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Hashing I

Einführung (I)
Dictionary (Wörterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schlüssels abgerufen werden können.

Weiterhin:
I Die Daten sind dynamisch gespeichert.
I Element dictSearch(Dict d, int k) gibt die in d zum Schlüssel k

gespeicherten Informationen zurück.
I void dictInsert(Dict d, Element e) speichert Element e unter

seinem Schlüssel e.key in d.
I void dictDelete(Dict d, Element e) löscht das Element e aus d,

wobei e in d enthalten sein muss.

Beispiel
Symboltabelle eines Compilers, wobei die Schlüssel Strings (etwa
Bezeichner) sind.
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Hashing I

Einführung (II)

Problem
Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

I Heap: Einfügen und Löschen sind effizient. Aber was ist mit Suche?
I Sortiertes Array/Liste: Einfügen ist im Worst-Case linear.
I Rot-Schwarz-Baum: Alle Operationen sind im Worst-Case

logarithmisch.

Lösung
Unter realistischen Annahmen benötigt eine Hash-Tabelle im Durchschnitt
O(1) für alle Operationen.
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Hashing I Direkte Adressierung

Direkte Adressierung (I)

Direkte Adressierung

I Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es für
jeden möglichen Schlüssel eine(1) Position gibt.

I Jedes Array-Element enthält einen Pointer auf die gespeicherte
Information.

I Der Einfachheit halber vernachlässigen wir in der Vorlesung die zu den
Schlüsseln gehörenden Informationen.

I Mit Schlüsselmenge U = {0, 1, . . . , n − 1} ergibt sich:
I Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu

Schlüssel k gehört.
I datSearch(T, int k): return T[k];
I datInsert(T, Element e): T[e.key] = e;
I datDelete(T, Element e): T[e.key] = null;

I Die Laufzeit jeder Operation ist im Worst-Case Θ(1).
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Hashing I Direkte Adressierung

Direkte Adressierung (II)

U

K
5
4
3
2
1
0

6
7
8
9

0
1

2

3

4

5

6

7

89

Schlüsselmenge

benutzte Schlüssel

Schlüssel
Direkte-Adressierungs-Tabelle T

n = 10
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Hashing I Direkte Adressierung

Duplikate in Linearzeit erkennen

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k ∈ Θ(n).

1 bool checkDuplicates(int E[n], int n, int k) {
2 int histogram[k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int i = 0; i < n; i++) {
4 if (histogram[E[i]] > 0) {
5 return true; // Duplikat gefunden
6 } else {
7 histogram[E[i]]++; // Zähle Häufigkeit
8 }
9 }

10 return false; // keine Duplikate
11 }
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Hashing I Direkte Adressierung

Counting Sort – Idee

1. Berechne Häufigkeit

2. Berechne „Position von x“ = „Anzahl der Elemente 6 x“
3. Erzeuge Ausgabearray anhand dieser neuen Positionen
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Hashing I Direkte Adressierung

Counting Sort
Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k ∈ Θ(n).

1 int[n] countSort(int E[n], int n, int k) {
2 int histogram[k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int i = 0; i < n; i++) {
4 histogram[E[i]]++; // Zähle Häufigkeit
5 }
6 for (int i = 1; i < k; i++) { // Berechne Position
7 histogram[i] = histogram[i] + histogram[i - 1];
8 }
9 // Erzeuge Ausgabe

10 int result[n];
11 for (int i = n - 1; i >= 0; i--) { // stabil: rückwärts
12 histogram[E[i]]--;
13 result[histogram[E[i]]] = E[i];
14 }
15 return result;
16 }

I Worst-Case Zeitkomplexität: Θ(n)
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Hashing I Direkte Adressierung

Counting Sort: Beispiel

6 8 0 3 5 4 0 4
0 1 2 3 4 5 6 7

Eingabe
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Hashing I Direkte Adressierung

Counting Sort (II)
Problem
Wir sortieren also mit Worst-Case Komplexität Θ(n), obwohl wir als
untere Schranke Θ(n · log n) bewiesen hatten?

Lösung
Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

I denn er basiert nicht auf Vergleich von Elementen, sondern auf
Häufigkeiten.

I Das funktioniert, indem wir Direkte-Adressierung (Einfügen, Suchen,
Löschen in Θ(1)) ausnutzen.

Hauptproblem: Übermäßiger Speicherbedarf für das Array.
I Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schlüssel

benötigt man 25·20 = 2100 Arrayeinträge.
I Können wir diesen riesigen Speicherbedarf vermeiden und effizient

bleiben? Ja! – mit Hashing.
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Hashing I Grundlagen des Hashings

Hashing (I)
Praktisch wird nur ein kleiner Teil der Schlüssel verwendet, d. h. |K | � |U|.
⇒ Bei Direkter-Adressierung ist der größte Teil von T verschwendet.

Das Ziel von Hashing ist:
I Einen extrem großen Schlüsselraum auf einen vernünftig kleinen

Bereich von ganzen Zahlen abzubilden.
I Dass zwei Schlüssel auf die selbe Zahl abgebildet werden, soll

möglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision
Eine Hashfunktion bildet einen Schlüssel auf einen Index der Hashtabelle T
ab:

h : U −→ { 0, 1, . . . ,m−1 } für Tabellengröße m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schlüssels k ist.
Das Auftreten von h(k) = h(k ′) für k 6= k ′ nennt man eine Kollision.
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Hashing I Grundlagen des Hashings

Hashing (II)

U

K

0

Schlüsselmenge

benutzte Schlüssel

k2
k4

k3
k5

m − 1

k1

Hashfunktion
Hashtabelle

h(k1)
h(k2) = h(k3)

h(k5)

h(k4)

Kollision

I Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?

I Wie behandeln wir dennoch auftretende Kollisionen?
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Hashing I Grundlagen des Hashings

Kollisionen: Das Geburtstagsparadoxon (I)
Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

I Die Wahrscheinlichkeit, dass dein Nachbar am selben Tag wie du
Geburtstag hat ist 1

365 ≈ 0,027.
I Fragt man 23 Personen, wächst die Wahrscheinlichkeit auf

23
365 ≈ 0,063.

I Sind aber 23 Personen in einem Raum, dann haben zwei von ihnen
den selben Geburtstag mit Wahrscheinlichkeit

1−
(365
365 ·

364
365 ·

363
365 · . . . ·

343
365

)
≈ 0,5
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Hashing I Grundlagen des Hashings

Kollisionen: Das Geburtstagsparadoxon (II)

Auf Hashing angewendet bedeutet das:
I Die Wahrscheinlichkeit keiner Kollision nach k Einfügevorgängen in

einer m-elementigen Tabelle ist:

m
m ·

m − 1
m · . . . · m − k + 1

m =
k−1∏
i=0

m − i
m

I Dieses Produkt geht gegen 0.
I Etwa bei m = 365 ist die Wahrscheinlichkeit für k > 50 praktisch 0.
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Hashing I Grundlagen des Hashings

Kollisionen: Das Geburtstagsparadoxon (III)
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Hashing I Verkettung

Übersicht

1 Direkte Adressierung
Counting Sort

2 Grundlagen des Hashings

3 Verkettung

4 Hashfunktionen
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Hashing I Verkettung

Kollisionsauflösung durch Verkettung (I)
Idee
Alle Schlüssel, die zum gleichen Hash führen, werden in einer
verketteten Liste gespeichert. [Luhn 1953]
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Hashing I Verkettung

Kollisionsauflösung durch Verkettung (II)

Dictionary-Operationen bei Verkettung (informell)

I hcSearch(int k): Suche nach einem Element mit Schlüssel k in der
Liste T[h(k)].

I hcInsert(Element e): Setze Element e an den Anfang der Liste
T[h(e.key)].

I hcDelete(Element e): Lösche Element e aus der Liste T[h(e.key)].
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Hashing I Verkettung

Kollisionsauflösung durch Verkettung (III)

Worst-Case Komplexität
Angenommen, die Berechnung von h(k) ist recht effizient, etwa Θ(1).

Die Komplexität ist:
Suche: Proportional zur Länge der Liste T [h(k)].

Einfügen: Konstant (ohne Überprüfung, ob das Element schon
vorhanden ist).

Löschen: Proportional zur Länge der Liste T [h(k)].
I Im Worst-Case haben alle Schüssel den selben Hashwert.
I Suche und Löschen hat dann die selbe Worst-Case Komplexität wie

Listen: Θ(n).

I Im Average-Case ist Hashing mit Verkettung aber dennoch effizient!
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Hashing I Verkettung

Average-Case-Analyse von Verkettung (I)

Annahmen:
I Es gebe n mögliche Schlüssel und m Hashtabellenpositionen, n� m.

I Gleichverteiltes Hashing: Jeder Schlüssel wird mit gleicher
Wahrscheinlichkeit und unabhängig von den anderen Schlüssel auf
jedes der m Slots abgebildet.

I Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

O, Θ, Ω erweitert
Aus technischen Gründen erweitern wir die Definition von O, Θ und Ω auf
Funktionen mit zwei Parametern.

I Beispielsweise ist g ∈ O(f ) gdw.
∃c > 0, n0,m0 mit ∀n > n0,m > m0 : 0 6 g(n,m) 6 c · f (n,m)
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Hashing I Verkettung

Average-Case-Analyse von Verkettung (II)

I Der Füllgrad der Hashtabelle T ist α(n,m) = n
m .

⇒ Auch die durchschnittliche Länge der Liste T[h(k)] ist α!

I Wieviele Elemente aus T[h(k)] müssen nun im Schnitt untersucht
werden, um den Schlüssel k zu finden?

⇒ Unterscheide erfolgreiche von erfolgloser Suche (wie in Vorlesung 1).
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Hashing I Verkettung

Average-Case-Analyse von Verkettung (III)

Erfolglose Suche
Die erfolglose Suche benötigt Θ(1 + α) Zeit im Average-Case.

I Die erwartete Zeit, um Schlüssel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

I Die erwartete Länge dieser Liste ist α.
I Das Berechnen von h(k) benötige nur eine Zeiteinheit.
⇒ Insgesamt erhält man 1 + α Zeiteinheiten im Durchschnitt.
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Hashing I Verkettung

Average-Case-Analyse von Verkettung (IV)

Erfolgreiche Suche
Die erfolgreiche Suche benötigt im Average-Case auch Θ(1 + α).

I Sei ki der i-te eingefügte Schlüssel und A(ki ) die erwartete Zeit, um
ki zu finden:

A(ki ) = 1 +
Durchschnittliche Anzahl Schlüssel,
die in T[h(k_i)] erst nach ki eingefügt wurden

I Annahme von gleichverteiltem Hashing ergibt: A(ki ) = 1 +
n∑

j=i+1

1
m

I Durchschnitt über alle n Einfügungen in die Hashtabelle: 1n

n∑
i=1

A(ki )
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Hashing I Verkettung

Average-Case-Analyse von Verkettung (IV)
Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen
Suche ist:

1
n

n∑
i=1

1 +
n∑

j=i+1

1
m

 Summe aufteilen

=
1
n

n∑
i=1

1 +
1
nm

n∑
i=1

n∑
j=i+1

1 Vereinfachen

= 1 +
1
nm

n∑
i=1

(n − i) Summe 1 . . . n − 1

= 1 +
1
nm ·

n(n − 1)

2 Vereinfachen

= 1 +
n − 1
2m = 1 +

α

2 −
α

2n und damit in Θ(1 + α)
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Hashing I Verkettung

Komplexität der Dictionary-Operationen mit
Verkettung

I Vorausgesetzt die Anzahl der Einträge m ist (wenigstens) proportional
zu n,

I dann ist der Füllgrad α(n,m) = n
m ∈

O(m)
m = O(1).

I Damit benötigen alle Operationen im Durchschnitt O(1).

I Weil das auch Suche mit einschließt, können wir im Average-Case mit
O(n) sortieren.
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Hashing I Hashfunktionen

Übersicht

1 Direkte Adressierung
Counting Sort

2 Grundlagen des Hashings

3 Verkettung

4 Hashfunktionen
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Hashing I Hashfunktionen

Hashfunktionen

Hashfunktion
I Eine Hashfunktion bildet einen Schlüssel auf eine ganze Zahl

(d. h. einen Index) ab.

I Was macht eine „gute“ Hashfunktion aus?
I Die Hashfunktion h(k) sollte einfach zu berechnen sein,
I sie sollte surjektiv auf der Menge 0 . . .m−1 sein,
I sie sollte alle Indizes mit möglichst gleicher Häufigkeit verwenden, und
I ähnliche Schlüssel möglichst breit auf die Hashtabelle verteilen.

I Drei oft verwendete Techniken, eine „gute“ Hashfunktion zu erhalten:
I Die Divisionsmethode,
I die Multiplikationsmethode, und
I universelles Hashing.
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Hashing I Hashfunktionen

Divisionsmethode

Divisionsmethode
Hashfunktion: h(k) = k mod m

I Bei dieser Methode muss der Wert von m sorgfältig gewählt werden.
I Für m = 2p ist h(k) einfach die letzte p Bits.
I Besser ist es, h(k) abhängig von mehreren Bits zu machen.

I Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Beispiel

I Strings mit 2000 Zeichen als Schlüssel.
I Wir erlauben durchschnittlich 3 Sondierungen für die erfolglose Suche.
⇒ Wähle m ≈ 2000/3 −→ 701.
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Hashing I Hashfunktionen

Multiplikationsmethode (I)

Multiplikationsmethode
Hashfunktion: h(k) = bm·(k·c mod 1)c für 0 < c < 1

I k·c mod 1 ist der Nachkommateil von k·c, d. h. k·c − bk·cc.
I Knuth empfiehlt c ≈ (

√
5− 1)/2 ≈ 0,62.

⇒ Der Wert von m ist hier nicht kritisch.
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Hashing I Hashfunktionen

Multiplikationsmethode (II)

Hashfunktion: h(k) = bm·(k·c mod 1)c.

I Das übliche Vorgehen nimmt m = 2p und c = s
2w , wobei 0 < s < 2w .

Dann:
I Berechne zunächst k·s (= k·c·2w ).
I Teile durch 2w , verwende nur die Nachkommastellen.
I Multipliziere mit 2p und verwende nur den ganzzahligen Anteil.

∗
Schlüssel k

w Bits

c · 2w

h(k)
p Bits extrahieren
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Hashing I Hashfunktionen

Universelles Hashing (I)
Das größte Problem beim Hashing ist,

I dass es immer eine ungünstige Sequenz von Schlüsseln gibt, die auf
den selben Slot abgebildet werden.

Idee
Wähle zufällig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhängig von den verwendeten Schlüsseln.

Eine Menge Hashfunktionen ist universell, wenn
I der Anteil der Funktionen aus H, so dass k und k ′ kollidieren ist |H|m .
I d. h., die W’lichkeit einer Kollision von k und k ′ ist 1

|H| ·
|H|
m = 1

m .

Für universelles Hashing ist die erwartete Länge der Liste T[k]

1. Gleich α, wenn k nicht in T enthalten ist.
2. Gleich 1+α, wenn k in T enthalten ist.
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Hashing I Hashfunktionen

Universelles Hashing (II)

Beispiel
Definiere die Elemente der Klasse H von Hashfunktionen durch:

ha,b(k) = ((a · k + b) mod p) mod m
I p sei Primzahl mit p > m und p > größter Schlüssel.
I Die ganzen Zahlen a (1 6 a < p) und b (0 6 b < p) werden erst bei

der Ausführung gewählt.

Die Klasse der obigen Hashfunktionen ha,b ist universell.
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