Datenstrukturen und Algorithmen

Hashing |

Vorlesung 12: Hashing |

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

25. Mai 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/35

Einfiihrung (1)

Dictionary (Worterbuch)

Das Dictionary (auch: Map, assoziatives Array) speichert Informationen,
die jederzeit anhand ihres Schliissels abgerufen werden konnen. Weiterhin:

> Die Daten sind dynamisch gespeichert.

> Element dictSearch(Dict d, int k) gibt die in d zum Schliissel k
gespeicherten Informationen zuriick.

> void dictInsert(Dict d, Element e) speichert Element e unter
seinem Schliissel e.key in d.

> void dictDelete(Dict d, Element e) ldscht das Element e aus d,
wobei e in d enthalten sein muss.

Symboltabelle eines Compilers, wobei die Schlissel Strings (etwa
Bezeichner) sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/35

Hashing |

Ubersicht

@ Direkte Adressierung
@ Counting Sort

@ Grundlagen des Hashings
© Verkettung

@ Hashfunktionen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/35

Einfiihrung (1)

Welche Datenstrukturen sind geeignet, um ein Dictionary zu
implementieren?

> Heap: Einfligen und Ldschen sind effizient. Aber was ist mit Suche?
» Sortiertes Array/Liste: Einfligen ist im Worst-Case linear.

» Rot-Schwarz-Baum: Alle Operationen sind im Worst-Case
logarithmisch.

Unter realistischen Annahmen benétigt eine Hash-Tabelle im Durchschnitt
O(1) fir alle Operationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/35

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Hashing | Direkte Adressierung Hashing | Direkte Adressierung

Ubersicht Direkte Adressierung (I)
Direkte Adressierung
@ Dirckte Adressierung > Alloziere ein Array (die Direkte-Adressierungs-Tabelle), so dass es fiir

@ Counting Sort jeden moglichen Schlissel eine(1) Position gibt.

> Jedes Array-Element enthalt einen Pointer auf die gespeicherte
Information.
» Der Einfachheit halber vernachlassigen wir in der Vorlesung die zu den
Schliisseln gehérenden Informationen.
» Mit Schlisselmenge U ={0,1,...,n— 1} ergibt sich:
» Eine Direkte-Adressierungs-Tabelle T[0..n-1], wobei T[k] zu
Schliissel k gehort.
» datSearch(T, int k): return TI[k];
» datInsert(T, Element e): T[e.key]
» datDelete(T, Element e): T[e.key]

e;
null;

» Die Laufzeit jeder Operation ist im Worst-Case O(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/35
Direkte Adressierung (11) Duplikate in Linearzeit erkennen
Schliisselmenge Soh Dllrekte—Adress\lerungs—Tabelle T Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).
A chlusse .
N * \ 0 1 bool checkDuplicates(int E[n], int n, int k) {
p
1 2 int histograml[k] = 0; // "Direkte-Adressierungs—Tabelle"
g g
2 3 for (dnt 1 = 0; i < n; i++) {
3 4 if (histogram[E[i]] > 0) {
4 5 return true; // Duplikat gefunden
5 6 } else {
7 histogram[E[i]l]l++; // Zihle Haufigkeit
6 g g
8 }
7 9
8 10 return false; // keine Duplikate
P
/ 0 11}

benutzte Schliissel n—10

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/35

Counting Sort — Idee Counting Sort

Alle Elemente seien ganze Zahlen zwischen 0 und k, wobei k € ©(n).

1 int[n] countSort(int E[n], int n, int k) {

int histogram([k] = 0; // "Direkte-Adressierungs-Tabelle"

for (int i = 0; i < n; i++) {
histogram[E[i]l]l++; // Zihle Hiufigkeit

}

for (int i = 1; i < k; i++) { // Berechne Position
histogram[i] = histogram[i] + histogram[i - 1];

}

// Erzeuge Ausgabe

int result[n];

11 for (int i =n - 1; i >= 0; i--) { // stabil: mickwdrts

1. Berechne Haufigkeit

2. Berechne ,Position von x" = , Anzahl der Elemente < x'

© 0 N o OB~ W N

3. Erzeuge Ausgabearray anhand dieser neuen Positionen

=
o

12 histogram[E[i]l]--;

13 result [histogram[E[i]]] = E[i];
4}

15 return result;

16

» Worst-Case Zeitkomplexitat: ©(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen S
Counting Sort: Beispiel Counting Sort: Beispiel

eingabe [SISIOISISTION Eingabe

01 2 3 4 5 6 7 01 2 3 4 5 6 7
pistograr Histogramm
01 2 3 45 6 7 8 01 2 3 4 5 6 7 8

Positionen |2[2]2[3[5[6[7]7]8]
01 2 3 45 6 7 8

Ausgabe [0]0]3]4[4]5[6]8]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35

Counting Sort: Beispiel Counting Sort (1)

Wir sortieren also mit Worst-Case Komplexitat ©(n), obwohl wir als
Eingabe untere Schranke ©(n - log n) bewiesen hatten?

01 2 3 4 6 7

Dieser Algorithmus ist nicht mit Quicksort, Heapsort, usw. vergleichbar

» denn er basiert nicht auf Vergleich von Elementen, sondern auf
Haufigkeiten.

Positionen [1]2]2[3[3|6]7]7]8]

» Das funktioniert, indem wir Direkte-Adressierung (Einfiigen, Suchen,
01 2 3 4 5 6 7 8

Léschen in ©(1)) ausnutzen.

Ausgabe

Hauptproblem: UbermaBiger Speicherbedarf fiir das Array.

01234567 » Zum Beispiel bei Strings mit 20 Zeichen (5 bit/Zeichen) als Schliissel
benétigt man 2520 = 2190 Arrayeintrage.

» Konnen wir diesen riesigen Speicherbedarf vermeiden und effizient
bleiben? Ja! — mit Hashing.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/35
Hashing | Grundlagen des Hashings Hashing | Grundlagen des Hashings
Ubersicht Hashing (1)

Praktisch wird nur ein kleiner Teil der Schliissel verwendet, d. h. |K| < |U|.
= Bei Direkter-Adressierung ist der groBte Teil von T verschwendet.
Das Ziel von Hashing ist:

> Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

© Grundlagen des Hashings > DS-A-SS.ZWGI Schliissel aL.Jf fﬂle se!be Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.
Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlussel auf einen Index der Hashtabelle T
ab:
h:U—{0,1,...,m—1} fir TabellengréBe m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schliissels k ist.
Das Auftreten von h(k) = h(k’) fur k # k' nennt man eine Kollision.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/35

Hashing (1)
Schliisselmenge

\
\

Hashfunktion
! 0 Hashtabelle
e
h(k1)
h(k2) = h(ks)
»
h(ks)

\
\

Kollision

h(ks)
benutzte Schliissel m—1

|
I
|
v

» Wie finden wir Hashfunktionen, die einfach auszurechnen sind und
Kollisionen minimieren?
» Wie behandeln wir dennoch auftretende Kollisionen?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/35

Hashing | Grundlagen des Hashings

Kollisionen: Das Geburtstagsparadoxon (1)

Auf Hashing angewendet bedeutet das:

» Die Wahrscheinlichkeit keiner Kollision nach k Einfligevorgangen in
einer m-elementigen Tabelle ist:
m—k+1 kﬁl m—i

m m m - m
i=0

m m-—1

> Dieses Produkt geht gegen 0.
> Etwa bei m = 365 ist die Wahrscheinlichkeit fiir k > 50 praktisch 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/35

Kollisionen: Das Geburtstagsparadoxon (1)

Unsere Hashfunktion mag noch so gut sein,
wir sollten auf Kollisionen vorbereitet sein!

Das liegt am

Geburtstagsparadoxon

> Die Wahrscheinlichkeit, dass dein Nachbar am selben Tag wie du

Geburtstag hat ist % ~ 0,027.

» Fragt man 23 Personen, wachst die Wahrscheinlichkeit auf

% ~ 0,063.

» Sind aber 23 Personen in einem Raum, dann haben zwei von ihnen
den selben Geburtstag mit Wahrscheinlichkeit

_ <365 364 363 343> ~05
365 365 365 365/
Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/35
Hashing | Grundlagen des Hashings

Kollisionen: Das Geburtstagsparadoxon (111)

1.0
0.8
0.6

0.4

keiner Kollision

ﬁ

Wahrscheinlichkeit

0.2

20 40 60 80 100
Anzahl Einfigungen n

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/35

Hashing | Verkettung Hashing | Verkettung

Ubersicht Kollisionsauflésung durch Verkettung (1)
dee

Alle Schlissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]

U

© Verkettung

m—1
Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/35
Kollisionsauflosung durch Verkettung (1) Kollisionsauflosung durch Verkettung (111)

Worst-Case Komplexitat

Angenommen, die Berechnung von h(k) ist recht effizient, etwa ©(1).
Dictionary-Operationen bei Verkettung (informell) Die Komplexitat ist:

Suche: Proportional zur Lange der Liste T[h(k)].

» hcSearch(int k): Suche nach einem Element mit Schlissel k in der o . .
Liste T[h(K)]. Einfigen: Konstant (ohne Uberpriifung, ob das Element schon

vorhanden ist).

> hcInsert(Element e): Setze Element e an den Anfang der Liste i _ i _
T[h(e.key)]. Loschen: Proportional zur Lange der Liste T[h(k)].

> hcDelete(Element e): Losche Element e aus der Liste T[h(e.key)]. > Im Worst-Case haben alle Schiissel den selben Hashwert.

» Suche und Loschen hat dann die selbe Worst-Case Komplexitat wie
Listen: ©(n).

> Im Average-Case ist Hashing mit Verkettung aber dennoch effizient!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/35

Hashing | Verkettung

Average-Case-Analyse von Verkettung (1)

Annahmen:
> Es gebe n mogliche Schliissel und m Hashtabellenpositionen, n > m.

» Gleichverteiltes Hashing: Jeder Schlissel wird mit gleicher
Wabhrscheinlichkeit und unabhangig von den anderen Schliissel auf
jedes der m Slots abgebildet.

» Der Hashwert h(k) kann in konstanter Zeit berechnet werden.

0, 6, Q erweitert

Aus technischen Griinden erweitern wir die Definition von O, © und Q auf
Funktionen mit zwei Parametern.

> Beispielsweise ist g € O(f) gdw.
Je > 0, ng, mg mit Vn = ng,m = mg : 0 < g(n,m) < c-f(n, m)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/35
Hashing | Verkettung

Average-Case-Analyse von Verkettung (l11)

Erfolglose Suche

Die erfolglose Suche benétigt ©(1 + «) Zeit im Average-Case.

» Die erwartete Zeit, um Schliissel k zu finden ist gerade die Zeit, um
die Liste T[h(k)] zu durchsuchen.

» Die erwartete Lange dieser Liste ist a.
» Das Berechnen von h(k) benétige nur eine Zeiteinheit.

= Insgesamt erhalt man 1 + « Zeiteinheiten im Durchschnitt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/35

Average-Case-Analyse von Verkettung (I1)

n

» Der Fiillgrad der Hashtabelle T ist a(n, m) = .

m

= Auch die durchschnittliche Lange der Liste T[h(k)] ist a!

» Wieviele Elemente aus T[h(k)] mussen nun im Schnitt untersucht
werden, um den Schlissel k zu finden?

= Unterscheide erfolgreiche von erfolgloser Suche (wie in Vorlesung 1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/35
Hashing | Verkettung

Average-Case-Analyse von Verkettung (1V)

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch ©(1 + «).

» Sei k; der i-te eingefiigte Schliissel und A(k;) die erwartete Zeit, um

k; zu finden:
Ak) =1+ D.ur.chschnlttl!che Anzahl Schlu§sel,)
die in T[h(k_1i)] erst nach k; eingefiigt wurden
1
» Annahme von gleichverteiltem Hashing ergibt: A(k;) =1+ Z -

j=it1

1 n
» Durchschnitt tber alle n Einfiigungen in die Hashtabelle: - ZA(k,-)
i=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/35

Hashing | Verkettung

Average-Case-Analyse von Verkettung (1V) Komplexitat der Dictionary-Operationen mit
Die erwartete Anzahl an untersuchten Elementen bei einer erfolgreichen VerkEttung
Suche ist:
18 1
72 1+ Z — | Summe aufteilen
i j=ir1 M » Vorausgesetzt die Anzahl der Eintrdge m ist (wenigstens) proportional
1 n 1 n n ZUu n,
~ z; 1+ nm 2} .z;rl 1 | Vereinfachen » dann ist der Fiillgrad a(n, m) = 1 € % = 0(1).
i= i=1j=i
1o » Damit benétigen alle Operationen im Durchschnitt O(1).
:1+—Z(n—i) | Summel...n—1 . o) . o .
nm ‘— » Weil das auch Suche mit einschlieBt, kdnnen wir im Average-Case mit
1 n(n—1) O(n) sortieren.
=1 c— | Vereinfachen
nm 2
n—1 a o«
=1 =14+—-—-— nd damit in ©(1 + «
T om T T2 m ! itin (1 +a)
Ubersicht Hashfunktionen

Hashfunktion

» Eine Hashfunktion bildet einen Schliissel auf eine ganze Zahl
(d. h. einen Index) ab.

» Was macht eine ,,gute” Hashfunktion aus?
Die Hashfunktion h(k) sollte einfach zu berechnen sein,
» sie sollte surjektiv auf der Menge 0... m—1 sein,
> sie sollte alle Indizes mit moglichst gleicher Haufigkeit verwenden, und
» ahnliche Schlissel moglichst breit auf die Hashtabelle verteilen.
» Drei oft verwendete Techniken, eine , gute" Hashfunktion zu erhalten:
» Die Divisionsmethode,
» die Multiplikationsmethode, und
» universelles Hashing.

v

@ Hashfunktionen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/35 Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/35

Hashing | Hashfunktionen

Divisionsmethode

Divisionsmethode

Hashfunktion: h(k) = k mod m

> Bei dieser Methode muss der Wert von m sorgfaltig gewahlt werden.

» Fir m = 2P ist h(k) einfach die letzte p Bits.
> Besser ist es, h(k) abhéngig von mehreren Bits zu machen.

» Gute Wahl ist m prim und nicht zu nah an einer Zweierpotenz.

» Strings mit 2000 Zeichen als Schlissel.
» Wir erlauben durchschnittlich 3 Sondierungen fiir die erfolglose Suche.
= Wahle m ~ 2000/3 — 701.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/35

Hashing | Hashfunktionen

Multiplikationsmethode (11)
|
Hashfunktion: h(k) = [m-(k-c mod 1)].

» Das iibliche Vorgehen nimmt m = 2P und ¢ = 5, wobei 0 < s < 2".
Dann:
» Berechne zunichst k-s (= k-c-2%).
» Teile durch 2%, verwende nur die Nachkommastellen.
» Multipliziere mit 2”7 und verwende nur den ganzzahligen Anteil.

w Bits

*

||

p Bits extrahieren

=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/35

Multiplikationsmethode (1)

Multiplikationsmethode

Hashfunktion: h(k) = [m:(k-c mod 1) fir0 < c <1
» k-c mod 1 ist der Nachkommateil von k-c, d. h. k-c — | k-c].
» Knuth empfiehlt ¢ =~ (v/5 —1)/2 = 0,62.

= Der Wert von m ist hier nicht kritisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/35

Universelles Hashing (1)

Das groBte Problem beim Hashing ist,

> dass es immer eine ungiinstige Sequenz von Schliisseln gibt, die auf
den selben Slot abgebildet werden.

Wahle zufillig eine Hashfunktion aus einer gegebenen kleinen Menge H,
unabhéngig von den verwendeten Schliisseln.

Eine Menge Hashfunktionen ist universell, wenn
> der Anteil der Funktionen aus H, so dass k und k'’ kollidieren ist %

> d. h., die W'lichkeit einer Kollision von k und k' ist i - M _ L

|
Firr universelles Hashing ist die erwartete Lange der Liste T[k]

1. Gleich «, wenn k nicht in T enthalten ist.
2. Gleich 14+, wenn k in T enthalten ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/35

Hashing | Hashfunktionen

Universelles Hashing (I1)

Beispiel

Definiere die Elemente der Klasse H von Hashfunktionen durch:
hap(k) =((a- k+ b) mod p) mod m
> p sei Primzahl mit p > m und p > groBter Schliissel.

» Die ganzen Zahlen a (1 < a < p) und b (0 < b < p) werden erst bei
der Ausfiihrung gewahlt.

Die Klasse der obigen Hashfunktionen h, p ist universell.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/35

	Direkte Adressierung
	Counting Sort

	Grundlagen des Hashings
	Verkettung
	Hashfunktionen

