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Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen.
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Die Daten sind dynamisch gespeichert.

Element dictSearch(Dict d, int k) gibt die in d zum Schlissel k
gespeicherten Informationen zuriick.
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Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden kénnen. Weiterhin:
> Die Daten sind dynamisch gespeichert.
> Element dictSearch(Dict d, int k) gibt die in d zum Schliissel k
gespeicherten Informationen zuriick.
» void dictInsert(Dict d, Element e) speichert Element e unter
seinem Schlissel e.key in d.
> void dictDelete(Dict d, Element e) l6scht das Element e aus 4,
wobei e in d enthalten sein muss.

Beispiel
Symboltabelle eines Compilers, wobei die Schliissel Strings (etwa
Bezeichner) sind.
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Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?
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Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

» Heap: Einfiigen und Ldschen sind effizient. Aber was ist mit Suche?
» Sortiertes Array/Liste: Einfiigen ist im Worst-Case linear.

» Rot-Schwarz-Baum: Alle Operationen sind im Worst-Case
logarithmisch.

LGsung

Unter realistischen Annahmen benétigt eine Hash-Tabelle im Durchschnitt
O(1) fir alle Operationen.
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Ubersicht

@ Direkte Adressierung
@ Counting Sort
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Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
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Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehdrenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu

Schliissel k gehort.
» datSearch(T, int k): return T[k];
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Direkte Adressierung (1)

Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehdrenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu

Schlissel k gehort.
» datSearch(T, int k): return T[k];
> datInsert(T, Element e): T[e.key] = e;
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Direkte Adressierung

> Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir
jeden moglichen Schliissel eine(1) Position gibt.
> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehorenden Informationen.
» Mit Schlisselmenge U = {0,1,...,n — 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu
Schliissel k gehort.
» datSearch(T, int k): return T[k];
> datInsert(T, Element e): T[e.key] = e;
> datDelete(T, Element e): T[e.key] null;

> Die Laufzeit jeder Operation ist im Worst-Case O(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35



Hashing | Direkte Adressierung

Direkte Adressierung (1)

Schliisselmenge Direkte-Adressierungs-Tabelle T
Schliissel

> i . 0

1

2

3

4

5

6

7

8

. 9

benutzte Schliissel n—=10
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Duplikate in Linearzeit erkennen

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).

1 bool checkDuplicates(int E[n], int n, int k) {
2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int i = 0; i < n; i++) {

4 if (histogram[E[i]] > 0) {

5 return true; // Duplikat gefunden

6 } else {

7 histogram[E[i]l]++; // Zihle Haufigkeit

8 }

°o

10 return false; // keine Duplikate

1}
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Counting Sort — Idee

1. Berechne Haufigkeit
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Counting Sort — Idee

1. Berechne Haufigkeit

2. Berechne ,,Position von x“ = , Anzahl der Elemente < x

3. Erzeuge Ausgabearray anhand dieser neuen Positionen
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Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
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Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
1 int[n] countSort(int E[n], int n, int k) {

2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int 1 = 0; i < n; i++) {

a histogram[E[i]]++; // Zahle Haufigkeit

5}

6 for (int i = 1; i < k; i++) { // Berechne Position

7 histogram[i] = histogram[i] + histogram[i - 1];

8}

9o // Erzeuge Ausgabe

10 int result([n];

11 for (dnmt i =n - 1; i >=0; i--) { // stabil: rickwdrts
12 histogram[E[i]]--;

13 result [histogram[E[i]]] = E[i];

4 ¥
15 return result;
16 }
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Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
1 int[n] countSort(int E[n], int n, int k) {

2 int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"
3 for (int 1 = 0; i < n; i++) {

a histogram[E[i]]++; // Zahle Haufigkeit

5}

6 for (int i = 1; i < k; i++) { // Berechne Position

7 histogram[i] = histogram[i] + histogram[i - 1];

8}

9o // Erzeuge Ausgabe

10 int result([n];

11 for (dnmt i =n - 1; i >=0; i--) { // stabil: rickwdrts
12 histogram[E[i]]--;

13 result [histogram[E[i]]] = E[i];

4 ¥
15 return result;
16 }

» Worst-Case Zeitkomplexitat: O(n)
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Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7
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Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Histogramm
01 2 3 45 6 7 8

Ausgabe [0]0[3]4]4[5]6]8]
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Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Histogramm
01 2 3 45 6 7 8

Posmonen|2|2|2|3|5|6|7|7|8‘
1 2 3 45 6 7

Ausgabe [0]0[3]4]4[5]6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35



Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6 7

Posmonen|2|2|2|3|5|6|7|7|8‘
1 2 3 45 6 7

Ausgabe [0]0[3]4]4[5]6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35



Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 45 6

Posmonen|2|2|2|3|4|6|7|7|8‘
5 6 7 8

Ausgabe |0]0[3]4 [4]5]6]8]
01 2 3 45 6 7
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Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 4 576 7

(@)}
~
~

Positionen | 1|2 3 |

1 3
Ausgabe -
0 1

2 5 6 7

NN
| o

(6]
[e)}
~

0'1
Ch
OO

8]
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Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 4 6 7

P05|t|0nen|1|2|2|3|3|6|7|7|8‘
3 A 5 6 7

Ausgabe m - -ﬂﬂ

01 2 3 4
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Direkte Adressierung

Counting Sort: Beispiel

Eingabe
01 2 3 5 6 7

Positionen [1]2]2]3|3|5|7|7]8]
01 2 3 4 %5 6 7 8

Ausgabe m - EE

01 2 3 45 7
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Direkte Adressierung

Counting Sort: Beispiel

Eingabe
0 1 2 4 5 6 7

P05|t|0nen|1|2|2|2|3|5|7|7|8‘
2 4 5 6 8

Ausgabe m EE

01 2 3 45 6 7
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Counting Sort: Beispiel

Eingabe

01 3 45 6 7

Pos.t.onen|o|2|2|2|3|5|7|7|8\
2 4 5 6 7

Ausgabe Eﬂ

01 2 3 45 6 7
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Counting Sort: Beispiel

Eingabe
0Nl 2 3 45 6 7

Positionen |0]2]2]2/3|5|6|7]|7]
01 2 3 45

7 8
Ausgabe
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Hashing | Direkte Adressierung

Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?
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Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
untere Schranke ©(n - log n) bewiesen hatten?

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

> denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
Léschen in ©(1)) ausnutzen.

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.
» Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schliissel
benétigt man 2°20 = 2100 Arrayeintrage.
» Konnen wir diesen riesigen Speicherbedarf vermeiden und effizient
bleiben? Ja! — mit Hashing.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35



Ubersicht

@ Grundlagen des Hashings
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Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.
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Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.
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Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U].
=- Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schliissels k ist.
Das Auftreten von h(k) = h(k’) fir k # k' nennt man eine Kollision.
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Grundlagen des Hashings

Hashing |
Hashing (1)
Sch/ussc\e/menge Hashfunktion
. | o0 Hashtabelle
v h(ki)
h(k2) = h(ks)
»
h(ks)
Kollision
h(ka)
benutzte Schliissel m—1
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» Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?
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Grundlagen des Hashings

Hashing |
Hashing (1)
Sch/uss?/menge Hashfunktion
. | o0 Hashtabelle
v h(ki)
h(k2) = h(ks)
»
h(ks)
Kollision
h(ka)
benutzte Schliissel m—1

» Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?
» Wie behandeln wir dennoch auftretende Kollisionen?
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Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!
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Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

» Die Wahrscheinlichkeit dass dein Nachbar am selben Tag wie du
Geburtstag hat ist 365 ~ 0,027.
» Fragt man 23 Personen, wachst die Wahrscheinlichkeit auf

23 ~0,063.
» Sind aber 23 Personen in einem Raum, dann haben zwei von ihnen

den selben Geburtstag mit Wahrscheinlichkeit

ETETE Ny
365 365 365 365 '
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Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:
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Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:

» Dieses Produkt geht gegen 0.
> Etwa bei m = 365 ist die Wahrscheinlichkeit fir k > 50 praktisch 0.
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Kollisionen: Das Geburtstagsparadoxon (111)

Wahrscheinlichkeit
keiner Kollision

20 40 60 80 100
Anzahl Einfligungen n
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Ubersicht

© Verkettung
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Kollisionsauflosung durch Verkettung (1)

Alle Schliissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]
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Hashing | Verkettung

Kollisionsauflosung durch Verkettung (1)
dee |

Alle Schliissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]

U
(] 3>[ksl/
(k2]

m-—1
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Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)
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Kollisionsauflosung durch Verkettung (1)

Dictionary-Operationen bei Verkettung (informell)

» hcSearch(int k): Suche nach einem Element mit Schliissel k in der
Liste T[h(k)].

> hcInsert(Element e): Setze Element e an den Anfang der Liste
T[h(e.key)].

> hcDelete(Element e): Losche Element e aus der Liste T[h(e.key)].
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Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
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Kollisionsauflosung durch Verkettung (I11)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

Einfiigen: Konstant (ohne Uberpriifung, ob das Element schon
vorhanden ist).

Loschen: Proportional zur Lange der Liste T[h(k)].

» Im Worst-Case haben alle Schiissel den selben Hashwert.
» Suche und Léschen hat dann die selbe Worst-Case Komplexitat wie
Listen: ©(n).

> Im Average-Case ist Hashing mit Verkettung aber dennoch effizient!
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Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.
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Hashing | Verkettung

Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

0O, 6, Q erweitert

Aus technischen Griinden erweitern wir die Definition von O, © und Q auf
Funktionen mit zwei Parametern.
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Hashing | Verkettung

Average-Case-Analyse von Verkettung (1)

Annahmen:

» Es gebe n mogliche Schlissel und m Hashtabellenpositionen, n > m.

> Gleichverteiltes Hashing: Jeder Schliissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schlissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

Aus technischen Griinden erweitern wir die Definition von O, © und Q auf
Funktionen mit zwei Parametern.

> Beispielsweise ist g € O(f) gdw.
dc > 0, ng, mp mit ¥n > ng,m > mg : 0 < g(n, m) < c- f(n, m)
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Average-Case-Analyse von Verkettung (11)

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .
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Average-Case-Analyse von Verkettung (11)
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m

= Auch die durchschnittliche Lange der Liste T[h(k)] ist !
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Average-Case-Analyse von Verkettung (11)

n

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .
= Auch die durchschnittliche Lange der Liste T[h(k)] ist !

» Wieviele Elemente aus T[h(k)] missen nun im Schnitt untersucht
werden, um den Schlissel k zu finden?
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Average-Case-Analyse von Verkettung (11)

n

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .
= Auch die durchschnittliche Lange der Liste T[h(k)] ist !

» Wieviele Elemente aus T[h(k)] missen nun im Schnitt untersucht
werden, um den Schlissel k zu finden?

= Unterscheide erfolgreiche von erfolgloser Suche (wie in Vorlesung 1).
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Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.
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Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

» Die erwartete Lange dieser Liste ist a.
» Das Berechnen von h(k) benétige nur eine Zeiteinheit.

= Insgesamt erhélt man 1 + « Zeiteinheiten im Durchschnitt.
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Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).
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Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um
k; zu finden:

Durchschnittliche Anzahl Schlissel,

Alki) = die in T[h(k_1)1 erst nach k; eingefiigt wurden
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Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um

k; zu finden:
Alk) = Durchschnittliche Anzahl Schlussel,
Y die in T[h(k_1i)] erst nach k; eingefiigt wurden
» Annahme von gleichverteiltem Hashing ergibt: A(k;) =1+ Z —

j= l+1
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Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).

» Sei k; der i-te eingefiigte Schlussel und A(k;) die erwartete Zeit, um

k; zu finden:
Alk) = Durchschnittliche Anzahl Schlussel,
Y die in T[h(k_1i)] erst nach k; eingefiigt wurden
» Annahme von gleichverteiltem Hashing ergibt: A(k;) =1+ Z —

j= l+1

» Durchschnitt tGber alle n Einfiigungen in die Hashtabelle: — E A(ki)
n
i=1
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Average-Case-Analyse von Verkettung (1V)

Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen
Suche ist:
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Average-Case-Analyse von Verkettung (1V)

Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen
Suche ist:

il Z (1 + Z ) | Summe aufteilen

Jj=i+1
= 72 —|-—Z Z 1 | Vereinfachen
i=1j=i+1

1 n
:l—l—%g(n—i) | Summel...n—1

1 —1
:1+7-M | Vereinfachen

nm 2

—1
:1+n2m :1+%—% und damit in (1 + «)
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Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

» Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,
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Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

» Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

» dann ist der Fiillgrad a(n, m) = = € % = 0(1).
» Damit benétigen alle Operationen im Durchschnitt O(1).
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Hashing | Verkettung

Komplexitat der Dictionary-Operationen mit
Verkettung

v

Vorausgesetzt die Anzahl der Eintrage m ist (wenigstens) proportional
zu n,

- T — o(m) _
dann ist der Fiillgrad a(n, m) = £ € =2 = O(1).
Damit benétigen alle Operationen im Durchschnitt O(1).

v

v

v

Weil das auch Suche mit einschlieBt, kénnen wir im Average-Case mit
O(n) sortieren.
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Ubersicht

@ Hashfunktionen
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Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.
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Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

sie sollte surjektiv auf der Menge 0... m—1 sein,

sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
dhnliche Schliissel moglichst breit auf die Hashtabelle verteilen.

v

vV vVvYyy
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Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

v

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

» Die Divisionsmethode,
» die Multiplikationsmethode, und
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» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?

Die Hashfunktion h(k) sollte einfach zu berechnen sein,

» sie sollte surjektiv auf der Menge 0... m—1 sein,

> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» 3ahnliche Schlissel moéglichst breit auf die Hashtabelle verteilen.

» Drei oft verwendete Techniken, eine ,,gute" Hashfunktion zu erhalten:

» Die Divisionsmethode,
» die Multiplikationsmethode, und
> universelles Hashing.

v
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» Fir m = 2P ist h(k) einfach die letzte p Bits.
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» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.
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Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35



Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.
» Fir m = 2P ist h(k) einfach die letzte p Bits.
» Besser ist es, h(k) abhangig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

Beispiel

» Strings mit 2000 Zeichen als Schliissel.
» Wir erlauben durchschnittlich 3 Sondierungen fiir die erfolglose Suche.
= Wahle m ~ 2000/3 — 701.
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Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c]|.
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Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c].
» Knuth empfiehlt ¢ ~ (v/5 — 1)/2 ~ 0,62.
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Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m-(k-c mod 1)| fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c].
» Knuth empfiehlt ¢ ~ (v/5 — 1)/2 ~ 0,62.
= Der Wert von m ist hier nicht kritisch.
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Multiplikationsmethode (I1)

|
Hashfunktion: h(k) = |m-(k-c mod 1)].
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Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
Dann:
» Berechne zunichst k-s (= k-c-2%).
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» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
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» Teile durch 2%, verwende nur die Nachkommastellen.
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|
Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,
Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.
» Multipliziere mit 2P und verwende nur den ganzzahligen Anteil.
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Multiplikationsmethode (I1)
-

Hashfunktion: h(k) = |m-(k-c mod 1)].

» Das (ibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2%,

Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.
» Multipliziere mit 2P und verwende nur den ganzzahligen Anteil.

w Bits

A
A

*
IIV

p Bits extrahieren
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Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.
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Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

» dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhangig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
» der Anteil der Funktionen aus H, so dass k und k’ kollidieren ist |—;’|

» d. h., die W'lichkeit einer Kollision von k und k’ ist ‘—,%,' . ‘—r’:' = %

|
Firr universelles Hashing ist die erwartete Lange der Liste T [k]

1. Gleich «, wenn k nicht in T enthalten ist.
2. Gleich 1+«, wenn k in T enthalten ist.
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Universelles Hashing (I1)

Definiere die Elemente der Klasse H von Hashfunktionen durch:
hap(k) = ((a- k+ b) mod p) mod m
> p sei Primzahl mit p > m und p > gréBter Schliissel.

» Die ganzen Zahlen a (1 < a< p) und b (0 < b < p) werden erst bei
der Ausfiihrung gewahlt.
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Universelles Hashing (I1)

Definiere die Elemente der Klasse H von Hashfunktionen durch:
hap(k) = ((a- k+ b) mod p) mod m
> p sei Primzahl mit p > m und p > gréBter Schliissel.

» Die ganzen Zahlen a (1 < a< p) und b (0 < b < p) werden erst bei
der Ausfiihrung gewahlt.

|
Die Klasse der obigen Hashfunktionen h, p, ist universell.
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