Hashing Il

Datenstrukturen und Algorithmen

Vorlesung 13: Hashing Il

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

05. Juni 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/27
Ubersicht
@ Hashing und Verkettung
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/27

Hashing Il

Ubersicht

@ Hashing und Verkettung

@ Offene Adressierung
@ Lineares Sondieren
@ Quadratisches Sondieren
@ Doppeltes Hashing
o Effizienz der offenen Adressierung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/27
Hashing Il Hashing und Verkettung

Hashing

Das Ziel von Hashing ist:

» Einen extrem groBen Schliisselraum auf einen verniinftig kleinen
Bereich von ganzen Zahlen abzubilden.

> Dass zwei Schliissel auf die selbe Zahl abgebildet werden, soll
moglichst unwahrscheinlich sein.

Hashfunktion, Hashtabelle, Hashkollision

Eine Hashfunktion bildet einen Schliissel auf einen Index der Hashtabelle T
ab:

h:U—{0,1,...,m—1} fir TabellengréBe m und [U| = n.

Wir sagen, dass h(k) der Hashwert des Schlissels k ist.
Das Auftreten von h(k) = h(k’) fir k # k" nennt man eine Kollision.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/27


http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Hashing Il Hashing und Verkettung

Hashing

5ch/uss\e/menge Hashfunktion

\ I

0 Hashtabelle

;7(k1)

h(k2) = h(ks)
»

h(ks)

\
\

|
I
|
y

Kollision

h(ks)
benutzte Schliissel m—1

» Wie behandeln wir dennoch auftretende Kollisionen?

» Zwei Varianten: Verkettung und Offene Adressierung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/27

Hashing Il Hashing und Verkettung

Average-Case-Analyse von Verkettung

Erfolgreiche Suche

Die erfolgreiche Suche benétigt im Average-Case auch ©(1 + «).

Erfolglose Suche

Die erfolgreiche Suche benétigt im Average-Case auch ©(1 + «).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/27

Hashing Il Hashing und Verkettung

Kollisionsauflosung durch Verkettung (1)

Alle Schlissel, die zum gleichen Hash fiihren, werden in einer
verketteten Liste gespeichert. [Luhn 1953]

U

m—1
Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/27

Hashing 1l Offene Adressierung

Ubersicht

© Offene Adressierung
@ Lineares Sondieren
@ Quadratisches Sondieren
@ Doppeltes Hashing
o Effizienz der offenen Adressierung

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/27



Kollisionsauflosung durch offene Adressierung Einfiigen bei offener Adressierung

» Alle Elemente werden direkt in der Hashtabelle gespeichert (im
Gegensatz zur Verkettung).

= Hochstens n Schliissel kénnen gespeichert werden, d. h.
alnm)="<1 [Amdahl 1954] 1 void hashInsert(int T[], int key) {
' m ~X .

> for (int i = 0; i < T.length; i++) { // Teste ganze Tabelle
» Man spart aber den Platz fiir die Pointer. 3 int pos = h(key, i); // Berechne i-te Sondierung
4 if (!Tlposl) { // freier Platz
Einfiigen von Schliissel k 5 T[pos] = key;
6 return; // fertig
» Sondiere (to probe) die Positionen der Hashtabelle, bis ein leerer Slot 7 b
gefunden wurde. s} .
o throw "Uberlauf der Hashtabelle";
» Die zu lberpriifenden Positionen sind vom einzufligenden Schliissel k 0}
abgeleitet.

» Die Hashfunktion hdngt also vom Schliissel k und der Nummer der
Sondierung ab:

h:Ux{0,1,...m—1} —{0,1,...m—1}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/27
Suche bei offener Adressierung Loschen bei offener Adressierung

Léschen des Schliissels k aus Slot i durch T[i] = null ist ungeeignet:

1 int hashSearch(int T[], int key) { » Wenn beim Einfiigen von k der Slot i besetzt war, kénnen wir k nicht
> for (int i = 0; i < T.length; i++) { mehr abrufen.

3 int pos = h(key, 1); // Berechne i-te Sondierung

L Metumn Tipasly | Sersast gepmden
5 return T[pos]; 8

s} else if (!T[posl) { // freier Platz, nicht gefunden Markiere T[il mit dem speziellen Wert DELETED (oder: ,veraltet”).

7 break;

. } » hashInsert muss angepasst werden und solche Slots als leer

o} betrachten.

1(1) } return -1; // "nicht gefunden » hashSearch bleibt unverandert, solche Slots werden einfach

libergangen.

» Die Suchzeiten sind nun nicht mehr allein vom Fiillgrad o abhéngig.

= Wenn Schliissel geléscht werden sollen wird haufiger Verkettung
verwendet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/27



Hashing Il Offene Adressierung Hashing Il Offene Adressierung

Wie wdhlt man die nachste Sondierung? Lineares Sondieren
Wir bendtigen eine Sondierungssequenz fiir einen gegebenen Schliissel k:

(h(k,0), h(k, 1), ..., h(k, m—1))

» Wenn es sich dabei um eine Permutation von (0, ... m — 1) handelt Hashfunktion beim linearen Sondieren

ist garantiert, dass jeder Slot letztlich gepriift wird. ] ] o
h(k, i) = (W (k)+ i) mod m (fur i < m).

> k ist der Schlussel

» j ist der Index im Sondierungssequenz

> Gleichverteiltes Hashing ware ideal, d. h. jede der m! Permutationen
ist als Sondierungssequenz gleich wahrscheinlich.

» In der Praxis ist das aber zu aufwandig und wird approximiert.

Sondierungsverfahren

» Wir behandeln Lineares Sondieren, Quadratisches Sondieren und
Doppeltes Hashing.

» Hh ist eine iibliche Hashfunktion.

> Die Qualitat ist durch die Anzahl der verschiedenen
Sondierungssequenzen, die jeweils erzeugt werden, bestimmt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/27
Hashing Il Offene Adressierung Hashing Il Offene Adressierung
Lineares Sondieren: Beispiel Lineares Sondieren: Beispiel

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
gins(17) gins(17) g gins(17) gins(17) gins(59) gins(59) gins(59)
1. Son- 2. Son- 1. Son- 2. Son- 1. Son- 2. Son- 3. Son-
0 dierung 6 dierung 6 0 dierun 6 dierun 6 di 0 di 6 di
7 7 7 7 g 7 ung , dierung 4 dierung , dierung
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10
W (k) = k mod 11 h(k,i) = (h'(k) + i) mod 11 W (k) = k mod 11 h(k, i) = (h'(k) + i) mod 11

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/27



Lineares Sondieren Quadratisches Sondieren

Hashfunktion beim linearen Sondieren
h(k, i) = (K (k) + i) mod m (fur i < m).
» A ist eine iibliche Hashfunktion. Hashfunktion beim quadratischen Sondieren
h(k,i) = (W (k) +c1-i+ co-i?) mod m (fir i < m).

» Die Verschiebung der nachfolgende Sondierungen ist linear von i
& & & > k ist der Schlussel

abhangig.
> Die erste Sondierung bestimmt bereits die gesamte Sequenz. e e indio b Henela sy
. . » h' ist eine tbliche Hashfunktion, und
= m verschiedene Sequenzen kdnnen erzeugt werden. '
» Clustering, also lange Folgen von belegten Slots, fiihrt zu Problemen: > c1, ¢ # 0 Konstanten.
» h'(k) bleibt konstant, aber der Offset wird jedes Mal um eins groBer.
» Ein leerer Slot, dem'i volle Slots vorausgehen, wird als nachstes mit
Wahrscheinlichkeit "1 gefiillt.
= Lange Folgen tendieren dazu langer zu werden.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/27
Quadratisches Sondieren: Beispiel Quadratisches Sondieren

Hashfunktion beim quadratischen Sondieren

0 0 0 0 0 h(k, i) = (K (k) +c1-i+ ¢ -i%) mod m (fir i < m).
L 1 ! 1 ! > K ist eine iibliche Hashfunkti 0K
5 5 5 5 5 ist eine Ubliche Hashfunktion, c¢1, ¢ # 0 Konstanten.
3 3 3 3 3
4 4 4 4 4 » Die Verschiebung der nachfolgende Sondierungen ist quadratisch
5 1nss(17z 5 1nss(17z 5 1nsS(17= 5 1nss(172 5 von i abhangig.
1. - 2. - 3. - 4. -
6 dier:):g 6 dierl?:g 6 dien?:g 6 diert?r:]g 6 » Die erste Sondierung bestimmt bereits die gesamte Sequenz.
7 7 7 7 7 o .
g 8 g 8 8 = Auch hier kénnen m verschiedene Sequenzen erzeugt werden (wenn
9 9 9 9 9 c1, ¢ geeignet gewahlt wurden).
10 10 10 10 10 » Das Clustering von linearem Sondieren wird vermieden.

» Jedoch tritt sekundéres Clustering immer noch auf:

W (k) = k mod 11 h(k, i) = (W' (k) + i + 3i*) mod 11

h(k,0) = h(k',0) verursacht h(k, i) = h(k', i) fir alle i.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/27



Hashing Il Offene Adressierung Hashing Il Offene Adressierung

Doppeltes Hashing Doppeltes Hashing: Beispiel
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
 mcery W oy Wy B )
o _ - 5 ins (17 5 ins (17 5 ins (17 5 ins (17 5
h(k, i) = (hi(k) + i - ha(k)) mod m (fiir i < m). g L Son- g 2. Son- g 3 Son- g 4 Son- 6
» hy, hy sind (ibliche Hashfunktionen. 7 dierung 7 dierung 7 dierung 7 dierung 7
8 8 8 8 8
9 9 9 9 9
10 10 10 10 10

hi(k) = k mod 11
hy(k) =1+ k mod 10

h(k, i) = (hu(k) + i - hy(k)) mod 11

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/27
Doppeltes Hashing Praktische Effizienz von Doppeltem Hashing
Hashfunktion beim doppelten Hashing > Hashtabe”e m|t 538 051 Elntl’agen (Endfu”grad 99,95%) 99,8 % -> 358
h(k, i) = (hi(K) + i - ha(k)) mod m (fir i < m) » Mittlere Anzahl Kollisionen 7 pro Einfiigen in die Hashtabelle:

» hy, hy sind iibliche Hashfunktionen. 14 [— Lineares Sondieren ]

L Quadratisches Sondieren
" — Doppeltes Hashing

» Die Verschiebung der nachfolgende Sondierungen ist von ha(k)
abhangig. 10 +
> Die erste Sondierung bestimmt nicht die gesamte Sequenz.
= Bessere Verteilung der Schlissel in der Hashtabelle.
=- Approximiert das gleichverteilte Hashing.
> Sind hy und m relativ prim, wird die gesamte Hashtabelle abgesucht.
» Wihle z.B. m = 2% und hy so, dass sie nur ungerade Zahlen erzeugt.

O N B~ O
T

" o2 e o 0 10 20 30 40 50 60 70 80 90 100
> ogli t ej .
edes mogliche Paar hi(k) und hy(k) erzeugt eine andere Sequenz Fillgrad der Hashtabelle (in %)

2

= Daher kénnen m*“ verschiedene Permutationen erzeugt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/27



Hashing Il Offene Adressierung Hashing Il Offene Adressierung

Effizienz der offenen Adressierung Analyse der erfolglosen Suche (1)
Unter der Annahme von gleichverteiltem Hashing gilt:

———— Eeem ]

Die erfolglose Suche benétigt O (ﬁ) Zeit im Average-Case.
> Betrachte eine zuféllig erzeugte Sondierungssequenz fiir Schliissel k.

» Bei 50% Fullung sind durchschnittlich 2 Sondierungen nétig. » Annahme: jede mogliche Sondierungssequenz hat eine gleiche

» Bei 90% Fiillung sind durchschnittlich 10 Sondierungen nétig. Wahrscheinlichkeit, d. h. % da es m! moégliche Permutationen von
Erfolereiche Such den Positionen 0, ..., m—1 gibt.
» Bemerkung: dies ist nicht unrealistisch, da im Idealfall die
Die erfolgreiche Suche bendtigt O (é In ﬁ) im Average-Case. Sondierungssequenz fiir k méglichst unabhiangig ist von der

Sondierungssequenz fir k', k # k'.

» Bei 50% Fullung sind durchschnittlich 1,39 Sondierungen nétig. > Wir nehmen (wie vorher) an, dass die Berechung von Hashwerten in
» Bei 90% Fiillung sind durchschnittlich 2,56 Sondierungen nétig. 0(1) liegt.

|
Bei der Verkettung hatten wir ©(1 + «) in beiden Fallen erhalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/27
Analyse der erfolglosen Suche (1) Analyse der erfolgeichen Suche (1)

v

Sei Schlissel k; der i-te eingefiigte Schliissel in der Hashtabelle.

Erfolglose Suche

Eine Suche fiir k ist erfolglos wenn fiir i alle Slots h(k,0),..., h(k,i—1)
belegt sind, jedoch unterschiedlich von k sind, und h(k, i) ist unbelegt.

v

Betrachte eine erfolgreiche Suche fiir Schlissel kji1.

v

Sei X; die Anzahl der Sondierungen beim Einfiigen vom Schlissel k;.
Im Schnitt, braucht eine erfolgreiche Suche fiir k;, E[X;] Zeiteinheiten.

v

Sei X die Anzahl der belegten Positionen bis eine freie Position gefunden
ist:

v

Die Average-Case Zeitkomplexitat fiir eine erfolgreiche Suche ist:
X = min{ieN: h(k,i) ist unbelegt }.

Sei E[X] der Erwartungswert von X.
Dann: die Average-Case Komplexitat einer erfolglosen Suche ist 1 4+ E[X].

Lemma

EIX] = o1 20 ElXiga] € 0(%"” ﬁ)

ln—l
— E[Xii1].
, 2 ElXial

o

.. o _ n 1
Beweis: in der Vorlesung. Damit: 1 + E[X] =1+ -5 €O (1_a). Beweis: in der Vorlesung,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/27 Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/27



	Hashing und Verkettung
	Offene Adressierung
	Lineares Sondieren
	Quadratisches Sondieren
	Doppeltes Hashing
	Effizienz der offenen Adressierung


