Hashing |

Datenstrukturen und Algorithmen

Vorlesung 12: Hashing |

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://wuw-i2.informatik.rwth-aachen.de/i2/dsall2/

25. Mai 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/35

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

@ Direkte Adressierung
@ Counting Sort

Grundlagen des Hashings
(%) g g
© Verkettung

@ Hashfunktionen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:

» Die Daten sind dynamisch gespeichert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:

> Die Daten sind dynamisch gespeichert.

> Element dictSearch(Dict d, int k) gibt die in d zum Schliissel k
gespeicherten Informationen zuriick.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:
> Die Daten sind dynamisch gespeichert.

> Element dictSearch(Dict d, int k) gibt die in d zum Schliissel k
gespeicherten Informationen zuriick.

» void dictInsert(Dict d, Element e) speichert Element e unter
seinem Schlissel e.key in d.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:

>

>

Die Daten sind dynamisch gespeichert.

Element dictSearch(Dict d, int k) gibt die in d zum Schlissel k
gespeicherten Informationen zuriick.

void dictInsert(Dict d, Element e) speichert Element e unter
seinem Schlissel e.key in d.

void dictDelete(Dict d, Element e) ldscht das Element e aus d,
wobei e in d enthalten sein muss.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:
> Die Daten sind dynamisch gespeichert.
> Element dictSearch(Dict d, int k) gibt die in d zum Schliissel k
gespeicherten Informationen zuriick.
» void dictInsert(Dict d, Element e) speichert Element e unter
seinem Schlissel e.key in d.
> void dictDelete(Dict d, Element e) l6scht das Element e aus 4,
wobei e in d enthalten sein muss.

Beispiel
Symboltabelle eines Compilers, wobei die Schliissel Strings (etwa
Bezeichner) sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

» Heap: Einfiigen und Ldschen sind effizient. Aber was ist mit Suche?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

» Heap: Einfiigen und Ldschen sind effizient. Aber was ist mit Suche?

» Sortiertes Array/Liste: Einfiigen ist im Worst-Case linear.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

» Heap: Einfiigen und Ldschen sind effizient. Aber was ist mit Suche?
» Sortiertes Array/Liste: Einfiigen ist im Worst-Case linear.

» Rot-Schwarz-Baum: Alle Operationen sind im Worst-Case
logarithmisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

» Heap: Einfiigen und Ldschen sind effizient. Aber was ist mit Suche?
» Sortiertes Array/Liste: Einfiigen ist im Worst-Case linear.

» Rot-Schwarz-Baum: Alle Operationen sind im Worst-Case
logarithmisch.

LGsung

Unter realistischen Annahmen benétigt eine Hash-Tabelle im Durchschnitt
O(1) fir alle Operationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

Ubersicht

@ Direkte Adressierung
@ Counting Sort

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.

> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.

» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehorenden Informationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.

> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.

» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehorenden Informationen.

» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:

» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu
Schliissel k gehort.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehdrenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu

Schliissel k gehort.
» datSearch(T, int k): return T[k];

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Hashing | Direkte Adressierung

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehdrenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu

Schlissel k gehort.
» datSearch(T, int k): return T[k];
> datInsert(T, Element e): T[e.key] = e;

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehorenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu
Schliissel k gehort.
» datSearch(T, int k): return T[k];
> datInsert(T, Element e): T[e.key] = e;
> datDelete(T, Element e): T[e.key] null;

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehorenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu
Schliissel k gehort.
» datSearch(T, int k): return T[k];
> datInsert(T, Element e): T[e.key] = e;
> datDelete(T, Element e): T[e.key] null;

> Die Laufzeit jeder Operation ist im Worst-Case O(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35

Hashing | Direkte Adressierung

Direkte Adressierung (1)

Schliisselmenge Direkte-Adressierungs-Tabelle T
Schliissel

> i . 0

1

2

3

4

5

6

7

8

. 9

benutzte Schliissel n—=10

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/35

Duplikate in Linearzeit erkennen

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).

1 bool checkDuplicates(int E[n], int n, int k) {
2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int i = 0; i < n; i++) {

4 if (histogram[E[i]] > 0) {

5 return true; // Duplikat gefunden

6 } else {

7 histogram[E[i]l]++; // Zihle Haufigkeit

8 }

°o

10 return false; // keine Duplikate

1}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/35

Counting Sort — Idee

1. Berechne Haufigkeit

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/35

Counting Sort — Idee

1. Berechne Haufigkeit

2. Berechne ,,Position von x“ = , Anzahl der Elemente < x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/35

Counting Sort — Idee

1. Berechne Haufigkeit

2. Berechne ,,Position von x“ = , Anzahl der Elemente < x

3. Erzeuge Ausgabearray anhand dieser neuen Positionen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/35

Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/35

Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
1 int[n] countSort(int E[n], int n, int k) {

2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int 1 = 0; i < n; i++) {

a histogram[E[i]]++; // Zahle Haufigkeit

5}

6 for (int i = 1; i < k; i++) { // Berechne Position

7 histogram[i] = histogram[i] + histogram[i - 1];

8}

9o // Erzeuge Ausgabe

10 int result([n];

11 for (dnmt i =n - 1; i >=0; i--) { // stabil: rickwdrts
12 histogram[E[i]]--;

13 result [histogram[E[i]]] = E[i];

4 ¥
15 return result;
16 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/35

Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
1 int[n] countSort(int E[n], int n, int k) {

2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int 1 = 0; i < n; i++) {

a histogram[E[i]]++; // Zahle Haufigkeit

5}

6 for (int i = 1; i < k; i++) { // Berechne Position

7 histogram[i] = histogram[i] + histogram[i - 1];

8}

9o // Erzeuge Ausgabe

10 int result([n];

11 for (dnmt i =n - 1; i >=0; i--) { // stabil: rickwdrts
12 histogram[E[i]]--;

13 result [histogram[E[i]]] = E[i];

4 ¥
15 return result;
16 }

» Worst-Case Zeitkomplexitat: O(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/35

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Histogramm
01 2 3 45 6 7 8

Ausgabe [0]0[3]4]4[5]6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Histogramm
01 2 3 45 6 7 8

Posmonen|2|2|2|3|5|6|7|7|8‘
1 2 3 45 6 7

Ausgabe [0]0[3]4]4[5]6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Posmonen|2|2|2|3|5|6|7|7|8‘
1 2 3 45 6 7

Ausgabe [0]0[3]4]4[5]6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6

Posmonen|2|2|2|3|4|6|7|7|8‘
5 6 7 8

Ausgabe |0]0[3]4 [4]5]6]8]
01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 4 576 7

(@)}
~
~

Positionen | 1|2 3 |

1 3
Ausgabe -
0 1

2 5 6 7

NN
| o

(6]
[e)}
~

0'1
Ch
OO

8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 4 6 7

P05|t|0nen|1|2|2|3|3|6|7|7|8‘
3 A 5 6 7

Ausgabe m - -ﬂﬂ

01 2 3 4

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 5 6 7

Positionen [1]2]2]3|3|5|7|7]8]
01 2 3 4 %5 6 7 8

Ausgabe m - EE

01 2 3 45 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Direkte Adressierung

Counting Sort: Beispiel

Eingabe
0 1 2 4 5 6 7

P05|t|0nen|1|2|2|2|3|5|7|7|8‘
2 4 5 6 8

Ausgabe m EE

01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel

Eingabe

01 3 45 6 7

Pos.t.onen|o|2|2|2|3|5|7|7|8\
2 4 5 6 7

Ausgabe Eﬂ

01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel

Eingabe
0 IN2 3 4 5 6 7

Pos.t.onen|0|2|2|2|3|5|7|7|7\
1 2 3 45 6 7

Ausgabe
01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel

Eingabe
0Nl 2 3 45 6 7

Positionen |0]2]2]2/3|5|6|7]|7]
01 2 3 45

7 8
Ausgabe

01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Pos.t.onen|o|2|2|2|3|5|6|7|7\
1 2 3 45 6 7

Ausgabe
01 2 3 45 6 7

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Hashing | Direkte Adressierung

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Hashing | Direkte Adressierung

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Hashing | Direkte Adressierung

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.
» Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schliissel
benétigt man 2°20 = 2100 Arrayeintrage.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.
» Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schliissel
benétigt man 2°20 = 2100 Arrayeintrage.

» Konnen wir diesen riesigen Speicherbedarf vermeiden und effizient
bleiben?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.
» Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schliissel
benétigt man 2°20 = 2100 Arrayeintrage.
» Konnen wir diesen riesigen Speicherbedarf vermeiden und effizient
bleiben? Ja! — mit Hashing.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35

Ubersicht

@ Grundlagen des Hashings

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/35

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.
Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.
Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing | Grundlagen des Hashings

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing | Grundlagen des Hashings

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schliissels k ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schliissels k ist.
Das Auftreten von h(k) = h(k’) fir k # k' nennt man eine Kollision.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Grundlagen des Hashings

Hashing |
Hashing (1)
Sch/ussc\e/menge Hashfunktion
. | o0 Hashtabelle
v h(ki)
h(k2) = h(ks)
»
h(ks)
Kollision
h(ka)
benutzte Schliissel m—1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/35

Grundlagen des Hashings

Hashing |
Hashing (1)
Sch/ussc\e/menge Hashfunktion
. | o0 Hashtabelle
v h(ki)
h(k2) = h(ks)
»
h(ks)
Kollision
h(ka)
benutzte Schliissel m—1

» Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/35

Grundlagen des Hashings

Hashing |
Hashing (1)
Sch/uss?/menge Hashfunktion
. | o0 Hashtabelle
v h(ki)
h(k2) = h(ks)
»
h(ks)
Kollision
h(ka)
benutzte Schliissel m—1

» Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?
» Wie behandeln wir dennoch auftretende Kollisionen?

Datenstrukturen und Algorithmen 15/35

Joost-Pieter Katoen

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

» Die Wahrscheinlichkeit, dass dein Nachbar am selben Tag wie du
Geburtstag hat ist % ~ 0,027.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

» Die Wahrscheinlichkeit, dass dein Nachbar am selben Tag wie du
Geburtstag hat ist % ~ 0,027.

» Fragt man 23 Personen, wachst die Wahrscheinlichkeit auf

2B
23 ~0,063.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

» Die Wahrscheinlichkeit dass dein Nachbar am selben Tag wie du
Geburtstag hat ist 365 ~ 0,027.
» Fragt man 23 Personen, wachst die Wahrscheinlichkeit auf

23 ~0,063.
» Sind aber 23 Personen in einem Raum, dann haben zwei von ihnen

den selben Geburtstag mit Wahrscheinlichkeit

ETETE Ny
365 365 365 365 '

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35

Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/35

Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:

» Dieses Produkt geht gegen 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/35

Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:

» Dieses Produkt geht gegen 0.
> Etwa bei m = 365 ist die Wahrscheinlichkeit fir k > 50 praktisch 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/35

Kollisionen: Das Geburtstagsparadoxon (111)

Wahrscheinlichkeit
keiner Kollision

20 40 60 80 100
Anzahl Einfligungen n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/35

Ubersicht

© Verkettung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/35

Kollisionsauflosung durch Verkettung (1)

Alle Schliissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/35

Hashing | Verkettung

Kollisionsauflosung durch Verkettung (1)
dee |

Alle Schliissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]

U
(] 3>[ksl/
(k2]

m-—1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/35

Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/35

Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)

» hcSearch(int k): Suche nach einem Element mit Schliissel k in der
Liste T[h(k)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/35

Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)

» hcSearch(int k): Suche nach einem Element mit Schliissel k in der
Liste T[h(k)].

> hcInsert(Element e): Setze Element e an den Anfang der Liste
T[h(e.key)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/35

Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)

» hcSearch(int k): Suche nach einem Element mit Schliissel k in der
Liste T[h(k)].

> hcInsert(Element e): Setze Element e an den Anfang der Liste
T[h(e.key)].

> hcDelete(Element e): Losche Element e aus der Liste T[h(e.key)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Loschen: Proportional zur Lange der Liste T[h(k)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Loschen: Proportional zur Lange der Liste T[h(k)].

» Im Worst-Case haben alle Schiissel den selben Hashwert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Loschen: Proportional zur Lange der Liste T[h(k)].

» Im Worst-Case haben alle Schiissel den selben Hashwert.

» Suche und Léschen hat dann die selbe Worst-Case Komplexitat wie
Listen: ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Loschen: Proportional zur Lange der Liste T[h(k)].

» Im Worst-Case haben alle Schiissel den selben Hashwert.
» Suche und Léschen hat dann die selbe Worst-Case Komplexitat wie
Listen: ©(n).

> Im Average-Case ist Hashing mit Verkettung aber dennoch effizient!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35

Average-Case-Analyse von Verkettung (1)

Annahmen:
» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35

Average-Case-Analyse von Verkettung (1)

Annahmen:
» Es gebe n mogliche Schliissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35

Hashing | Verkettung

Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

0O, 6, Q erweitert

Aus technischen Griinden erweitern wir die Definition von O, © und Q auf
Funktionen mit zwei Parametern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35

Hashing | Verkettung

Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

Aus technischen Griinden erweitern wir die Definition von O, © und Q auf
Funktionen mit zwei Parametern.

> Beispielsweise ist g € O(f) gdw.
dc > 0, ng, mp mit ¥n > ng,m > mg : 0 < g(n, m) < c- f(n, m)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35

Average-Case-Analyse von Verkettung (11)

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/35

Average-Case-Analyse von Verkettung (11)

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .

m

= Auch die durchschnittliche Lange der Liste T[h(k)] ist !

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/35

Average-Case-Analyse von Verkettung (11)

n

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .
= Auch die durchschnittliche Lange der Liste T[h(k)] ist !

» Wieviele Elemente aus T[h(k)] missen nun im Schnitt untersucht
werden, um den Schlissel k zu finden?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/35

Average-Case-Analyse von Verkettung (11)

n

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .
= Auch die durchschnittliche Lange der Liste T[h(k)] ist !

» Wieviele Elemente aus T[h(k)] missen nun im Schnitt untersucht
werden, um den Schlissel k zu finden?

= Unterscheide erfolgreiche von erfolgloser Suche (wie in Vorlesung 1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/35

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

» Die erwartete Lange dieser Liste ist a.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

» Die erwartete Lange dieser Liste ist a.

» Das Berechnen von h(k) benétige nur eine Zeiteinheit.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

» Die erwartete Lange dieser Liste ist a.
» Das Berechnen von h(k) benétige nur eine Zeiteinheit.

= Insgesamt erhélt man 1 + « Zeiteinheiten im Durchschnitt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um
k; zu finden:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um
k; zu finden:

Durchschnittliche Anzahl Schlissel,

Alki) = die in T[h(k_1)1 erst nach k; eingefiigt wurden

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um

k; zu finden:
Alk) = Durchschnittliche Anzahl Schlussel,
Y die in T[h(k_1i)] erst nach k; eingefiigt wurden
» Annahme von gleichverteiltem Hashing ergibt: A(k;) =1+ Z —

j= l+1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um

k; zu finden:
Alk) = Durchschnittliche Anzahl Schlussel,
Y die in T[h(k_1i)] erst nach k; eingefiigt wurden
» Annahme von gleichverteiltem Hashing ergibt: A(k;) =1+ Z —

j= l+1

» Durchschnitt tGber alle n Einfiigungen in die Hashtabelle: — E A(ki)
n
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Average-Case-Analyse von Verkettung (1V)

Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen
Suche ist:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/35

Average-Case-Analyse von Verkettung (1V)

Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen
Suche ist:

il Z (1 + Z) | Summe aufteilen

Jj=i+1
= 72 —|-—Z Z 1 | Vereinfachen
i=1j=i+1

1 n
:l—l—%g(n—i) | Summel...n—1

1 —1
:1+7-M | Vereinfachen

nm 2

—1
:1+n2m :1+%—% und damit in (1 + «)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/35

Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

» Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/35

Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

» Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

» dann ist der Fiillgrad a(n, m) = = € % = 0(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/35

Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

» Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

» dann ist der Fiillgrad a(n, m) = = € % = 0(1).
» Damit benétigen alle Operationen im Durchschnitt O(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/35

Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

v

Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

- T — o(m) _
dann ist der Fiillgrad a(n, m) = £ € =2 = O(1).
Damit benétigen alle Operationen im Durchschnitt O(1).

v

v

v

Weil das auch Suche mit einschlieBt, kénnen wir im Average-Case mit
O(n) sortieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/35

Ubersicht

@ Hashfunktionen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?
» Die Hashfunktion h(k) sollte einfach zu berechnen sein,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

» Die Hashfunktion h(k) sollte einfach zu berechnen sein,
» sie sollte surjektiv auf der Menge 0... m—1 sein,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

» Die Hashfunktion h(k) sollte einfach zu berechnen sein,
» sie sollte surjektiv auf der Menge 0... m—1 sein,
> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashing | Hashfunktionen

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

sie sollte surjektiv auf der Menge 0... m—1 sein,

sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
dhnliche Schliissel moglichst breit auf die Hashtabelle verteilen.

v

vV vVvYyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

» Die Divisionsmethode,

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

v

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

» Die Divisionsmethode,
» die Multiplikationsmethode, und

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashing | Hashfunktionen

Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

» Die Divisionsmethode,
» die Multiplikationsmethode, und
> universelles Hashing.

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode
Hashfunktion: h(k) = k mod m
> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.

» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Beispiel

» Strings mit 2000 Zeichen als Schliissel.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Beispiel

» Strings mit 2000 Zeichen als Schliissel.

» Wir erlauben durchschnittlich 3 Sondierungen fiir die erfolglose Suche.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Beispiel

» Strings mit 2000 Zeichen als Schliissel.
» Wir erlauben durchschnittlich 3 Sondierungen fiir die erfolglose Suche.
= Wahle m ~ 2000/3 — 701.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/35

Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c]|.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/35

Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c].
» Knuth empfiehlt ¢ ~ (v/5 — 1)/2 ~ 0,62.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/35

Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c].
» Knuth empfiehlt ¢ ~ (v/5 — 1)/2 ~ 0,62.
= Der Wert von m ist hier nicht kritisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
Dann:
» Berechne zunichst k-s (= k-c-2%).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.
» Multipliziere mit 2P und verwende nur den ganzzahligen Anteil.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Hashing | Hashfunktionen

Multiplikationsmethode (I1)
-

Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,

Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.
» Multipliziere mit 2P und verwende nur den ganzzahligen Anteil.

w Bits

A
A

*
IIV

p Bits extrahieren

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
» der Anteil der Funktionen aus H, so dass k und k’ kollidieren ist |—;’|

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
» der Anteil der Funktionen aus H, so dass k und k’ kollidieren ist |—;’|

» d. h., die W'lichkeit einer Kollision von k und k’ ist ‘—,%,' . ‘—r’:' = %

|
Firr universelles Hashing ist die erwartete Lange der Liste T [k]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
» der Anteil der Funktionen aus H, so dass k und k’ kollidieren ist |—;’|

» d. h., die W'lichkeit einer Kollision von k und k’ ist ‘—,%,' . ‘—r’:' = %

|
Firr universelles Hashing ist die erwartete Lange der Liste T [k]

1. Gleich «, wenn k nicht in T enthalten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
» der Anteil der Funktionen aus H, so dass k und k’ kollidieren ist |—;’|

» d. h., die W'lichkeit einer Kollision von k und k’ ist ‘—,%,' . ‘—r’:' = %

|
Firr universelles Hashing ist die erwartete Lange der Liste T [k]

1. Gleich «, wenn k nicht in T enthalten ist.
2. Gleich 1+«, wenn k in T enthalten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Universelles Hashing (I1)

Definiere die Elemente der Klasse H von Hashfunktionen durch:
hap(k) = ((a- k+ b) mod p) mod m
> p sei Primzahl mit p > m und p > gréBter Schliissel.

» Die ganzen Zahlen a (1 < a< p) und b (0 < b < p) werden erst bei
der Ausfiihrung gewahlt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/35

Universelles Hashing (I1)

Definiere die Elemente der Klasse H von Hashfunktionen durch:
hap(k) = ((a- k+ b) mod p) mod m
> p sei Primzahl mit p > m und p > gréBter Schliissel.

» Die ganzen Zahlen a (1 < a< p) und b (0 < b < p) werden erst bei
der Ausfiihrung gewahlt.

|
Die Klasse der obigen Hashfunktionen h, p, ist universell.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/35

	Direkte Adressierung
	Counting Sort

	Grundlagen des Hashings
	Verkettung
	Hashfunktionen

