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Hashing II Hashing und Verkettung

Hashing

Das Ziel von Hashing ist:
I Einen extrem großen Schlüsselraum auf einen vernünftig kleinen

Bereich von ganzen Zahlen abzubilden.

I Dass zwei Schlüssel auf die selbe Zahl abgebildet werden, soll
möglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision
Eine Hashfunktion bildet einen Schlüssel auf einen Index der Hashtabelle T
ab:

h : U −→ { 0, 1, . . . ,m−1 } für Tabellengröße m und |U| = n.

Wir sagen, dass h(k) der Hashwert des Schlüssels k ist.
Das Auftreten von h(k) = h(k ′) für k 6= k ′ nennt man eine Kollision.
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Hashing II Hashing und Verkettung

Hashing
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Kollision

I Wie behandeln wir dennoch auftretende Kollisionen?
I Zwei Varianten: Verkettung und Offene Adressierung
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Hashing II Hashing und Verkettung

Kollisionsauflösung durch Verkettung (I)
Idee
Alle Schlüssel, die zum gleichen Hash führen, werden in einer
verketteten Liste gespeichert. [Luhn 1953]
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Hashing II Hashing und Verkettung

Average-Case-Analyse von Verkettung

Erfolgreiche Suche
Die erfolgreiche Suche benötigt im Average-Case auch Θ(1 + α).

Erfolglose Suche
Die erfolgreiche Suche benötigt im Average-Case auch Θ(1 + α).
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Hashing II Offene Adressierung

Kollisionsauflösung durch offene Adressierung
I Alle Elemente werden direkt in der Hashtabelle gespeichert (im

Gegensatz zur Verkettung).

⇒ Höchstens n Schlüssel können gespeichert werden, d. h.
α(n,m) = n

m 6 1. [Amdahl 1954]
I Man spart aber den Platz für die Pointer.

Einfügen von Schlüssel k

I Sondiere (to probe) die Positionen der Hashtabelle, bis ein leerer Slot
gefunden wurde.

I Die zu überprüfenden Positionen sind vom einzufügenden Schlüssel k
abgeleitet.

I Die Hashfunktion hängt also vom Schlüssel k und der Nummer der
Sondierung ab:

h : U × { 0, 1, . . .m − 1 } −→ { 0, 1, . . .m − 1 }
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Hashing II Offene Adressierung

Einfügen bei offener Adressierung

1 void hashInsert(int T[], int key) {
2 for (int i = 0; i < T.length; i++) { // Teste ganze Tabelle
3 int pos = h(key, i); // Berechne i-te Sondierung
4 if (!T[pos]) { // freier Platz
5 T[pos] = key;
6 return; // fertig
7 }
8 }
9 throw "Überlauf der Hashtabelle";

10 }
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Hashing II Offene Adressierung

Suche bei offener Adressierung

1 int hashSearch(int T[], int key) {
2 for (int i = 0; i < T.length; i++) {
3 int pos = h(key, i); // Berechne i-te Sondierung
4 if (T[pos] == key) { // Schlüssel k gefunden
5 return T[pos];
6 } else if (!T[pos]) { // freier Platz, nicht gefunden
7 break;
8 }
9 }

10 return -1; // "nicht gefunden"
11 }
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Hashing II Offene Adressierung

Löschen bei offener Adressierung

Problem
Löschen des Schlüssels k aus Slot i durch T[i] = null ist ungeeignet:

I Wenn beim Einfügen von k der Slot i besetzt war, können wir k nicht
mehr abrufen.

Lösung
Markiere T[i] mit dem speziellen Wert DELETED (oder: „veraltet“).

I hashInsert muss angepasst werden und solche Slots als leer
betrachten.

I hashSearch bleibt unverändert, solche Slots werden einfach
übergangen.

I Die Suchzeiten sind nun nicht mehr allein vom Füllgrad α abhängig.
⇒ Wenn Schlüssel gelöscht werden sollen wird häufiger Verkettung

verwendet.
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Hashing II Offene Adressierung

Wie wählt man die nächste Sondierung?

Wir benötigen eine Sondierungssequenz für einen gegebenen Schlüssel k:

〈h(k, 0), h(k, 1), . . . , h(k,m−1)〉

I Wenn es sich dabei um eine Permutation von 〈0, . . .m − 1〉 handelt
ist garantiert, dass jeder Slot letztlich geprüft wird.

I Gleichverteiltes Hashing wäre ideal, d. h. jede der m! Permutationen
ist als Sondierungssequenz gleich wahrscheinlich.

I In der Praxis ist das aber zu aufwändig und wird approximiert.

Sondierungsverfahren

I Wir behandeln Lineares Sondieren, Quadratisches Sondieren und
Doppeltes Hashing.

I Die Qualität ist durch die Anzahl der verschiedenen
Sondierungssequenzen, die jeweils erzeugt werden, bestimmt.
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ist als Sondierungssequenz gleich wahrscheinlich.

I In der Praxis ist das aber zu aufwändig und wird approximiert.

Sondierungsverfahren

I Wir behandeln Lineares Sondieren, Quadratisches Sondieren und
Doppeltes Hashing.

I Die Qualität ist durch die Anzahl der verschiedenen
Sondierungssequenzen, die jeweils erzeugt werden, bestimmt.
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Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I k ist der Schlüssel
I i ist der Index im Sondierungssequenz
I h′ ist eine übliche Hashfunktion.
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Hashing II Offene Adressierung

Lineares Sondieren: Beispiel
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Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.

⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.

I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:
I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.

I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit
Wahrscheinlichkeit i+1

m gefüllt.
⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Lineares Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (h′(k) + i) mod m (für i < m).

I h′ ist eine übliche Hashfunktion.

I Die Verschiebung der nachfolgende Sondierungen ist linear von i
abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ m verschiedene Sequenzen können erzeugt werden.
I Clustering, also lange Folgen von belegten Slots, führt zu Problemen:

I h′(k) bleibt konstant, aber der Offset wird jedes Mal um eins größer.
I Ein leerer Slot, dem i volle Slots vorausgehen, wird als nächstes mit

Wahrscheinlichkeit i+1
m gefüllt.

⇒ Lange Folgen tendieren dazu länger zu werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27



Hashing II Offene Adressierung

Quadratisches Sondieren

Hashfunktion beim quadratischen Sondieren
h(k, i) = (h′(k) + c1 · i + c2 · i2) mod m (für i < m).

I k ist der Schlüssel
I i ist der Index im Sondierungssequenz
I h′ ist eine übliche Hashfunktion, und
I c1, c2 6= 0 Konstanten.
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Hashing II Offene Adressierung

Quadratisches Sondieren: Beispiel
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h′(k) = k mod 11 h(k , i) = (h′(k) + i + 3i2) mod 11
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Hashing II Offene Adressierung

Quadratisches Sondieren

Hashfunktion beim quadratischen Sondieren
h(k, i) = (h′(k) + c1 · i + c2 · i2) mod m (für i < m).

I h′ ist eine übliche Hashfunktion, c1, c2 6= 0 Konstanten.

I Die Verschiebung der nachfolgende Sondierungen ist quadratisch
von i abhängig.

I Die erste Sondierung bestimmt bereits die gesamte Sequenz.
⇒ Auch hier können m verschiedene Sequenzen erzeugt werden (wenn

c1, c2 geeignet gewählt wurden).
I Das Clustering von linearem Sondieren wird vermieden.
I Jedoch tritt sekundäres Clustering immer noch auf:

h(k, 0) = h(k ′, 0) verursacht h(k, i) = h(k ′, i) für alle i .
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Hashing II Offene Adressierung

Doppeltes Hashing

Hashfunktion beim doppelten Hashing
h(k, i) = (h1(k) + i · h2(k)) mod m (für i < m).

I h1, h2 sind übliche Hashfunktionen.
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Hashing II Offene Adressierung

Doppeltes Hashing: Beispiel
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ins(17)
1. Son-
dierung

ins(17)
2. Son-
dierung

ins(17)
3. Son-
dierung

ins(17)
4. Son-
dierung

h1(k) = k mod 11
h2(k) = 1 + k mod 10 h(k , i) = (h1(k) + i · h2(k)) mod 11
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Hashing II Offene Adressierung

Doppeltes Hashing
Hashfunktion beim doppelten Hashing
h(k, i) = (h1(k) + i · h2(k)) mod m (für i < m).

I h1, h2 sind übliche Hashfunktionen.

I Die Verschiebung der nachfolgende Sondierungen ist von h2(k)
abhängig.

I Die erste Sondierung bestimmt nicht die gesamte Sequenz.
⇒ Bessere Verteilung der Schlüssel in der Hashtabelle.
⇒ Approximiert das gleichverteilte Hashing.

I Sind h2 und m relativ prim, wird die gesamte Hashtabelle abgesucht.
I Wähle z. B. m = 2k und h2 so, dass sie nur ungerade Zahlen erzeugt.

I Jedes mögliche Paar h1(k) und h2(k) erzeugt eine andere Sequenz.
⇒ Daher können m2 verschiedene Permutationen erzeugt werden.
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⇒ Approximiert das gleichverteilte Hashing.

I Sind h2 und m relativ prim, wird die gesamte Hashtabelle abgesucht.
I Wähle z. B. m = 2k und h2 so, dass sie nur ungerade Zahlen erzeugt.

I Jedes mögliche Paar h1(k) und h2(k) erzeugt eine andere Sequenz.
⇒ Daher können m2 verschiedene Permutationen erzeugt werden.
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Hashing II Offene Adressierung

Praktische Effizienz von Doppeltem Hashing
I Hashtabelle mit 538 051 Einträgen (Endfüllgrad 99,95%)

99,8 % -> 358

I Mittlere Anzahl Kollisionen η pro Einfügen in die Hashtabelle:
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Hashing II Offene Adressierung

Effizienz der offenen Adressierung

Unter der Annahme von gleichverteiltem Hashing gilt:

Erfolglose Suche
Die erfolglose Suche benötigt O

(
1

1−α

)
Zeit im Average-Case.

I Bei 50% Füllung sind durchschnittlich 2 Sondierungen nötig.
I Bei 90% Füllung sind durchschnittlich 10 Sondierungen nötig.

Erfolgreiche Suche
Die erfolgreiche Suche benötigt O

(
1
α · ln

1
1−α

)
im Average-Case.

I Bei 50% Füllung sind durchschnittlich 1,39 Sondierungen nötig.
I Bei 90% Füllung sind durchschnittlich 2,56 Sondierungen nötig.

Bei der Verkettung hatten wir Θ(1 + α) in beiden Fällen erhalten.
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Hashing II Offene Adressierung

Analyse der erfolglosen Suche (I)

Annahmen
I Betrachte eine zufällig erzeugte Sondierungssequenz für Schlüssel k.

I Annahme: jede mögliche Sondierungssequenz hat eine gleiche
Wahrscheinlichkeit, d. h. 1

m! , da es m! mögliche Permutationen von
den Positionen 0, . . . ,m−1 gibt.

I Bemerkung: dies ist nicht unrealistisch, da im Idealfall die
Sondierungssequenz für k möglichst unabhängig ist von der
Sondierungssequenz für k ′, k 6= k ′.

I Wir nehmen (wie vorher) an, dass die Berechung von Hashwerten in
O(1) liegt.
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Hashing II Offene Adressierung

Analyse der erfolglosen Suche (II)

Erfolglose Suche
Eine Suche für k ist erfolglos wenn für i alle Slots h(k, 0), . . . , h(k, i−1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden
ist:

X = min { i ∈ N : h(k, i) ist unbelegt } .

Sei E [X ] der Erwartungswert von X .
Dann: die Average-Case Komplexität einer erfolglosen Suche ist 1 + E [X ].

Lemma
E [X ] = n

m−n+1 .

Beweis: in der Vorlesung. Damit: 1 + E [X ] = 1 + n
m−n+1 ∈ O

(
1

1−α

)
.
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Hashing II Offene Adressierung

Analyse der erfolgeichen Suche (I)

I Sei Schlüssel ki der i-te eingefügte Schlüssel in der Hashtabelle.

I Betrachte eine erfolgreiche Suche für Schlüssel ki+1.
I Sei Xi die Anzahl der Sondierungen beim Einfügen vom Schlüssel ki .
I Im Schnitt, braucht eine erfolgreiche Suche für ki , E [Xi ] Zeiteinheiten.
I Die Average-Case Zeitkomplexität für eine erfolgreiche Suche ist:

1
n

n−1∑
i=0

E [Xi+1].

Lemma
1
n
∑n−1

i=0 E [Xi+1] ∈ O
(
1
α · ln

1
1−α

)
.

Beweis: in der Vorlesung.
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