Rot-Schwarz Baume

Datenstrukturen und Algorithmen

Vorlesung 11: Rot-Schwarz-Baume

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://wuw-i2.informatik.rwth-aachen.de/i2/dsall2/

21. Mai 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/31

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

© Rot-Schwarz-Baume
@ Definition
e Einfligen
@ Loschen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/31

Ubersicht

© Rot-Schwarz-Baume
@ Definition
e Einfligen
@ Loschen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.

2. Die Wurzel ist schwarz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
2. Die Wurzel ist schwarz.
3. Jedes (externe) Blatt, d. h. null, ist schwarz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
2. Die Wurzel ist schwarz.
3. Jedes (externe) Blatt, d. h. null, ist schwarz.

4. Ein roter Knoten hat nur schwarze Kinder.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
Die Wurzel ist schwarz.
Jedes (externe) Blatt, d. h. null, ist schwarz.

Ein roter Knoten hat nur schwarze Kinder.

Ol =R CORIND

Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
Die Wurzel ist schwarz.
Jedes (externe) Blatt, d. h. null, ist schwarz.

Ein roter Knoten hat nur schwarze Kinder.

Ol =R CORIND

Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.

Solche Baume heiBen dann Rot-Schwarz-Bdume (RBT, red-black tree).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
Die Wurzel ist schwarz.
Jedes (externe) Blatt, d. h. null, ist schwarz.

Ein roter Knoten hat nur schwarze Kinder.

Ol =R CORIND

Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.

Solche Baume heiBen dann Rot-Schwarz-Bdume (RBT, red-black tree).

» Anders als bei den bekannten BST wird hier zur Vereinfachung null
als , externes" Blatt, insbesondere ohne Daten, behandelt.
> In Algorithmen verwenden wir daher null.color (== BLACK).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Rot-Schwarz-Baume (2)

roter Knoten mit
Schwarz-Hoéhe 3 ™~

(schwarze) externe Knoten

» Die Schwarz-Hohe bh(x) eines Knotens x ist die Anzahl schwarzer
Knoten bis zu einem (externen) Blatt, x ausgenommen.

» Die Schwarz-Héhe eines externen Blattes bh(null) = 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Rot-Schwarz-Baume

Rot-Schwarz Baume

Rot-Schwarz-Baume (3)

Zeichnet man die roten Knoten auf der selben Héhe wie ihren Vater, dann
erhalt man:

T 7

» Die externen Knoten werden in Zeichnungen oft weggelassen.

Schwarzhohe

<“------»

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Rot-Schwarz Baume

Rot-Schwarz-Baume

Rot-Schwarz-Baume (3)

Zeichnet man die roten Knoten auf der selben Héhe wie ihren Vater, dann
erhalt man:

T 7

» Die externen Knoten werden in Zeichnungen oft weggelassen.

Schwarzhohe

A
v

Definition

Die Schwarzhdhe bh(t) eines RBT t ist die Schwarz-Hohe seiner Wurzel.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 6/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.

» Hochstens 4" — 1 innere Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.
= Suchen benétigt also nur ©(log n) statt ©(n) Zeit.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.
= Suchen benétigt also nur ©(log n) statt ©(n) Zeit.

» Fir bstMin, bstSucc, etc. gilt dasselbe.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion dber h.

Ein RBT mit n inneren Knoten hat hdchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.
= Suchen benétigt also nur ©(log n) statt ©(n) Zeit.
» Fir bstMin, bstSucc, etc. gilt dasselbe.

» Mit Einfliigen und Loschen werden wir uns noch beschaftigen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Erinnerung: Einfiigen in einen BST — Beispiel

ﬁ(t S

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.

» Hange den neuen Knoten an.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

» Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

» Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

» Farben wir ihn aber rot, dann konnten wir eine Verletzung der
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten
haben keine roten Kinder).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

> Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

» Farben wir ihn aber rot, dann konnten wir eine Verletzung der
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten
haben keine roten Kinder).

= Wir farben den Knoten rot — ein Schwarz-Héhen-Verletzung ware
schwieriger zu behandeln.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.
Es bleibt die Frage nach der Farbe:
> Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

» Farben wir ihn aber rot, dann konnten wir eine Verletzung der
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten
haben keine roten Kinder).

= Wir farben den Knoten rot — ein Schwarz-Héhen-Verletzung ware
schwieriger zu behandeln.

> Rot ist sozusagen eine lokale Eigenschaft, schwarz eine globale.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Einfiigen von Schliissel k in einen RBT — Strategie

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:
» Finde einen geeigneten, freien Platz.
» Hange den neuen Knoten an.

Es bleibt die Frage nach der Farbe:

> Farben wir den neuen Knoten schwarz, dann verletzen wir in der
Regel die Schwarz-Hdhen-Bedingung.

» Farben wir ihn aber rot, dann konnten wir eine Verletzung der
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten
haben keine roten Kinder).

= Wir farben den Knoten rot — ein Schwarz-Héhen-Verletzung ware
schwieriger zu behandeln.

> Rot ist sozusagen eine lokale Eigenschaft, schwarz eine globale.

» Behebe daher im letzten Schritt die Farbverletzung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Einfiigen in einen RBT — Algorithmus

1 void rbtIns(Tree t, Node node) { // Fige node in den Baum t ein

2 bstIns(t, node); // Einfigen wie beim BST

3 node.left = null;

4 mnode.right = null;

5 mnode.color = RED; // eingefigter Knoten timmer zundchst rot
6 // stelle Rot-Schwarz-Eigenschaft ggf. wieder her

7 rbtInsFix(t, node);

8 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (1)

’ ’
s s
s s

, node node N

, node node N

» Der neu eingefligte Knoten ist immer rot.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (1)

’ ’
s s
s s

, Qa\.node node ./CQ N

N N
N N
N N

/Qa\.node node./CQ\

» Der neu eingefligte Knoten ist immer rot.

» Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben
wir kein Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (1)

’ ’
s s
s s

, Qa\.node node ./CQ N

N N
N N
N N

/Qa\.node node./CQ\

» Der neu eingefligte Knoten ist immer rot.

» Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben
wir kein Problem.

» Ist ¢ aber rot, dann liegt eine Rot-Rot-Verletzung vor, die wir
behandeln miissen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (1)

’ ’
s s
s s

, @\.node node ./@ N

N N
N N
N N

/®\.node node./@\

» Der neu eingefligte Knoten ist immer rot.

» Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben
wir kein Problem.

» Ist ¢ aber rot, dann liegt eine Rot-Rot-Verletzung vor, die wir
behandeln miissen.

» Die unteren Félle lassen sich analog (symmetrisch) zu den oberen
|6sen, daher betrachten wir nur die beiden oberen Situationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.

Fall 1

Ist e rot, dann kénnen wir durch Umfarben von ¢ und e auf schwarz sowie
d auf rot die Rot-Schwarz-Eigenschaft lokal wieder herstellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.

Fall 1

Ist e rot, dann kénnen wir durch Umfarben von ¢ und e auf schwarz sowie
d auf rot die Rot-Schwarz-Eigenschaft lokal wieder herstellen.

» Zwei Ebenen weiter oben konnte nun aber eine Rot-Rot-Verletzung
vorliegen, die nach dem selben Schema iterativ aufgelost werden kann.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (2)
Wir miissen nun GroBvater d und Onkel e mit beriicksichtigen:

» Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
sich vor dem Einfligen um einen korrekten RBT.

Fall 1
Ist e rot, dann kénnen wir durch Umfarben von ¢ und e auf schwarz sowie
d auf rot die Rot-Schwarz-Eigenschaft lokal wieder herstellen.

» Zwei Ebenen weiter oben konnte nun aber eine Rot-Rot-Verletzung
vorliegen, die nach dem selben Schema iterativ aufgelost werden kann.

> Ist d allerdings die Wurzel, dann farben wir sie einfach wieder
schwarz. Dadurch erhoht sich die Schwarzhéhe des Baumes um 1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Fall 2

Fall 2

Dieser Fall 1asst sich durch Linksrotation um ¢ auf Fall 3 reduzieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Fall 2

Fall 2

Dieser Fall 1asst sich durch Linksrotation um ¢ auf Fall 3 reduzieren.

» Die Schwarz-Hoéhe des linken Teilbaumes von d andert sich dadurch
nicht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Fall 2

Fall 2

Dieser Fall 1asst sich durch Linksrotation um ¢ auf Fall 3 reduzieren.

» Die Schwarz-Hoéhe des linken Teilbaumes von d andert sich dadurch
nicht.

> Der bisherige Vaterknoten ¢ wird dabei zum linken, roten Kind, das
eine Rot-Rot-Verletzung mit dem neuen Vater (¢ im rechten Bild)
hat, die wir mit Fall 3 beheben kdnnen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Einfiigen — Was kann passieren? (4)

’J‘\bh(~):x+l

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (4)

|
——bh()=x+1 /Rbh)—???

B .%a &

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (4)

/J:\bh(~):x+1 I bh(:) =x

X AN X
— /

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

» Farben wir nun ¢ schwarz, dann haben wir wieder einen giiltigen
RBT. Die Schwarzhdéhe des Gesamtbaumes ist unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Einfiigen — Was kann passieren? (4)

——bh(:)=x+1 ——bh(:)=x+1

X AN X
— /

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hohen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

» Farben wir nun ¢ schwarz, dann haben wir wieder einen giiltigen
RBT. Die Schwarzhdéhe des Gesamtbaumes ist unverandert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Einfiigen in einen RBT — Algorithmus Teil 2

1 // Behebe eventuelle Rot-Rot-Verletzung mit Vater
2 void rbtInsFix(Tree t, Node node) {
3 // solange noch eine Rot-Rot-Verletzung besteht

4 while (node.parent.color == RED) {

5 if (node.parent == node.parent.parent.left) {
6 // der von uns betrachtete Fall

7 leftAdjust(t, node);

8 // méglicherweise wurde node = node.parent.parent gesetzt
9 } else {

10 // der dazu symmetrischer Fall

11 rightAdjust(t, node);

12

13}

14 t.root.color = BLACK; // Wurzel bleibt schwarz
15 ¢

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Einfiigen in einen RBT — Algorithmus Teil 3

1 void leftAdjust(Tree t, Node &node) {

2 Node uncle = node.parent.parent.right;

3 if (uncle.color == RED) { // Fall 1

4 node.parent.parent.color = RED; // Grofivater

5 node.parent.color = BLACK; // Vater

6 uncle.color = BLACK; // Onkel

7 node = node.parent.parent; // prife Rot-Rot weiter oben
8 1 else { // Fall 2 und 3

9 if (node == node.parent.right) { // Fall 2

10 // dieser Knoten wird das linke, rote Kind:
1 node = node.parent;

12 leftRotate(t, node);

13 Y // Fall 3

14 rightRotate(t, node.parent.parent);

15 node.parent.color = BLACK;

16 node.parent.right.color = RED;

v}

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

» Die maximal Anzahl der Schleifen ist damit O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

» Die maximal Anzahl der Schleifen ist damit O(log n).

» Maximal 2 Rotationen werden ausgefiihrt, da die Schleife in
rbtInsFix terminiert, wenn die Falle 2 oder 3 auftreten. (Fall 1
involviert keine Rotationen.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

» Die maximal Anzahl der Schleifen ist damit O(log n).

» Maximal 2 Rotationen werden ausgefiihrt, da die Schleife in
rbtInsFix terminiert, wenn die Falle 2 oder 3 auftreten. (Fall 1
involviert keine Rotationen.)

= Die Gesamtanzahl der Rotationen ist konstant und eine Rotation lauft

in O(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fiir ein RBT mit n inneren Knoten ist

O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(logn).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

» Die maximal Anzahl der Schleifen ist damit O(log n).

» Maximal 2 Rotationen werden ausgefiihrt, da die Schleife in
rbtInsFix terminiert, wenn die Falle 2 oder 3 auftreten. (Fall 1
involviert keine Rotationen.)

= Die Gesamtanzahl der Rotationen ist konstant und eine Rotation lauft
in O(1).
> Somit benoétigt rbtIns eine Gesamtzeit O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:
node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu léschen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Der Nachfolger hat hochstens ein Kind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Loschen im BST: Die beiden einfachen Falle

Datenstrukturen und Algorithmen

Loschen im BST: Der aufwandigere Fall

SRR

e

Datenstrukturen und Algorithmen

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:
1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Loschen eines roten Knotens liefert ein RBT.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:
» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:
1. im Baum werden keine Schwarzhdhen geandert

2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Loschen eines roten Knotens liefert ein RBT.

» Haben wir dagegen einen schwarzen Knoten geloscht, dann haben wir
auf dem Pfad von der Wurzel zum geldschten Knoten, bzw. zum an
seine Stelle getretenen Knoten einen Schwarzwert zu viel.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Ldschen noch ein RBT ist,
missen wir das Loschverfahren fiir BSTs ergénzen:

» Haben wir einen roten Knoten (wirklich) gel6scht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden
3. der geléschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Loschen eines roten Knotens liefert ein RBT.

» Haben wir dagegen einen schwarzen Knoten geloscht, dann haben wir
auf dem Pfad von der Wurzel zum geldschten Knoten, bzw. zum an
seine Stelle getretenen Knoten einen Schwarzwert zu viel.

= Behebe diese Schwarz-Hohen-Verletzung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:
1. Wir finden den Nachfolger von node

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:

1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:

1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
3. Und beheben dabei die moglich auftretende Farbverletzung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiir den Fall node hat zwei Kinder:
1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
3. Und beheben dabei die moglich auftretende Farbverletzung
4. Ersetzen node durch den Nachfolger, und

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiur den Fall node hat zwei Kinder:

1. Wir finden den Nachfolger von node

Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
Und beheben dabei die moglich auftretende Farbverletzung
Ersetzen node durch den Nachfolger, und

Ubernehmen dabei die méglicherweise neue Farbe von node.

Ol & WD

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Loschen im RBT — Strategie (2)

Insbesondere fiir den Fall node hat zwei Kinder:
1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
3. Und beheben dabei die moglich auftretende Farbverletzung
4. Ersetzen node durch den Nachfolger, und
5. Ubernehmen dabei die moglicherweise neue Farbe von node.

Dadurch andert sich nichts mehr an den Farben, der RBT bleibt giiltig!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Erinnerung: Loschen im BST — Algorithmus

1 // Entfernt node aus dem Baum.

2 // Danach kann node ggf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {

4 1if (node.left && node.right) { // zwei Kinder

5 Node tmp = bstMin(node.right);

6 bstDel(t, tmp); // hichstens ein Kind, rechts

7 bstSwap(t, node, tmp);

8 } else if (node.left) { // ein Kind, links

9 bstReplace(t, node, node.left);

10 } else { // ein Kind, oder kein Kind (node.right == null)
1 bstReplace(t, node, node.right);

12}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/31

Loschen im RBT — Algorithmus Teil 1

1 // Entfernt node aus dem Baum.

2 void rbtDel(Tree t, Node node) {

3 if (node.left && node.right) { // zwei Kinder

4 Node tmp = bstMin(node.right);

5 rbtDel(t, tmp); // hiéchstens ein Kind, rechts
6 bstSwap(t, node, tmp);
7
8
9

tmp.color = node.color; // ubernimm die Farbe
} else if (node.left) { // ein Kind, links

bstReplace(t, node, node.left);
10 if (node.color == BLACK) { // geldschter Knoten war schwarz
1 rbtDelFix(t, node.left);
12 }
13} else { // ein Kind, oder kein Kind (node.right == null)
14 bstReplace(t, node, node.right);
15 if (node.color == BLACK) {

16 // wenn node.right == null dbergebe node (statt null)
17 rbtDelFix(t, node.right || node);

18 }

v}

20 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/31

Loschen im RBT — Beispiel 1

rbtDel(t, 35)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Beispiel 1

rbtDel(t, 35)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.

» Der nun fehlende Schwarzwert wird 38 zugeschoben.
Einfaches Umfarben auf schwarz geniigt hier. Ware 38 bereits schwarz

gewesen, hatten wir die Verletzung aufwandiger weiter oben beheben
miussen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Beispiel 1

rbtDel(t, 35)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.

» Der nun fehlende Schwarzwert wird 38 zugeschoben.
Einfaches Umfarben auf schwarz geniigt hier. Ware 38 bereits schwarz

gewesen, hatten wir die Verletzung aufwandiger weiter oben beheben
miussen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Beispiel 2

rbtDel(t, 30)

» Da 30 zwei Kinder hat, finde den Nachfolger.

» Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges
Beispiel).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Beispiel 2

rbtDel(t, 30)

» Da 30 zwei Kinder hat, finde den Nachfolger.

» Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges
Beispiel).

» Ersetze 30 durch die nun freie 35, wobei die Farbe von 30
tibernommen wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Loschen im RBT — Beispiel 2

rbtDel(t, 30)

» Da 30 zwei Kinder hat, finde den Nachfolger.

» Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges
Beispiel).

» Ersetze 30 durch die nun freie 35, wobei die Farbe von 30
tibernommen wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Loschen im RBT — Algorithmus Teil 2

1 // Auf dem Pfad von der Wurzel nach node fehlt ein Schwarzwert,
2 // man kénnte sagen: mode ist "doppelt-schwarz'.

3 void rbtDelFix(Tree t, Node node) {

4 // solange der Schwarzwert nicht eingefiugt werden kann

5 while (node.parent && node.color == BLACK) {

6 if (node == node.parent.left) { // ist linkes Kind

7 delLeftAdjust(t, node);

8 // méglicherweise ist node = node.parent gesetzt worden

9 } else { // ist/war(!) rechtes Kind

10 // symmetrischer Fall

11 delRightAdjust(t, node);
12 }

13}

14 node.color = BLACK; // dieser Knoten war rot (bzw. Wurzel).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Loschen im RBT — Algorithmus Teil 3a

1 void delLeftAdjust(Tree t, Node &node) {
2 // brother existiert wegen Schwarzhdhe immer
3 // (Spezialfall, delRightAdjust: node.parent.right == null)
4 Node brother = node.parent.right; // (// node;)
5 if (brother.color == RED) { // Fall 1: Reduktion auf 2,3,
6 brother.color = BLACK;
7 node.parent.color = RED; // Vater
8 leftRotate(t, node.parent);
9 brother = node.parent.right; // neuer Bruder
0}
_)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Loschen im RBT — Algorithmus Teil 3b

9 if (brother.left.color == BLACK &&

10 brother.right.color == BLACK) { // Fall 2
11 brother.color = RED;
12 node = node.parent; // Doppel-schwarz weiter oben...

13} else { // Fall 3 und 4
14 if (brother.right.color == BLACK) // Fall 3

15 brother.left.color = BLACK;

16 brother.color = RED;

17 rightRotate(t, brother);

18 brother = node.parent.right; // ab jetzt von hier aus
19 } // Fall 4

20 brother.color = node.parent.color;

21 node.parent.color = BLACK;
22 brother.right.color = BLACK;

23 leftRotate(t, node.parent);
2 node = t.root; // Fertig.
%}

2 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Rot-Schwarz Baume Rot-Schwarz-Baume

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n).

» Die Falle 2, 3, und 4 brauchen héchstens 3 Rotationen und eine
konstante Anzahl Farbdnderungen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n).

» Die Falle 2, 3, und 4 brauchen héchstens 3 Rotationen und eine
konstante Anzahl Farbdnderungen.

» Die Schleife in rbtDelFix wird nur wiederholt wenn Fall 2 auftrittt.
Dann steigt der Zeiger node eine Ebene im Baum auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n).

» Die Falle 2, 3, und 4 brauchen héchstens 3 Rotationen und eine
konstante Anzahl Farbdnderungen.

» Die Schleife in rbtDelFix wird nur wiederholt wenn Fall 2 auftrittt.
Dann steigt der Zeiger node eine Ebene im Baum auf.

> Die maximal Anzahl der Schleifen ist damit O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Loschen im RBT — Analyse

Zeitkomplexitat Loschen

Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n).

» Die Falle 2, 3, und 4 brauchen héchstens 3 Rotationen und eine
konstante Anzahl Farbdnderungen.

» Die Schleife in rbtDelFix wird nur wiederholt wenn Fall 2 auftrittt.
Dann steigt der Zeiger node eine Ebene im Baum auf.

> Die maximal Anzahl der Schleifen ist damit O(log n).
» Somit bendtigt rbtDel eine Gesamtzeit O(log n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Komplexitat der RBT-Operationen

Operation Zeit Operation Zeit
bstSearch o(h) rbtIns O(log n)
bstSucc @(h)

bstMin O(h) rothel cloen)
bstlns O(h) > Alle anderen Operationen wie
bstDel ©(h) beim BST, wobei h = log n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Komplexitat der RBT-Operationen

Operation Zeit Operation Zeit
bstSearch o(h) rbtIns O(log n)
bstSucc @(h)

bstMin O(h) rothel cloen)
bstlns O(h) > Alle anderen Operationen wie
bstDel ©(h) beim BST, wobei h = log n.

Alle Operationen sind logarithmisch in der GroBe des Rot-Schwarz-Baumes

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

	Rot-Schwarz-Bäume
	Definition
	Einfügen
	Löschen

