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Hashing
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Hashing

Das Ziel von Hashing ist:

> Einen extrem groBen Schlisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

» Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schlissel auf einen Index der Hashtabelle T
ab:
h:U— {0,1,...,m—1} fir TabellengroBe m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schliissels k ist.
Das Auftreten von h(k) = h(k’) fir k # k’ nennt man eine Kollision.
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» Wie behandeln wir dennoch auftretende Kollisionen?

» Zwei Varianten: Verkettung und Offene Adressierung
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Kollisionsauflosung durch Verkettung (1)

Alle Schliissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]
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Average-Case-Analyse von Verkettung

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch ©(1 + «).
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Average-Case-Analyse von Verkettung

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch ©(1 + «).

Erfolglose Suche

Die erfolgreiche Suche benétigt im Average-Case auch O(1 + «).
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Kollisionsauflosung durch offene Adressierung

» Alle Elemente werden direkt in der Hashtabelle gespeichert (im
Gegensatz zur Verkettung).
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Kollisionsauflosung durch offene Adressierung

» Alle Elemente werden direkt in der Hashtabelle gespeichert (im
Gegensatz zur Verkettung).

= Hochstens n Schliissel kdnnen gespeichert werden, d. h.
a(n,m) =24 <1 [Amdahl 1954]
» Man spart aber den Platz fiir die Pointer.

Einfiigen von Schliissel k

» Sondiere (to probe) die Positionen der Hashtabelle, bis ein leerer Slot
gefunden wurde.

» Die zu iiberpriifenden Positionen sind vom einzufiigenden Schliissel k
abgeleitet.

» Die Hashfunktion hingt also vom Schliissel k und der Nummer der
Sondierung ab:

h:Ux{01,...m—1}—{0,1,...m—1}
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Einfiigen bei offener Adressierung

1 void hashInsert(int T[], int key) {

2 for (int i = 0; i < T.length; i++) { // Teste ganze Tabelle
3 int pos = h(key, i); // Berechne i-te Sondierung

4 if (!Tlposl]) { // freier Platz

5 T[pos] = key;

6 return; // fertig

7 }

s }

9 throw "Uberlauf der Hashtabelle";

10 }
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Suche bei offener Adressierung

1 int hashSearch(int T[], int key) {

2 for (int i = 0; i < T.length; i++) {

3 int pos = h(key, i); // Berechne i-te Sondierung
4 if (T[pos] == key) { // Schlissel k gefunden

5 return T[pos];

6 } else if (!T[posl) { // freier Platz, nicht gefunden
7 break;

8 }

°o 7

10 return -1; // "nicht gefunden”

1}
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Loschen bei offener Adressierung
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Loschen bei offener Adressierung

Léschen des Schliissels k aus Slot i durch T[i] = null ist ungeeignet:

» Wenn beim Einfiigen von k der Slot i besetzt war, kénnen wir k nicht
mehr abrufen.

LGsung

Markiere T[i] mit dem speziellen Wert DELETED (oder: ,veraltet”).
> hashInsert muss angepasst werden und solche Slots als leer
betrachten.

» hashSearch bleibt unverdndert, solche Slots werden einfach
libergangen.

> Die Suchzeiten sind nun nicht mehr allein vom Fiillgrad o abhangig.

= Wenn Schliissel geléscht werden sollen wird haufiger Verkettung
verwendet.
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Wie wahlt man die nachste Sondierung?
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Wie wahlt man die nachste Sondierung?

Wir benétigen eine Sondierungssequenz fiir einen gegebenen Schliissel k:
(h(k,0), h(k,1),..., h(k, m—1))

» Wenn es sich dabei um eine Permutation von (0, ... m — 1) handelt
ist garantiert, dass jeder Slot letztlich gepriift wird.

> Gleichverteiltes Hashing ware ideal, d. h. jede der m! Permutationen
ist als Sondierungssequenz gleich wahrscheinlich.

> In der Praxis ist das aber zu aufwandig und wird approximiert.

Sondierungsverfahren

» Wir behandeln Lineares Sondieren, Quadratisches Sondieren und
Doppeltes Hashing.

» Die Qualitat ist durch die Anzahl der verschiedenen
Sondierungssequenzen, die jeweils erzeugt werden, bestimmt.
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Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (' (k) + i) mod m (fir i < m).
» k ist der Schlussel

> j ist der Index im Sondierungssequenz

» H ist eine Gbliche Hashfunktion.
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Lineares Sondieren: Beispiel

0 0 0
1 1 1
2 2 2
3 3 3
g0 i s 85
© gerung 28 dierang M6
7 7 7
8 8 8
9 9 9
10 10 10
K (k) = k mod 11 h(k, i) = (W' (k) + i) mod 11
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Lineares Sondieren: Beispiel

ins (17)

1. Son-
dierung

b WwWwN RO

ins(17)
2. Son-

dierung

28/ 6

7
8
9
1

H OO ~NOOLP, WNRHRO

0

H(k) = k mod 11
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2 2
3 3
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8 8
9 9

0 10 10

ins (59
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dierung
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Lineares Sondieren

Hashfunktion beim linearen Sondieren
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Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h'(k) + i) mod m (fir i < m).
» H ist eine tbliche Hashfunktion.

» Die Verschiebung der nachfolgende Sondierungen ist linear von j
abhangig.
> Die erste Sondierung bestimmt bereits die gesamte Sequenz.

= m verschiedene Sequenzen kdnnen erzeugt werden.
» Clustering, also lange Folgen von belegten Slots, fiihrt zu Problemen:

» h (k) bleibt konstant, aber der Offset wird jedes Mal um eins groBer.
» Ein leerer Slot, dem i volle Slots vorausgehen, wird als nachstes mit
Wabhrscheinlichkeit # gefillt.
= Lange Folgen tendieren dazu langer zu werden.
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Quadratisches Sondieren

h(k,i) = (H(k)+ c1-i+ c2-i%) mod m (fiir i < m).
> k ist der Schliissel
> j ist der Index im Sondierungssequenz
» h ist eine libliche Hashfunktion, und

> c1, ¢ # 0 Konstanten.
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Quadratisches Sondieren: Beispiel

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 s(17= 4 s(17= 4 s(17= 4 s(17= 4
5 in 5 in g in 5 in 5
1. Son- 2. Son- 3. Son- 4. Son-
6 dierung 0 dierung 6 dierung 6 dierung 6
7 7 7 7 7
8 8 8 8 8
9 9 9 9 9
10 10 10 10 10

K (k) = k mod 11 h(k,i) = (W' (k) + i+ 3i*) mod 11
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Quadratisches Sondieren

Hashfunktion beim quadratischen Sondieren
h(k,i) = (H(k)+c1-i+ c-i%) mod m (fiir i < m).
» H ist eine Ubliche Hashfunktion, c1, ¢, # 0 Konstanten.
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Hashing |1 Offene Adressierung

Quadratisches Sondieren

Hashfunktion beim quadratischen Sondieren
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Hashfunktion beim quadratischen Sondieren
h(k,i) = (H(k)+c1-i+ c-i%) mod m (fiir i < m).
» H ist eine Ubliche Hashfunktion, c1, ¢, # 0 Konstanten.

» Die Verschiebung der nachfolgende Sondierungen ist quadratisch
von i abhangig.
» Die erste Sondierung bestimmt bereits die gesamte Sequenz.

= Auch hier kdnnen m verschiedene Sequenzen erzeugt werden (wenn
c1, ¢ geeignet gewahlt wurden).

» Das Clustering von linearem Sondieren wird vermieden.

» Jedoch tritt sekundires Clustering immer noch auf:

h(k,0) = h(k’,0) verursacht h(k, i) = h(K', i) fiir alle i.
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Doppeltes Hashing

Hashfunktion beim doppelten Hashing
h(k, i) = (hi(k) + i - ha(k)) mod m (fir i < m).

» hy, hy sind ubliche Hashfunktionen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/27



Doppeltes Hashing: Beispiel

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 1ns(17= 5 1ns(17= 5 1ns(17= 5 1ns(17= 5
1. Son- 2. Son- 3. Son- 4. Son-

6 28| 6 i 6 6 6
7 ierung 7 ierung 7 ierung 7 ierung 7
8 8 8 8 8
9 9 9 9 9
10 10 10 10 10

hi(k) = k mod 11 5 ;

h;gkg —ymod 1l | [Ak) = (m(K) + i ha(k)) mod 11
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» hy, hy sind (ibliche Hashfunktionen.

» Die Verschiebung der nachfolgende Sondierungen ist von hy(k)
abhangig.
» Die erste Sondierung bestimmt nicht die gesamte Sequenz.
Bessere Verteilung der Schliissel in der Hashtabelle.
Approximiert das gleichverteilte Hashing.
» Sind hy und m relativ prim, wird die gesamte Hashtabelle abgesucht.
» Wihle z.B. m = 2¥ und hy so, dass sie nur ungerade Zahlen erzeugt.

» Jedes mogliche Paar hi(k) und hy(k) erzeugt eine andere Sequenz.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27



Doppeltes Hashing

Hashfunktion beim doppelten Hashing
h(k, i) = (hi(k) + i - ha(k)) mod m (fir i < m).
» hy, hy sind (ibliche Hashfunktionen.

» Die Verschiebung der nachfolgende Sondierungen ist von hy(k)
abhangig.

» Die erste Sondierung bestimmt nicht die gesamte Sequenz.

Bessere Verteilung der Schliissel in der Hashtabelle.

Approximiert das gleichverteilte Hashing.

» Sind hy und m relativ prim, wird die gesamte Hashtabelle abgesucht.
» Wihle z.B. m = 2¥ und hy so, dass sie nur ungerade Zahlen erzeugt.

» Jedes mogliche Paar hi(k) und hy(k) erzeugt eine andere Sequenz.

2

= Daher kénnen m*“ verschiedene Permutationen erzeugt werden.
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Praktische Effizienz von Doppeltem Hashing
» Hashtabelle mit 538051 Eintragen (Endfillgrad 99,95%)
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Praktische Effizienz von Doppeltem Hashing

» Hashtabelle mit 538 051 Eintragen (Endfillgrad 99,95%) 9.5 % -> 358
» Mittlere Anzahl Kollisionen n pro Einfiigen in die Hashtabelle:

14 [ — Linéares Son&ieren 7
L Quadratisches Sondieren
" —— Doppeltes Hashing 7
10 | .
8 L ]
m 6| |
4 L ]
2 L ]
0

0 10 20 30 40 50 60 70 80 90 100
Fillgrad der Hashtabelle (in %)
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Effizienz der offenen Adressierung
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Effizienz der offenen Adressierung
Unter der Annahme von gleichverteiltem Hashing gilt:
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Effizienz der offenen Adressierung
Unter der Annahme von gleichverteiltem Hashing gilt:

Erfolglose Suche

Die erfolglose Suche benétigt O (ﬁ) Zeit im Average-Case.

» Bei 50% Fiillung sind durchschnittlich 2 Sondierungen nétig.
» Bei 90% Fillung sind durchschnittlich 10 Sondierungen nétig.

Erfolgreiche Suche

Die erfolgreiche Suche benétigt O (é In ﬁ) im Average-Case.

» Bei 50% Fillung sind durchschnittlich 1,39 Sondierungen nétig.
» Bei 90% Fillung sind durchschnittlich 2,56 Sondierungen nétig.

|
Bei der Verkettung hatten wir ©(1 + «) in beiden Fallen erhalten.
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Analyse der erfolglosen Suche (1)

» Betrachte eine zufillig erzeugte Sondierungssequenz fiir Schliissel k.
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Analyse der erfolglosen Suche (1)

» Betrachte eine zufillig erzeugte Sondierungssequenz fiir Schliissel k.

» Annahme: jede mégliche Sondierungssequenz hat eine gleiche
Wahrscheinlichkeit, d. h. L daes m! mogliche Permutationen von

m!’

den Positionen 0, ..., m—1 gibt.
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» Annahme: jede mégliche Sondierungssequenz hat eine gleiche
Wahrscheinlichkeit, d. h. % da es m! mogliche Permutationen von
den Positionen 0, ..., m—1 gibt.

» Bemerkung: dies ist nicht unrealistisch, da im ldealfall die
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Analyse der erfolglosen Suche (1)

» Betrachte eine zufillig erzeugte Sondierungssequenz fiir Schliissel k.

» Annahme: jede mégliche Sondierungssequenz hat eine gleiche
Wahrscheinlichkeit, d. h. % da es m! mogliche Permutationen von
den Positionen 0, ..., m—1 gibt.

» Bemerkung: dies ist nicht unrealistisch, da im ldealfall die
Sondierungssequenz fiir k moglichst unabhangig ist von der

Sondierungssequenz fiir k', k # k'

» Wir nehmen (wie vorher) an, dass die Berechung von Hashwerten in
O(1) liegt.
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Analyse der erfolglosen Suche (I1)

Erfolglose Suche

Eine Suche fiir k ist erfolglos wenn fiir i alle Slots h(k,0), ..., h(k,i—1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.
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Erfolglose Suche

Eine Suche fiir k ist erfolglos wenn fiir i alle Slots h(k,0), ..., h(k,i—1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden

ist:
X = min{ieN: h(k,i) ist unbelegt }.

Sei E[X] der Erwartungswert von X.
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Analyse der erfolglosen Suche (I1)

Erfolglose Suche

Eine Suche fiir k ist erfolglos wenn fiir i alle Slots h(k,0), ..., h(k,i—1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden
ist:
X = min{ieN: h(k,i) ist unbelegt }.

Sei E[X] der Erwartungswert von X.
Dann: die Average-Case Komplexitat einer erfolglosen Suche ist 1 4+ E[X].

EX] = o1

Beweis: in der Vorlesung.
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Analyse der erfolglosen Suche (I1)

Erfolglose Suche

Eine Suche fiir k ist erfolglos wenn fiir i alle Slots h(k,0), ..., h(k,i—1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden
ist:
X = min{ieN: h(k,i) ist unbelegt }.

Sei E[X] der Erwartungswert von X.
Dann: die Average-Case Komplexitat einer erfolglosen Suche ist 1 4+ E[X].

EX] = o1

Beweis: in der Vorlesung. Damit: 1 + E[X] =1+ =15 € O (ﬁ)
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Analyse der erfolgeichen Suche (1)

> Sei Schlissel k; der i-te eingefiigte Schliissel in der Hashtabelle.
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Analyse der erfolgeichen Suche (1)
> Sei Schlissel k; der i-te eingefiigte Schliissel in der Hashtabelle.
> Betrachte eine erfolgreiche Suche fiir Schlissel kjyi.

> Sei X; die Anzahl der Sondierungen beim Einfiigen vom Schliissel k;.
» Im Schnitt, braucht eine erfolgreiche Suche fiir k;, E[X;] Zeiteinheiten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/27



Hashing |1 Offene Adressierung

Analyse der erfolgeichen Suche (1)

> Sei Schlissel k; der i-te eingefiigte Schliissel in der Hashtabelle.

v

Betrachte eine erfolgreiche Suche fiir Schliissel kjy1.

v

Sei X; die Anzahl der Sondierungen beim Einfiigen vom Schliissel k;.

v

Im Schnitt, braucht eine erfolgreiche Suche fiir k;, E[X;] Zeiteinheiten.

v

Die Average-Case Zeitkomplexitat fiir eine erfolgreiche Suche ist:

1n71
- E[X11].
n; [Xit1]
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Analyse der erfolgeichen Suche (1)

> Sei Schlissel k; der i-te eingefiigte Schliissel in der Hashtabelle.

v

Betrachte eine erfolgreiche Suche fiir Schliissel kjy1.

v

Sei X; die Anzahl der Sondierungen beim Einfiigen vom Schliissel k;.

v

Im Schnitt, braucht eine erfolgreiche Suche fiir k;, E[X;] Zeiteinheiten.

v

Die Average-Case Zeitkomplexitat fiir eine erfolgreiche Suche ist:

1 n—1
- E[Xi11].
- ; [Xit1]
Ly EXa] € O(Lngl).
Beweis: in der Vorlesung.
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