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Rot-Schwarz-Baume (1)

Rot-Schwarz-Eigenschaft

Ein bindrer Suchbaum, dessen Knoten jeweils zusatzlich eine Farbe haben,
hat die Rot-Schwarz-Eigenschaft, wenn:

1. Jeder Knoten ist entweder rot oder schwarz.
2. Die Wurzel ist schwarz.

3. Jedes (externe) Blatt, d. h. null, ist schwarz.
4. Ein roter Knoten hat nur schwarze Kinder.
5

. Fiir jeden Knoten enthalten alle Pfade, die an diesem Knoten starten
und in einem Blatt des Teilbaumes dieses Knotens enden, die gleiche
Anzahl schwarzer Knoten.

Solche Baume heiBen dann Rot-Schwarz-Baume (RBT, red-black tree).

> Anders als bei den bekannten BST wird hier zur Vereinfachung null
als ,externes” Blatt, insbesondere ohne Daten, behandelt.
» In Algorithmen verwenden wir daher null.color (== BLACK).
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Rot-Schwarz-Baume (2)

roter Knoten mit
Schwarz-Héhe 3

(schwarze) externe Knoten

» Die Schwarz-Hohe bh(x) eines Knotens x ist die Anzahl schwarzer

Knoten bis zu einem (externen) Blatt, x ausgenommen.

» Die Schwarz-Hohe eines externen Blattes bh(null) = 0.
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Elementare Eigenschaften von Rot-Schwarz-Baumen

Ein Rot-Schwarz-Baum t mit Schwarzhéhe h = bh(t) hat:
» Mindestens 2" — 1 innere Knoten.
» Héchstens 4" — 1 innere Knoten.

Beweis: Induktion iiber h.

Ein RBT mit n inneren Knoten hat héchstens die Hohe 2 - log(n + 1).

» Damit ist ein RBT ein ziemlich balancierter BST.
= Suchen benétigt also nur ©(log n) statt ©(n) Zeit.
» Fiir bstMin, bstSucc, etc. gilt dasselbe.

» Mit Einfligen und Loschen werden wir uns noch beschéaftigen.
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Rot-Schwarz Biume

Rot-Schwarz-Baume (3)

Rot-Schwarz-Biume

Zeichnet man die roten Knoten auf der selben Héhe wie ihren Vater, dann
erhalt man:

Schwarzhéhe

<---—---»

» Die externen Knoten werden in Zeichnungen oft weggelassen.

Definition

Die Schwarzhohe bh(t) eines RBT t ist die Schwarz-Héhe seiner Wurzel.
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Erinnerung: Einfiigen in einen BST — Beispiel

bstIns(t, Node(18))_
m @
® ®
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Einfiigen von Schliissel k in einen RBT — Strategie Einfiigen in einen RBT — Algorithmus

Zum Einfiigen in einen RBT gehen wir zunachst wie beim BST vor:

» Finde einen geeigneten, freien Platz.
» Hinge den neuen Knoten an. 1 void rbtIns(Tree t, Node node) { // Fuge node in den Baum t ein

. ) 2 bstIns(t, node); // Einfigen wie beim BST
Es bleibt die Frage nach der Farbe: 3 node.left = null;
» Farben wir den neuen Knoten schwarz, dann verletzen wir in der 4 mnode.right = null; , i} _ i
Regel die Schwarz-Hohen-Bedi 5 mnode.color = RED; // eingefugter Knoten immer zundchst rot
cgel di warz- n- Inguneg. 6 // stelle Rot-Schwarz-Eigenschaft ggf. wieder her
» Farben wir ihn aber rot, dann kénnten wir eine Verletzung der 7 rbtInsFix(t, node);
Farbbedingungen bekommen (die Wurzel ist schwarz, rote Knoten s }
haben keine roten Kinder).
= Wir farben den Knoten rot — ein Schwarz-Héhen-Verletzung ware
schwieriger zu behandeln.
» Rot ist sozusagen eine lokale Eigenschaft, schwarz eine globale.
» Behebe daher im letzten Schritt die Farbverletzung.
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Einfiigen — Was kann passieren? (1) Einfiigen — Was kann passieren? (2)
, , Wir missen nun GroBvater d und Onkel e mit beriicksichtigen:
// // | !
,’C(D\.node node./@\
) I » Der GroBvater des eingefiigten Knotens war schwarz, denn es handelte
, node node N . - .
. . sich vor dem Einfiigen um einen korrekten RBT.

Fall 1

Ist e rot, dann kdnnen wir durch Umfarben von ¢ und e auf schwarz sowie
d auf rot die Rot-Schwarz-Eigenschaft lokal wieder herstellen.

» Der neu eingefiigte Knoten ist immer rot.

> Ist die Farbe des Vaterknotens ¢ schwarz (z. B. die Wurzel), haben

wir kein Problem. . . . .
> Zwei Ebenen weiter oben konnte nun aber eine Rot-Rot-Verletzung

> Ist ¢ aber rot, dann liegt eine Rot-Rot-Verletzung vor, die wir . . . . .
& € vorliegen, die nach dem selben Schema iterativ aufgelést werden kann.

behandeln mdssen.
> Ist d allerdings die Wurzel, dann farben wir sie einfach wieder

» Die unteren Falle lassen sich analog (symmetrisch) zu den oberen ! i ) )
schwarz. Dadurch erhéht sich die Schwarzhohe des Baumes um 1.

|[6sen, daher betrachten wir nur die beiden oberen Situationen.
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Einfiigen — Was kann passieren? (3)
Ist der Onkel e dagegen schwarz, dann erhalten wir Fall 2 und 3:

Fall 2

Fall 2
Dieser Fall lasst sich durch Linksrotation um ¢ auf Fall 3 reduzieren.

» Die Schwarz-Hoéhe des linken Teilbaumes von d andert sich dadurch
nicht.

> Der bisherige Vaterknoten ¢ wird dabei zum linken, roten Kind, das
eine Rot-Rot-Verletzung mit dem neuen Vater (c im rechten Bild)
hat, die wir mit Fall 3 beheben kénnen.
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Einfiigen — Was kann passieren? (4)

%bh(-):x+1
— .>/e/
Xx/

.

/Kbh()_erl

Fall 3
» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hoéhen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten ¢ hing, ist das soweit unproblematisch.

> Farben wir nun ¢ schwarz, dann haben wir wieder einen giiltigen
RBT. Die Schwarzhéhe des Gesamtbaumes ist unverandert.
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Einfiigen — Was kann passieren? (4)

!
——bh(:)=x+1 beh)—???

B .%a &

Fall 3

» Zunachst rotieren wir um d nach rechts, wobei wir die
Schwarz-Hoéhen im Auge behalten.

» Um die Schwarz-Hohen der Kinder von ¢ wieder in Einklang zu
bringen, farben wir d rot. Da dessen linkes Kind urspriinglich am
roten c hing, ist das soweit unproblematisch.
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Einfiigen in einen RBT — Algorithmus Teil 2

1 // Behebe eventuelle Rot-Rot-Verletzung mit Vater
2 void rbtInsFix(Tree t, Node node) {
3 // solange noch eine Rot-Rot-Verletzung besteht

4 while (node.parent.color == RED) {
5 if (node.parent == node.parent.parent.left) {
6 // der wvon uns betrachtete Fall
7 leftAdjust(t, node);
8 // méglicherweise wurde node = node.parent.parent gesetzt
9 } else {
10 // der dazu symmetrischer Fall
1 rightAdjust(t, node);
12
13}
14 t.root.color = BLACK; // Wurzel bleibt schwarz
15}
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Einfiigen in einen RBT — Algorithmus Teil 3

1 void leftAdjust(Tree t, Node &node) {

2 Node uncle = node.parent.parent.right;
3 if (uncle.color == RED) { // Fall 1
4 node.parent.parent.color = RED; // Grofivater
5 node.parent.color = BLACK; // Vater
6 uncle.color = BLACK; // Onkel
7 node = node.parent.parent; // prife Rot-Rot weiter oben
g8 } else { // Fall 2 und 3
9 if (node == node.parent.right) { // Fall 2
10 // dieser Knoten wird das linke, rote Kind:
11 node = node.parent;
12 leftRotate(t, node);
13 Y // Fall 3
14 rightRotate(t, node.parent.parent);
15 node.parent.color = BLACK;
16 node.parent.right.color = RED;
VAN ¥
18 }
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Erinnerung: Loschen im BST — Strategie

Um Knoten node aus dem BST zu I6schen, verfahren wir folgendermaBen:

node hat keine Kinder:
Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:
Wir schneiden node aus, indem wir den Vater und das Kind direkt
miteinander verbinden.

node hat zwei Kinder:
Wir finden den Nachfolger von node, entfernen ihn aus seiner
urspriinglichen Position und ersetzen node durch den Nachfolger.

» Der Nachfolger hat hochstens ein Kind.
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Einfiigen in einen RBT — Analyse

Zeitkomplexitat Einfiigen

Die Worst-Case Laufzeit von rbtIns fir ein RBT mit n inneren Knoten ist
O(log n).

Beweisskizze:

» Die Worst-Case Laufzeit von bstIns ist O(log n).

» Die Schleife in rbtInsFix wird nur wiederholt wenn Fall 1 auftrittt.
Dann steigt der Zeiger node zwei Ebenen im Baum auf.

» Die maximal Anzahl der Schleifen ist damit O(log n).

» Maximal 2 Rotationen werden ausgefiihrt, da die Schleife in
rbtInsFix terminiert, wenn die Félle 2 oder 3 auftreten. (Fall 1
involviert keine Rotationen.)

= Die Gesamtanzahl der Rotationen ist konstant und eine Rotation lauft
in O(1).

» Somit bendtigt rbtIns eine Gesamtzeit O(log n).
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Loschen im BST: Die beiden einfachen Fille
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Loschen im BST: Der aufwandigere Fall

SRR

‘/®
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Loschen im RBT — Strategie (2)

Loschen

Insbesondere fiir den Fall node hat zwei Kinder:
1. Wir finden den Nachfolger von node
2. Entfernen ihn (mittels rbtDel) aus seiner urspriinglichen Position
3. Und beheben dabei die moglich auftretende Farbverletzung
4. Ersetzen node durch den Nachfolger, und
5. Ubernehmen dabei die moglicherweise neue Farbe von node.

Dadurch andert sich nichts mehr an den Farben, der RBT bleibt giiltig!
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Loschen im RBT — Strategie (1)

Damit der RBT auch nach dem Léschen noch ein RBT ist,
mussen wir das Loschverfahren fiir BSTs erganzen:

» Haben wir einen roten Knoten (wirklich) geléscht, bleibt alles beim
alten, da:

1. im Baum werden keine Schwarzhdhen geandert
2. es sind keine benachbarten roten Knoten entstanden
3. der geloschte Knoten war rot, und damit bleibt die Wurzel schwarz.

= Also: das Ldschen eines roten Knotens liefert ein RBT.

> Haben wir dagegen einen schwarzen Knoten geldscht, dann haben wir
auf dem Pfad von der Wurzel zum geloschten Knoten, bzw. zum an
seine Stelle getretenen Knoten einen Schwarzwert zu viel.

= Behebe diese Schwarz-Héhen-Verletzung.
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Erinnerung: Loschen im BST — Algorithmus

1 // Entfernt node aus dem Baum.

2 // Danach kann node gqf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {

4 if (node.left && node.right) { // zwei Kinder

5 Node tmp = bstMin(node.right);

6 bstDel(t, tmp); // hichstens ein Kind, rechts

7 bstSwap(t, node, tmp);

g8 ) else if (node.left) { // ein Kind, links

9 bstReplace(t, node, node.left);

10 1} else { // ein Kind, oder kein Kind (node.right == null)

11 bstReplace(t, node, node.right);
12}
13 }
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Loschen im RBT — Algorithmus Teil 1 Loschen im RBT — Beispiel 1

1 // Entfernt node aus dem Baum.

2 void rbtDel(Tree t, Node node) {
5 if (node.left && node.right) { // zwei Kinder rbtDel(t, 35)
4 Node tmp = bstMin(node.right);

5 rbtDel(t, tmp); // hichstens ein Kind, rechts
6 bstSwap(t, node, tmp);

7 tmp.color = node.color; // idbernimm die Farbe
8

9

} else if (node.left) { // ein Kind, links
bstReplace(t, node, node.left);
10 if (node.color == BLACK) { // geldschter Knoten war schwarz

11 rbtDelFix(t, node.left);

12 }

15} else { // ein Kind, oder k.em Kind (node.right == null) » Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle.

14 bstReplace(t, node, node.right);

15 if (node.color == BLACK) { » Der nun fehlende Schwarzwert wird 38 zugeschoben.

16 // wenn node.right == null ubergebe node (statt null) Einfaches Umfirben auf schwarz geniigt hier. Wire 38 bereits schwarz

v ) rbtDelFix(t, node.right || node); gewesen, hatten wir die Verletzung aufwéndiger weiter oben beheben

18 -

o} missen.

20 }
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Loschen im RBT — Beispiel 1 Loschen im RBT — Beispiel 2

rbtDel(t, 35) o rbtDel(t, 30)

> Wie beim BST tritt der rechte Teilbaum von 35 an dessen Stelle. > Da 30 zwei Kinder hat, finde den Nachfolger.

» Der nun fehlende Schwarzwert wird 38 zugeschoben. » Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges
Einfaches Umfarben auf schwarz genligt hier. Ware 38 bereits schwarz Beispiel).
gewesen, hatten wir die Verletzung aufwandiger weiter oben beheben » Ersetze 30 durch die nun freie 35, wobei die Farbe von 30
muissen. tibernommen wird.
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Loschen im RBT — Beispiel 2 Loschen im RBT — Algorithmus Teil 2

rbtDel(t, 30)

1 // Auf dem Pfad wvon der Wurzel nach node fehlt ein Schwarzwert,
2 // man kénnte sagen: node tst "doppelt-schwarz'.

3 void rbtDelFix(Tree t, Node node) {

4 // solange der Schwarzwert nicht eingefigt werden kann

5 while (node.parent && node.color == BLACK) {
6 if (node == node.parent.left) { // ist linkes Kind
7 delLeftAdjust(t, node);
8 // méglicherweise ist node = node.parent gesetzt worden
9 } else { // ist/war(!) rechtes Kind
10 // symmetrischer Fall
» Da 30 zwei Kinder hat, finde den Nachfolger. u ) delRightAdjust(t, node);
12
» Losche 35 und stelle die RBT-Eigenschaft wieder her (siehe voriges 5}
Beispiel). 14 node.color = BLACK; // dieser Knoten war rot (bzw. Wurzel).
» Ersetze 30 durch die nun freie 35, wobei die Farbe von 30 =)
iibernommen wird.
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Loschen im RBT — Algorithmus Teil 3a Loschen im RBT — Algorithmus Teil 3b

o if (brother.left.color == BLACK &&

10 brother.right.color == BLACK) { // Fall 2
11 brother.color = RED;
1 void delLeftAdjust(Tree t, Node &node) { 12 node = node.parent; // Doppel-schwarz weiter oben..
2 // brother ezistiert wegen Schwarzhéhe tmmer 13 } else { // Fall 3 und 4
3 // (Speztalfall, delRightAdjust: node.parent.right == null) 14 if (brother.right.color == BLACK) // Fall 3
4 Node brother = node.parent.right; // ( /| node; ) 15 brother.left.color = BLACK;
5 if (brother.color == RED) { // Fall 1: Reduktion auf 2,3,4 16 brother.color = RED;
6 brother.color = BLACK; 17 rightRotate(t, brother);
7 node.parent.color = RED; // Vater 18 brother = node.parent.right; // ab jetzt von hier aus
8 leftRotate(t, node.parent); 19 } // Fall 4
9 brother = node.parent.right; // neuer Bruder 20 brother.color = node.parent.color;
0} 21 node.parent.color = BLACK;
— 22 brother.right.color = BLACK;
23 leftRotate(t, node.parent);
24 node = t.root; // Fertig.
5}
2 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31 Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31



Rot-Schwarz Biume Rot-Schwarz-Biume Rot-Schwarz Biume Rot-Schwarz-Biume

Loschen im RBT — Analyse Komplexitat der RBT-Operationen
Zeitkomplexitat Loschen
Die Worst-Case Laufzeit von rbtDel fiir ein RBT mit n inneren Knoten ist Operation Zeit . .
O(log n). Operation Zeit
bstSearch ©(h) ol
bstsuce  O(h) rorins (log n)
bstiin o(h) rbtDel ©(log n)
» Die Laufzeit von rbtDel ohne Aufrufe von rbtDelFix ist O(log n). et 1 o(h)
t . .
» Die Falle 2, 3, und 4 brauchen hochstens 3 Rotationen und eine bStDn: o(h) » Alle anderen Operationen wie
konstante Anzahl Farbdnderungen. stoe beim BST, wobei h = log n.
» Die Schleife in rbtDelFix wird nur wiederholt wenn Fall 2 auftrittt.
|

Dann steigt der Zeiger node eine Ebene im Baum auf. Alle Operationen sind logarithmisch in der GroBe des Rot-Schwarz-Baumes
» Die maximal Anzahl der Schleifen ist damit O(log n).

» Somit benétigt rbtDel eine Gesamtzeit O(log n).
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