft weggelassen.

Schwarzhohe

<“------»
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Rot-Schwarz-Baume

Rot-Schwarz-Baume (3)

Zeichnet man die roten Knoten auf der selben Héhe wie ihren Vater, dann
erhalt man:

T 7

» Die externen Knoten werden in Zeichnungen oft weggelassen.

Schwarzhohe

A
v

Definition

Die Schwarzhdhe bh(t) eines RBT t ist die Schwarz-Hohe seiner Wurzel.
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Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.

» Hochstens 4" — 1 innere Knoten.
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Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.
= Suchen benétigt also nur ©(log n) statt ©(n) Zeit.
» Fir bstMin, bstSucc, etc. gilt dasselbe.

» Mit Einfliigen und Loschen werden wir uns noch beschaftigen.
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Erinnerung: Einfiigen in einen BST — Beispiel

ﬁ(t S
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Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.

» Hange den neuen Knoten an.
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Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

> Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

» Farben wir ihn aber rot, dann konnten wir eine Verletzung der
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten
haben keine roten Kinder).

= Wir farben den Knoten rot — ein Schwarz-Héhen-Verletzung ware
schwieriger zu behandeln.

> Rot ist sozusagen eine lokale Eigenschaft, schwarz eine globale.

» Behebe daher im letzten Schritt die Farbverletzung.
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Einfiigen in einen RBT — Algorithmus

1 void rbtIns(Tree t, Node node) { // Fige node in den Baum t ein

2 bstIns(t, node); // Einfigen wie beim BST

3 node.left = null;

4 mnode.right = null;

5 mnode.color = RED; // eingefigter Knoten timmer zundchst rot
6 // stelle Rot-Schwarz-Eigenschaft ggf. wieder her

7 rbtInsFix(t, node);

8 }
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Einfiigen — Was kann passieren? (1)

’ ’
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, node node N

, node node N

» Der neu eingefligte Knoten ist immer rot.
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» Der neu eingefligte Knoten ist immer rot.

» Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben
wir kein Problem.
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Einfiigen — Was kann passieren? (1)
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» Der neu eingefligte Knoten ist immer rot.

» Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben
wir kein Problem.

» Ist ¢ aber rot, dann liegt eine Rot-Rot-Verletzung vor, die wir
behandeln miissen.

» Die unteren Félle lassen sich analog (symmetrisch) zu den oberen
|6sen, daher betrachten wir nur die beiden oberen Situationen.
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Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.
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Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.

Fall 1
Ist e rot, dann kénnen wir durch Umfarben von ¢ und e auf schwarz sowie
d auf rot die Rot-Schwarz-Eigenschaft lokal wieder herstellen.

» Zwei Ebenen weiter oben konnte nun aber eine Rot-Rot-Verletzung
vorliegen, die nach dem selben Schema iterativ aufgelost werden kann.

> Ist d allerdings die Wurzel, dann farben wir sie einfach wieder
schwarz. Dadurch erhoht sich die Schwarzhéhe des Baumes um 1.
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Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:
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Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Fall 2

Fall 2

Dieser Fall 1asst sich durch Linksrotation um ¢ auf Fall 3 reduzieren.

» Die Schwarz-Hoéhe des linken Teilbaumes von d andert sich dadurch
nicht.

> Der bisherige Vaterknoten ¢ wird dabei zum linken, roten Kind, das
eine Rot-Rot-Verletzung mit dem neuen Vater (¢ im rechten Bild)
hat, die wir mit Fall 3 beheben kdnnen.
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Einfiigen — Was kann passieren? (4)

’J‘\bh(~):x+l

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.
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Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31



Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (4)

/J:\bh(~):x+1 I bh(:) =x

X AN X
— /

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

» Farben wir nun ¢ schwarz, dann haben wir wieder einen giiltigen
RBT. Die Schwarzhdéhe des Gesamtbaumes ist unverandert.
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Einfiigen in einen RBT — Algorithmus Teil 2

1 // Behebe eventuelle Rot-Rot-Verletzung mit Vater
2 void rbtInsFix(Tree t, Node node) {
3 // solange noch eine Rot-Rot-Verletzung besteht

4 while (node.parent.color == RED) {

5 if (node.parent == node.parent.parent.left) {
6 // der von uns betrachtete Fall

7 leftAdjust(t, node);

8 // méglicherweise wurde node = node.parent.parent gesetzt
9 } else {

10 // der dazu symmetrischer Fall

11 rightAdjust(t, node);

12

13}

14 t.root.color = BLACK; // Wurzel bleibt schwarz
15 ¢
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Einfiigen in einen RBT — Algorithmus Teil 3

1 void leftAdjust(Tree t, Node &node) {

2 Node uncle = node.parent.parent.right;

3 if (uncle.color == RED) { // Fall 1

4 node.parent.parent.color = RED; // Grofivater

5 node.parent.color = BLACK; // Vater

6 uncle.color = BLACK; // Onkel

7 node = node.parent.parent; // prife Rot-Rot weiter oben
8 1 else { // Fall 2 und 3

9 if (node == node.parent.right) { // Fall 2

10 // dieser Knoten wird das linke, rote Kind:
1 node = node.parent;

12 leftRotate(t, node);

13 Y // Fall 3

14 rightRotate(t, node.parent.parent);

15 node.parent.color = BLACK;

16 node.parent.right.color = RED;

v}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31



Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).
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Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).
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» Maximal 2 Rotationen werden ausgefiihrt, da die Schleife in
rbtInsFix terminiert, wenn die Falle 2 oder 3 auftreten. (Fall 1
involviert keine Rotationen.)

= Die Gesamtanzahl der Rotationen ist konstant und eine Rotation lauft
in O(1).
> Somit benoétigt rbtIns eine Gesamtzeit O(log n).
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Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:
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Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Der Nachfolger hat hochstens ein Kind.
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Loschen im BST: Die beiden einfachen Falle
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Loschen im BST: Der aufwandigere Fall
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Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:
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Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:
» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:
1. im Baum werden keine Schwarzhdhen geandert

2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Loschen eines roten Knotens liefert ein RBT.

» Haben wir dagegen einen schwarzen Knoten geloscht, dann haben wir
auf dem Pfad von der Wurzel zum geldschten Knoten, bzw. zum an
seine Stelle getretenen Knoten einen Schwarzwert zu viel.
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Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Loschen eines roten Knotens liefert ein RBT.

» Haben wir dagegen einen schwarzen Knoten geloscht, dann haben wir
auf dem Pfad von der Wurzel zum geldschten Knoten, bzw. zum an
seine Stelle getretenen Knoten einen Schwarzwert zu viel.

= Behebe diese Schwarz-Hohen-Verletzung.
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Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:
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Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:

1. Wir finden den Nachfolger von node

Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
Und beheben dabei die moglich auftretende Farbverletzung
Ersetzen node durch den Nachfolger, und

Ubernehmen dabei die méglicherweise neue Farbe von node.
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Loschen im RBT — Strategie (2)

Insbesondere fiir den Fall node hat zwei Kinder:
1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
3. Und beheben dabei die moglich auftretende Farbverletzung
4. Ersetzen node durch den Nachfolger, und
5. Ubernehmen dabei die moglicherweise neue Farbe von node.

Dadurch andert sich nichts mehr an den Farben, der RBT bleibt giiltig!
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Erinnerung: Loschen im BST — Algorithmus

1 // Entfernt node aus dem Baum.

2 // Danach kann node ggf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {

4 1if (node.left && node.right) { // zwei Kinder

5 Node tmp = bstMin(node.right);

6 bstDel(t, tmp); // hichstens ein Kind, rechts

7 bstSwap(t, node, tmp);

8 } else if (node.left) { // ein Kind, links

9 bstReplace(t, node, node.left);

10 } else { // ein Kind, oder kein Kind (node.right == null)
1 bstReplace(t, node, node.right);

12}
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Loschen im RBT — Algorithmus Teil 1

1 // Entfernt node aus dem Baum.

2 void rbtDel(Tree t, Node node) {

3 if (node.left && node.right) { // zwei Kinder

4 Node tmp = bstMin(node.right);

5 rbtDel(t, tmp); // hiéchstens ein Kind, rechts
6 bstSwap(t, node, tmp);
7
8
9

tmp.color = node.color; // ubernimm die Farbe
} else if (node.left) { // ein Kind, links

bstReplace(t, node, node.left);
10 if (node.color == BLACK) { // geldschter Knoten war schwarz
1 rbtDelFix(t, node.left);
12 }
13} else { // ein Kind, oder kein Kind (node.right == null)
14 bstReplace(t, node, node.right);
15 if (node.color == BLACK) {

16 // wenn node.right == null dbergebe node (statt null)
17 rbtDelFix(t, node.right || node);

18 }

v}

20 }
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Loschen im RBT — Beispiel 1

rbtDel(t, 35)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.
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rbtDel(t, 35)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.

» Der nun fehlende Schwarzwert wird 38 zugeschoben.
Einfaches Umfarben auf schwarz geniigt hier. Ware 38 bereits schwarz

gewesen, hatten wir die Verletzung aufwandiger weiter oben beheben
miussen.
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Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Beispiel 2

rbtDel(t, 30)

» Da 30 zwei Kinder hat, finde den Nachfolger.

» Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges
Beispiel).
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Loschen im RBT — Algorithmus Teil 2

1 // Auf dem Pfad von der Wurzel nach node fehlt ein Schwarzwert,
2 // man kénnte sagen: mode ist "doppelt-schwarz'.

3 void rbtDelFix(Tree t, Node node) {

4 // solange der Schwarzwert nicht eingefiugt werden kann

5 while (node.parent && node.color == BLACK) {

6 if (node == node.parent.left) { // ist linkes Kind

7 delLeftAdjust(t, node);

8 // méglicherweise ist node = node.parent gesetzt worden

9 } else { // ist/war(!) rechtes Kind

10 // symmetrischer Fall

11 delRightAdjust(t, node);
12 }

13}

14 node.color = BLACK; // dieser Knoten war rot (bzw. Wurzel).
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Loschen im RBT — Algorithmus Teil 3a

1 void delLeftAdjust(Tree t, Node &node) {
2 // brother existiert wegen Schwarzhdhe immer
3 // (Spezialfall, delRightAdjust: node.parent.right == null)
4 Node brother = node.parent.right; // ( // node; )
5 if (brother.color == RED) { // Fall 1: Reduktion auf 2,3,
6 brother.color = BLACK;
7 node.parent.color = RED; // Vater
8 leftRotate(t, node.parent);
9 brother = node.parent.right; // neuer Bruder
0}
_)
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Loschen im RBT — Algorithmus Teil 3b

9 if (brother.left.color == BLACK &&

10 brother.right.color == BLACK) { // Fall 2
11 brother.color = RED;
12 node = node.parent; // Doppel-schwarz weiter oben...

13} else { // Fall 3 und 4
14 if (brother.right.color == BLACK) // Fall 3

15 brother.left.color = BLACK;

16 brother.color = RED;

17 rightRotate(t, brother);

18 brother = node.parent.right; // ab jetzt von hier aus
19 } // Fall 4

20 brother.color = node.parent.color;

21 node.parent.color = BLACK;
22 brother.right.color = BLACK;

23 leftRotate(t, node.parent);
2 node = t.root; // Fertig.
%}

2 }
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Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).
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Komplexitat der RBT-Operationen

Operation Zeit Operation Zeit
bstSearch o(h) rbtIns O(log n)
bstSucc @(h)

bstMin O(h) rothel cloen)
bstlns O(h) > Alle anderen Operationen wie
bstDel ©(h) beim BST, wobei h = log n.
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Operation Zeit Operation Zeit
bstSearch o(h) rbtIns O(log n)
bstSucc @(h)

bstMin O(h) rothel cloen)
bstlns O(h) > Alle anderen Operationen wie
bstDel ©(h) beim BST, wobei h = log n.

Alle Operationen sind logarithmisch in der GroBe des Rot-Schwarz-Baumes
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