
Elementare Graphenalgorithmen I

Datenstrukturen und Algorithmen
Vorlesung 14: Elementare Graphenalgorithmen I

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

8. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/36

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Elementare Graphenalgorithmen I

Übersicht

1 Graphen
Terminologie
Repräsentation von Graphen

2 Graphendurchlauf
Breitensuche
Tiefensuche
Finden von Zusammenhangskomponenten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/36

Elementare Graphenalgorithmen I Graphen

Übersicht

1 Graphen
Terminologie
Repräsentation von Graphen

2 Graphendurchlauf
Breitensuche
Tiefensuche
Finden von Zusammenhangskomponenten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke

I Darstellung von topologischen Informationen (Karten, . . .)
I Darstellung von elektronischen Schaltungen
I Vorranggraphen (precedence graph), Ablaufpläne, . . .
I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke
I Darstellung von topologischen Informationen (Karten, . . .)

I Darstellung von elektronischen Schaltungen
I Vorranggraphen (precedence graph), Ablaufpläne, . . .
I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke
I Darstellung von topologischen Informationen (Karten, . . .)
I Darstellung von elektronischen Schaltungen

I Vorranggraphen (precedence graph), Ablaufpläne, . . .
I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke
I Darstellung von topologischen Informationen (Karten, . . .)
I Darstellung von elektronischen Schaltungen
I Vorranggraphen (precedence graph), Ablaufpläne, . . .

I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke
I Darstellung von topologischen Informationen (Karten, . . .)
I Darstellung von elektronischen Schaltungen
I Vorranggraphen (precedence graph), Ablaufpläne, . . .
I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

I (Computer-)Netzwerke
I Darstellung von topologischen Informationen (Karten, . . .)
I Darstellung von elektronischen Schaltungen
I Vorranggraphen (precedence graph), Ablaufpläne, . . .
I Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

Elementare Graphenalgorithmen I Graphen

Was ist ein gerichteter Graph? (I)

Gerichteter Graph
Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V ,E)

mit
I einer Menge Knoten (vertices) V und
I einer Menge (geordneter) Paare von Knoten E ⊆ V × V , die

(gerichtete) Kanten (edges) genannt werden.
I Falls E eine Menge ungeordneter Paare ist, heißt G ungerichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/36

Elementare Graphenalgorithmen I Graphen

Was ist ein gerichteter Graph? (I)

Gerichteter Graph
Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V ,E) mit

I einer Menge Knoten (vertices) V und

I einer Menge (geordneter) Paare von Knoten E ⊆ V × V , die
(gerichtete) Kanten (edges) genannt werden.

I Falls E eine Menge ungeordneter Paare ist, heißt G ungerichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/36

Elementare Graphenalgorithmen I Graphen

Was ist ein gerichteter Graph? (I)

Gerichteter Graph
Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V ,E) mit

I einer Menge Knoten (vertices) V und
I einer Menge (geordneter) Paare von Knoten E ⊆ V × V , die

(gerichtete) Kanten (edges) genannt werden.

I Falls E eine Menge ungeordneter Paare ist, heißt G ungerichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/36

Elementare Graphenalgorithmen I Graphen

Was ist ein gerichteter Graph? (I)

Gerichteter Graph
Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V ,E) mit

I einer Menge Knoten (vertices) V und
I einer Menge (geordneter) Paare von Knoten E ⊆ V × V , die

(gerichtete) Kanten (edges) genannt werden.
I Falls E eine Menge ungeordneter Paare ist, heißt G ungerichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/36

Elementare Graphenalgorithmen I Graphen

Was ist ein gerichteter Graph? (I)

Beispiel

I V = {A, . . . ,F }
I E = { (A,B), (A,D), (B,E), (C ,E), (C ,F), (D,B), (E ,D), (F ,F) }

Kante Knoten
A B C

FED

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .
I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.
I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .

I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.
I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .
I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.

I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .
I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.
I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .
I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.
I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (I)

Teilgraph
Ein Teilgraph (subgraph) eines Graphen G = (V ,E) ist ein Graph
G ′ = (V ′,E ′) mit:

I V ′ ⊆ V und E ′ ⊆ E .
I Außerdem ist E ′ ⊆ V ′ × V ′ wegen der Grapheigenschaft von G ′.
I Ist V ′ ⊂ V und E ′ ⊂ E , so heißt G ′ echter (proper) Teilgraph.

Symmetrischer Graph
Der Graph G heißt symmetrisch, wenn aus (v ,w) ∈ E folgt (w , v) ∈ E .

I Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (II)

Vollständiger Graph
Der Graph G ist vollständig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent
Knoten w ist adjazent zu v , wenn (v ,w) ∈ E .

Transponieren
Transponiert man G (transpose graph), so erhält man GT = (V ,E ′) mit
(v ,w) ∈ E ′ gdw. (w , v) ∈ E .

I In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (II)

Vollständiger Graph
Der Graph G ist vollständig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent
Knoten w ist adjazent zu v , wenn (v ,w) ∈ E .

Transponieren
Transponiert man G (transpose graph), so erhält man GT = (V ,E ′) mit
(v ,w) ∈ E ′ gdw. (w , v) ∈ E .

I In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (II)

Vollständiger Graph
Der Graph G ist vollständig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent
Knoten w ist adjazent zu v , wenn (v ,w) ∈ E .

Transponieren
Transponiert man G (transpose graph), so erhält man GT = (V ,E ′) mit
(v ,w) ∈ E ′ gdw. (w , v) ∈ E .

I In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (II)

Vollständiger Graph
Der Graph G ist vollständig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent
Knoten w ist adjazent zu v , wenn (v ,w) ∈ E .

Transponieren
Transponiert man G (transpose graph), so erhält man GT = (V ,E ′) mit
(v ,w) ∈ E ′ gdw. (w , v) ∈ E .

I In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (III)

A B

ED

C

F
Teilgraph

A B

ED Vollständiger (und symmetrischer) Digraph
auf vier Knoten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/36

Elementare Graphenalgorithmen I Graphen

Terminologie bei Graphen (III)

A B

ED

C

F
Teilgraph

A B

ED Vollständiger (und symmetrischer) Digraph
auf vier Knoten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w

Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.
I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).

I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (I)
Weg, Pfad
Ein Weg von Knoten v nach w ist eine Folge von Kanten (vi , vi+1):

v0 v1 v2 . . . vk−1 vk , so dass v0 = v und vk = w
Ein Weg, bei dem alle vi 6= vj für i 6= j verschieden sind, heißt Pfad.

I Länge eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit
Knoten w heißt erreichbar von v , wenn es einen Pfad von v nach w gibt.

Zyklus
Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

I Ein Zyklus der Form vv heißt Schleife (loop, self-cycle).
I Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen I Graphen

Pfade und Zyklen (II)

Schleife

Zyklus

A B C

FED

A B E D B und C F F wären hier Beispiele für Wege.

E D B und C F sind Pfade.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (I)

Beim ungerichteten Graphen G :

Zusammenhang

I G heißt zusammenhängend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.

I Eine Zusammenhangskomponente (connected component) von G ist
ein maximaler zusammenhängender Teilgraph von G .

I In einer Ansammlung von Graphen heißt ein Graph maximal, wenn er
von keinem anderen dieser Graphen ein echter Teilgraph ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (I)

Beim ungerichteten Graphen G :

Zusammenhang

I G heißt zusammenhängend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.

I Eine Zusammenhangskomponente (connected component) von G ist
ein maximaler zusammenhängender Teilgraph von G .

I In einer Ansammlung von Graphen heißt ein Graph maximal, wenn er
von keinem anderen dieser Graphen ein echter Teilgraph ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (I)

Beim ungerichteten Graphen G :

Zusammenhang

I G heißt zusammenhängend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.

I Eine Zusammenhangskomponente (connected component) von G ist
ein maximaler zusammenhängender Teilgraph von G .

I In einer Ansammlung von Graphen heißt ein Graph maximal, wenn er
von keinem anderen dieser Graphen ein echter Teilgraph ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (II)

Beim gerichteten Graphen G :

Zusammenhang

I G heißt stark zusammenhängend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

I G heißt schwach zusammenhängend, wenn der zugehörige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhängend ist.

I Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhängender Teilgraph von G .

I Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (II)

Beim gerichteten Graphen G :

Zusammenhang

I G heißt stark zusammenhängend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

I G heißt schwach zusammenhängend, wenn der zugehörige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhängend ist.

I Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhängender Teilgraph von G .

I Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (II)

Beim gerichteten Graphen G :

Zusammenhang

I G heißt stark zusammenhängend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

I G heißt schwach zusammenhängend, wenn der zugehörige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhängend ist.

I Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhängender Teilgraph von G .

I Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/36

Elementare Graphenalgorithmen I Graphen

Zusammenhängende Graphen (II)

Beim gerichteten Graphen G :

Zusammenhang

I G heißt stark zusammenhängend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

I G heißt schwach zusammenhängend, wenn der zugehörige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhängend ist.

I Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhängender Teilgraph von G .

I Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/36

Elementare Graphenalgorithmen I Graphen

Ungerichtete, zusammenhängende Graphen

A

D
G

B

F

H

J

I

E

C

Ein ungerichteter Graph; Was sind die Zusammenhangskomponenten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/36

Elementare Graphenalgorithmen I Graphen

Ungerichtete, zusammenhängende Graphen

A

D
G

B

F

H

J

I

E

C

Die Zusammenhangskomponenten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/36

Elementare Graphenalgorithmen I Graphen

Starke Zusammenhangskomponenten

Zusammenhangskomponenten

Ein nicht-zusammenhängender Digraph, aufgeteilt in seine maximalen
zusammenhängenden Teilgraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzmatrix

Sei G = (V ,E) mit |V | = n, |E | = m und V = { v1, . . . , vn }.

Adjazenzmatrix
Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n × n Matrix
A gegeben, wobei A(i , j) = 1, wenn (vi , vj) ∈ E , sonst 0.

I Wenn G ungerichtet ist, ergibt sich symmetrisches A (d. h. A = AT).
Dann muss nur die Hälfte gespeichert werden.

⇒ Platzbedarf: Θ(n2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzmatrix

Sei G = (V ,E) mit |V | = n, |E | = m und V = { v1, . . . , vn }.

Adjazenzmatrix
Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n × n Matrix
A gegeben, wobei A(i , j) = 1, wenn (vi , vj) ∈ E , sonst 0.

I Wenn G ungerichtet ist, ergibt sich symmetrisches A (d. h. A = AT).
Dann muss nur die Hälfte gespeichert werden.

⇒ Platzbedarf: Θ(n2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzmatrix

Sei G = (V ,E) mit |V | = n, |E | = m und V = { v1, . . . , vn }.

Adjazenzmatrix
Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n × n Matrix
A gegeben, wobei A(i , j) = 1, wenn (vi , vj) ∈ E , sonst 0.

I Wenn G ungerichtet ist, ergibt sich symmetrisches A (d. h. A = AT).
Dann muss nur die Hälfte gespeichert werden.

⇒ Platzbedarf: Θ(n2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzmatrix

Sei G = (V ,E) mit |V | = n, |E | = m und V = { v1, . . . , vn }.

Adjazenzmatrix
Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n × n Matrix
A gegeben, wobei A(i , j) = 1, wenn (vi , vj) ∈ E , sonst 0.

I Wenn G ungerichtet ist, ergibt sich symmetrisches A (d. h. A = AT).
Dann muss nur die Hälfte gespeichert werden.

⇒ Platzbedarf: Θ(n2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzliste

Adjazenzliste
Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthält.

I Der i-te Arrayeintrag enthält alle Kanten von G , die von vi
„ausgehen“.

I Ist G ungerichtet, dann werden Kanten doppelt gespeichert.
I Kanten, die in G nicht vorkommen, benötigen keinen Speicherplatz.
⇒ Platzbedarf: Θ(n + m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzliste

Adjazenzliste
Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthält.

I Der i-te Arrayeintrag enthält alle Kanten von G , die von vi
„ausgehen“.

I Ist G ungerichtet, dann werden Kanten doppelt gespeichert.

I Kanten, die in G nicht vorkommen, benötigen keinen Speicherplatz.
⇒ Platzbedarf: Θ(n + m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzliste

Adjazenzliste
Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthält.

I Der i-te Arrayeintrag enthält alle Kanten von G , die von vi
„ausgehen“.

I Ist G ungerichtet, dann werden Kanten doppelt gespeichert.
I Kanten, die in G nicht vorkommen, benötigen keinen Speicherplatz.

⇒ Platzbedarf: Θ(n + m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/36

Elementare Graphenalgorithmen I Graphen

Repräsentation von Graphen – Adjazenzliste

Adjazenzliste
Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthält.

I Der i-te Arrayeintrag enthält alle Kanten von G , die von vi
„ausgehen“.

I Ist G ungerichtet, dann werden Kanten doppelt gespeichert.
I Kanten, die in G nicht vorkommen, benötigen keinen Speicherplatz.
⇒ Platzbedarf: Θ(n + m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/36

Elementare Graphenalgorithmen I Graphen

Darstellung eines ungerichteten Graphen

AdjazenzlisteD

A B

E

C

B E
A E D C
D B
C E B
D B A

A
B
C
D
E


0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0


Adjazenzmatrix

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/36

Elementare Graphenalgorithmen I Graphen

Darstellung eines gerichteten Graphen

Adjazenzliste

B D
E
F E
B
D
F

A
B
C
D
E
F

A B C

FED


0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


Adjazenzmatrix

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/36

Elementare Graphenalgorithmen I Graphendurchlauf

Übersicht

1 Graphen
Terminologie
Repräsentation von Graphen

2 Graphendurchlauf
Breitensuche
Tiefensuche
Finden von Zusammenhangskomponenten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (I)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

I Tiefensuche
I Breitensuche

I Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

I Nun müssen wir uns aber alle bereits gefundenen Knoten merken.
I Algorithmen auf dieser Basis sind in O(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (I)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

I Tiefensuche
I Breitensuche

I Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

I Nun müssen wir uns aber alle bereits gefundenen Knoten merken.
I Algorithmen auf dieser Basis sind in O(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (I)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

I Tiefensuche
I Breitensuche

I Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

I Nun müssen wir uns aber alle bereits gefundenen Knoten merken.
I Algorithmen auf dieser Basis sind in O(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (I)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

I Tiefensuche
I Breitensuche

I Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

I Nun müssen wir uns aber alle bereits gefundenen Knoten merken.

I Algorithmen auf dieser Basis sind in O(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (I)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

I Tiefensuche
I Breitensuche

I Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

I Nun müssen wir uns aber alle bereits gefundenen Knoten merken.
I Algorithmen auf dieser Basis sind in O(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36

Elementare Graphenalgorithmen I Graphendurchlauf

Graphendurchlauf (II)

Beispiele

I Finden von (starken) Zusammenhangskomponenten,
I Topologische Sortierung,
I Kritische-Pfad-Analyse,
I Finden von 2-Zusammenhangskomponenten (biconnected

components),
I . . . und viele weitere . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).

I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“
Nachfolger w :

I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :

I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche „gleichzeitig“ von allen solchen w aus weiter.

I Kein Backtracking.
I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche „gleichzeitig“ von allen solchen w aus weiter.
I Kein Backtracking.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche – Beispiel

Beginn der Breitensuche

Fertig!

Erforsche alle folgenden nicht-gefundenen Knoten

Erforsche alle folgenden nicht-gefundenen Knoten

G

A

B

C

D

EF

G

A

B

D

EF

G

C

A

B

C

D

EF

A

B

D

EF

G

C

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/36

Elementare Graphenalgorithmen I Graphendurchlauf

Breitensuche – Implementierung
1 void bfsSearch(List adjList[n], int n, int start) {
2 int color[n];
3 Queue wait; // zu verarbeitende Knoten
4 for (int i = 0; i < n; i++) {
5 color[i] = WHITE; // noch nicht gefunden
6 }
7 color[start] = GRAY; // start ist noch zu verarbeiten
8 wait.enqueue(start);
9 while (!wait.isEmpty()) {

10 // nächster noch unverarbeiteter Knoten
11 int v = wait.dequeue();
12 foreach (w in adjList[v]) {
13 if (color[w] == WHITE) { // neuer ("ungefundener") Knoten
14 color[w] = GRAY; // w ist noch zu verarbeiten
15 wait.enqueue(w);
16 }
17 }
18 color[v] = BLACK; // v ist abgeschlossen
19 }
20 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.

I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die
mit d + 1 angegangen.

I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.
I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste

Kantendistanz zum Startknoten.
I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in

first-out) organisiert.
I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn

es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.

I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.
I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste

Kantendistanz zum Startknoten.
I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in

first-out) organisiert.
I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn

es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.
I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.

I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste
Kantendistanz zum Startknoten.

I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.
I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.

I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste
Kantendistanz zum Startknoten.

I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.
I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.

I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste
Kantendistanz zum Startknoten.

I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.
I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.

I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste
Kantendistanz zum Startknoten.

I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Breitensuche
I Knoten werden in der Reihenfolge mit zunehmenden Abstand vom

Startknoten aus besucht.
I Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die

mit d + 1 angegangen.
I Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.

I Die Tiefe des Knotens v im Breitensuchbaum ist seine kürzeste
Kantendistanz zum Startknoten.

I Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

I Es gibt eine einzige „Verarbeitungsmöglichkeit“ für v , nämlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexität der Breitensuche)

Die Zeitkomplexität ist O(|V |+ |E |), der Platzbedarf Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.

Die zugrundeliegende Strategie ist:
I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).

I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“
Nachfolger w :

I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :

I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:

I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht
mehr weiter geht.

I Dann backtracke von w nach v .
I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :

I „Überprüfe“ die Kante, ohne aber w zu besuchen.
I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.

I Dann backtracke von w nach v .
I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :

I „Überprüfe“ die Kante, ohne aber w zu besuchen.
I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :

I „Überprüfe“ die Kante, ohne aber w zu besuchen.
I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche – Beispiel (I)

Beginn der Tiefensuche Erforsche einen Knoten

Erforsche einen Knoten Sackgasse!
Backtracke und erforsche den nächsten Knoten

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche – Beispiel (II)

Nächster Zustand wurde bereits gefunden
Backtracke und erforsche den nächsten Knoten

B ist eine Sackgasse
Backtracke und erforsche den nächsten Knoten

D ist eine Sackgasse
Backtracke und erforsche den nächsten Knoten

Nächster Zustand wurde bereits gefunden
Backtracke und erforsche den nächsten Knoten

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche – Beispiel (III)

Erforsche den nächsten KnotenC wurde bereits gefunden
Backtracke und erforsche den nächsten Knoten

Beide nächsten Knoten wurden bereits gefunden Fertig!

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

G

A

B

C

D

EF

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/36

Elementare Graphenalgorithmen I Graphendurchlauf

Tiefensuche – Implementierung

1 void dfsRec(List adjList[n], int n, int start, int &color[n]) {
2 color[start] = GRAY;
3 foreach (next in adjList[start]) {
4 if (color[next] == WHITE) {
5 dfsSRec(adjList, n, next, color);
6 }
7 }
8 color[start] = BLACK;
9 }

11 void dfsSearch(List adjList[n], int n, int start) {
12 int color[n];
13 for (int i = 0; i < n; i++) { // Initialisierung
14 color[i] = WHITE;
15 }
16 dfsRec(adjList, n, start, color);
17 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.

I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.

I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.

I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:
1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.

2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine
Nachfolger entdeckt werden).

⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).

⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Eigenschaften der Tiefensuche

I Erforsche einen Pfad so weit wie möglich, bevor man backtrackt.
I Das entspricht der Reihenfolge der rekursiven Aufrufe.
I Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge geprüft.
I Es gibt zwei „Verarbeitungsmöglichkeiten“ für einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als „abgearbeitet“ markiert wird (und alle seine

Nachfolger entdeckt werden).
⇒ Diese letztgenannte Möglichkeit macht Tiefensuche beliebt.

Theorem (Komplexität der Tiefensuche)

Zeitkomplexität: O(|V |+ |E |), Platzkomplexität: Θ(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.
I Wenn es weitere Knoten gibt, wähle einen und wiederhole das

Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.
I Wenn es weitere Knoten gibt, wähle einen und wiederhole das

Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:

I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.
I Wenn es weitere Knoten gibt, wähle einen und wiederhole das

Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.

I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit
DFS.

I Wenn es weitere Knoten gibt, wähle einen und wiederhole das
Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.

I Wenn es weitere Knoten gibt, wähle einen und wiederhole das
Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.
I Wenn es weitere Knoten gibt, wähle einen und wiederhole das

Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (I)
Problem
Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

Lösung

I Konstruiere den zugehörigen symmetrischen Digraph (mit 2 · |E |
Kanten).

I Verwende Tiefensuche:
I Beginne bei einem beliebigen Knoten.
I Finde alle anderen Knoten (und Kanten) in der selben Komponente mit

DFS.
I Wenn es weitere Knoten gibt, wähle einen und wiederhole das

Verfahren.

I Man erhält einen Tiefensuchwald.
I Die Zeitkomplexität ist Θ(|V |+ |E |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (II)

1 // Ausgabe in cc: cc[v] = Komponente von Knoten v
2 void connComponents(List adjLst[n], int n, int &cc[n]) {
3 int color[n], ccNum = 0;
4 for (int v = 0; v < n; v++) { // Initialisierung
5 color[v] = WHITE;
6 }
7 for (int v = 0; v < n; v++) {
8 if (color[v] == WHITE) { // weitere Komponente
9 dfsSearch(adjLst, n, v, ccNum++, cc);

10 }
11 }
12 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/36

Elementare Graphenalgorithmen I Graphendurchlauf

Finden von Zusammenhangskomponenten (III)

1 void dfsSearch(List adjLst[n], int n, int start, int &color[n],
2 int ccNum, int &cc[n]) {
3 color[start] = GRAY;
4 cc[start] = ccNum; // speichere Nummer der Komponente von v
5 foreach (next in adjLst[start]) {
6 if (color[next] == WHITE) {
7 dfsSearch(adjLst, n, next, color, ccNum, cc);
8 }
9 }

10 color[start] = BLACK;
11 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/36

	Graphen
	Terminologie
	Repräsentation von Graphen

	Graphendurchlauf
	Breitensuche
	Tiefensuche
	Finden von Zusammenhangskomponenten

