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Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

» (Computer-)Netzwerke
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Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

Beispiele

» (Computer-)Netzwerke

v

Darstellung von topologischen Informationen (Karten, ...)

v

Darstellung von elektronischen Schaltungen

v

Vorranggraphen (precedence graph), Ablaufplane, ...

v

Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.
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Was ist ein gerichteter Graph? (1)

Gerichteter Graph

Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V, E)
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Was ist ein gerichteter Graph? (1)

Gerichteter Graph

Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V, E) mit
» einer Menge Knoten (vertices) V und

» einer Menge (geordneter) Paare von Knoten E C V' x V, die
(gerichtete) Kanten (edges) genannt werden.

» Falls E eine Menge ungeordneter Paare ist, heiBt G ungerichtet.
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Was ist ein gerichteter Graph? (1)

Beispiel

» V={A...,F}
» E={(A B),(A D), (B E) (CE)(CF) (DB),(E D) (F,F)}

Kante-----» " Knoten
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Terminologie bei Graphen (1)

Teilgraph

Ein Teilgraph (subgraph) eines Graphen G = (V/, E) ist ein Graph
G = (V' E') mit:
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G = (V' E') mit:

» V/CVund E'CE.
» AuBerdem ist E’ C V' x V/ wegen der Grapheigenschaft von G’.
» Ist V/'C V und E' C E, so heiBt G’ echter (proper) Teilgraph.

Symmetrischer Graph
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Ein Teilgraph (subgraph) eines Graphen G = (V/, E) ist ein Graph
G = (V' E') mit:

» V/CVund E'CE.
» AuBerdem ist E’ C V' x V/ wegen der Grapheigenschaft von G’.
» Ist V/'C V und E' C E, so heiBt G’ echter (proper) Teilgraph.

Symmetrischer Graph

Der Graph G heiBt symmetrisch, wenn aus (v, w) € E folgt (w, v) € E.

» Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.
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Terminologie bei Graphen (1)

Volistandiger Graph

Der Graph G ist vollstandig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.
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Terminologie bei Graphen (1)

Volistandiger Graph

Der Graph G ist vollstandig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent

Knoten w ist adjazent zu v, wenn (v, w) € E.
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Terminologie bei Graphen (1)

Volistandiger Graph

Der Graph G ist vollstandig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Knoten w ist adjazent zu v, wenn (v, w) € E.

Transponieren

Transponiert man G (transpose graph), so erhilt man G7 = (V, E’) mit
(v,w) € E' gdw. (w,v) € E.
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Terminologie bei Graphen (1)

Volistandiger Graph

Der Graph G ist vollstandig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Knoten w ist adjazent zu v, wenn (v, w) € E.

Transponieren

Transponiert man G (transpose graph), so erhilt man G7 = (V, E’) mit
(v,w) € E' gdw. (w,v) € E.

» In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36



Elementare Graphenalgorithmen | Graphen

Terminologie bei Graphen (111)

@ Teilgraph
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Terminologie bei Graphen (111)

@ Teilgraph

Vollstandiger (und symmetrischer) Digraph
auf vier Knoten
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Pfade und Zyklen (1)

Weg, Pfad

Ein Weg von Knoten v nach w ist eine Folge von Kanten (v;, vit1):

VOVIVo...Vk_1Vk sodass vg =vund vy =w
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Pfade und Zyklen (1)

Weg, Pfad

Ein Weg von Knoten v nach w ist eine Folge von Kanten (v;, vit1):
VOVIVo...Vk_1Vk sodass vg =vund vy =w
Ein Weg, bei dem alle v; # v; fiir i # j verschieden sind, heit Pfad.

> Lange eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit

Knoten w heiBt erreichbar von v, wenn es einen Pfad von v nach w gibt.

Zyklus

Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

» Ein Zyklus der Form vv heiBt Schleife (loop, self-cycle).
» Ein Graph ist azyklisch, wenn er keine Zyklen hat.
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Pfade und Zyklen (II)

- Schleife

A

ABE DB und CF F wéren hier Beispiele fir Wege.
E D B und C F sind Pfade.
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Zusammenhangende Graphen (1)

Beim ungerichteten Graphen G:

Zusammenhang

> G heiBt zusammenhangend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.
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Zusammenhangende Graphen (1)

Beim ungerichteten Graphen G:

Zusammenhang

» G heit zusammenhangend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.

» Eine Zusammenhangskomponente (connected component) von G ist
ein maximaler zusammenhangender Teilgraph von G.

> In einer Ansammlung von Graphen heiBt ein Graph maximal, wenn er
von keinem anderen dieser Graphen ein echter Teilgraph ist.
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Zusammenhangende Graphen (1)

Beim gerichteten Graphen G:

Zusammenhang

» G heiBt stark zusammenhangend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.
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ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
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Zusammenhangende Graphen (1)

Beim gerichteten Graphen G:

Zusammenhang

» G heiBt stark zusammenhangend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

» G heiBt schwach zusammenhangend, wenn der zugehorige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhangend ist.

> Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhangender Teilgraph von G.

» Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.
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Ungerichtete, zusammenhangende Graphen

G

Ein ungerichteter Graph; Was sind die Zusammenhangskomponenten?
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Ungerichtete, zusammenhangende Graphen

(&)

Die Zusammenhangskomponenten.
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Starke Zusammenhangskomponenten

Zusammenhangskomponenten

Ein nicht-zusammenhangender Digraph, aufgeteilt in seine maximalen
zusammenhangenden Teilgraphen.
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Reprasentation von Graphen — Adjazenzmatrix

Sei G=(V,E)mit |V|=n, |[E|=mund V={vi,...,vp}.
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Sei G=(V,E)mit |V|=n, |[E|=mund V={vi,...,vp}.

Adjazenzmatrix

Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n x n Matrix
A gegeben, wobei A(/, j) =1, wenn (v;, vj) € E, sonst 0.

» Wenn G ungerichtet ist, ergibt sich symmetrisches A (d.h. A= AT).
Dann muss nur die Halfte gespeichert werden.
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Sei G=(V,E)mit |V|=n, |[E|=mund V={vi,...,vp}.

Adjazenzmatrix

Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n x n Matrix
A gegeben, wobei A(/, j) =1, wenn (v;, vj) € E, sonst 0.

» Wenn G ungerichtet ist, ergibt sich symmetrisches A (d.h. A= AT).
Dann muss nur die Halfte gespeichert werden.

= Platzbedarf: ©(n?).
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Reprasentation von Graphen — Adjazenzliste

Adjazenzliste

Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthalt.

» Der i-te Arrayeintrag enthalt alle Kanten von G, die von v;
»ausgehen”.
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Reprasentation von Graphen — Adjazenzliste

Adjazenzliste

Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthalt.

» Der i-te Arrayeintrag enthalt alle Kanten von G, die von v;
»ausgehen”.

» Ist G ungerichtet, dann werden Kanten doppelt gespeichert.
» Kanten, die in G nicht vorkommen, bendtigen keinen Speicherplatz.
= Platzbedarf: ©(n+ m).
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Darstellung eines ungerichteten Graphen

Adjazenzliste

01 0 01
1 0111
01 010
01101
11010

Adjazenzmatrix
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Darstellung eines gerichteten Graphen

—{B[1-D[]
E1]
—{FI-{ET]

TMmMOoT O >

Adjazenzliste

010100
0 000 1O
0 00011
01 0000
0 00100
0 00 O0O01

Adjazenzmatrix
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@ Tiefensuche
@ Finden von Zusammenhangskomponenten
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Graphendurchlauf (1)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).
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|
Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:
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» Breitensuche
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Graphendurchlauf (1)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

|
Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

» Tiefensuche

» Breitensuche

» Es handelt sich um Verallgemeinerungen von Strategien zur
Baumtraversierung.

» Nun missen wir uns aber alle bereits gefundenen Knoten merken.
> Algorithmen auf dieser Basis sind in O(|V| + | E|).
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Graphendurchlauf (I1)

» Finden von (starken) Zusammenhangskomponenten,
» Topologische Sortierung,
» Kiritische-Pfad-Analyse,

» Finden von 2-Zusammenhangskomponenten (biconnected
components),

» . ..und viele weitere ...

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/36



Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als ,nicht-gefunden” (WHITE) markiert.
Die zugrundeliegende Strategie ist:
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Breitensuche

Breitensuche (Breadth-First Search, BFS)
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Breitensuche

Breitensuche (Breadth-First Search, BFS)

Am Anfang seien alle Knoten als ,nicht-gefunden” (WHITE) markiert.
Die zugrundeliegende Strategie ist:
» Markiere den aktuellen Knoten v als , gefunden® (GRAY).

» Fir jede Kante (v, w) im Graph G mit ,nicht-gefundenem*
Nachfolger w:

» Suche , gleichzeitig" von allen solchen w aus weiter.
» Kein Backtracking.

» Markiere Knoten v als ,,abgeschlossen” (BLACK).

» Man erhalt die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.
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Elementare Graphenalgorithmen | Graphendurchlauf

Breitensuche — Beispiel
0@ (D)
® ® G
E—>J«—E E—O«—®

Beginn der Breitensuche Erforsche alle folgenden nicht-gefundenen Knoten

G\e ©

Erforsche alle folgenden nicht-gefundenen Knoten Fertig!
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Elementare Graphenalgorithmen | Graphendurchlauf

Breitensuche — Implementierung
1 void bfsSearch(List adjList[n], int n, int start) {

2 int color([n];

3 Queue wait; // zu verarbeitende Knoten

4 for (imt i = 0; i < n; i++) {

5 color[i] = WHITE; // noch nicht gefunden

6 1}

7 color[start] = GRAY; // start ist moch zu verarbeiten
8 wait.enqueue(start);

9 while (!wait.isEmpty()) {

10 // ndchster noch unverarbeiteter Knoten

1 int v = wait.dequeue();

12 foreach (w in adjList([v]) {

13 if (color[w] == WHITE) { // neuer ("ungefundener") Knoten
14 color[w] = GRAY; // w ist noch zu verarbeiten

15 wait.enqueue (w) ;

16 }

17 }

18 color[v] = BLACK; // v ist abgeschlossen

19}

20
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Eigenschaften der Breitensuche

» Knoten werden in der Reihenfolge mit zunehmenden Abstand vom
Startknoten aus besucht.
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Elementare Graphenalgorithmen | Graphendurchlauf

Eigenschaften der Breitensuche

» Knoten werden in der Reihenfolge mit zunehmenden Abstand vom
Startknoten aus besucht.
» Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die
mit d + 1 angegangen.
» Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.
» Die Tiefe des Knotens v im Breitensuchbaum ist seine kiirzeste
Kantendistanz zum Startknoten.
» Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.
» Es gibt eine einzige ,Verarbeitungsmoglichkeit™ fiir v, namlich, wenn
es aus der Queue enthommen wird.

Theorem (Komplexitat der Breitensuche)
), der Platzbedarf ©(|V]).

Die Zeitkomplexitit ist O(|V| + |E
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Tiefensuche

Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als ,nicht-gefunden" (WHITE) markiert.
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Tiefensuche

Tiefensuche (Depth-First Search, DFS)
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» Suche rekursiv von w aus, d. h.:
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» Dann backtracke von w nach v.

» Fir jede Kante (v, w) in G mit gefundenem Nachfolger w:
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Elementare Graphenalgorithmen | Graphendurchlauf

Tiefensuche

Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als ,nicht-gefunden" (WHITE) markiert.
Die zugrundeliegende Strategie ist:

» Markiere den aktuellen Knoten v als , gefunden® (GRAY).
» Fir jede Kante (v, w) im Graph G mit ,nicht-gefundenem*
Nachfolger w:
» Suche rekursiv von w aus, d. h.:

» Erforsche Kante (v, w), besuche w, forsche von dort aus, bis es nicht
mehr weiter geht.

» Dann backtracke von w nach v.
» Fir jede Kante (v, w) in G mit gefundenem Nachfolger w:
» ,Uberpriife* die Kante, ohne aber w zu besuchen.

» Markiere Knoten v als ,,abgeschlossen” (BLACK).

> Man erhilt wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.
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Elementare Graphenalgorithmen | Graphendurchlauf

Tiefensuche — Beispiel (1)

Beginn der Tiefensuche Erforsche einen Knoten

(A) (D) (A) (D)
® \@ ® %)

G, <—(§' G, © (&

Sackgasse!
Backtracke und erforsche den nachsten Knoten

Erforsche einen Knoten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/36



Elementare Graphenalgorithmen | Graphendurchlauf

Tiefensuche — Beispiel (Il)

Nachster Zustand wurde bereits gefunden Nachster Zustand wurde bereits gefunden
Backtracke und erforsche den nachsten Knoten Backtracke und erforsche den nachsten Knoten

D ist eine Sackgasse B ist eine Sackgasse
Backtracke und erforsche den nachsten Knoten Backtracke und erforsche den nachsten Knoten
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Elementare Graphenalgorithmen | Graphendurchlauf

Tiefensuche — Beispiel (I11)

C wurde bereits gefunden E :
N rforsche den nachsten Knoten
Backtracke und erforsche den nachsten Knoten

Beide nachsten Knoten wurden bereits gefunden Fertig!
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Tiefensuche — Implementierung

1 void dfsRec(List adjList[n], int n, int start, int &color[n]) {
2 color[start] = GRAY;

3 foreach (next in adjList[start]) {

4 if (color[next] == WHITE) {

5 dfsSRec(adjList, n, next, color);

6 }

7}

8 color[start] = BLACK;

9}

11 void dfsSearch(List adjList[n], int n, int start) {
12 int color[n];

13 for (int i = 0; i < n; i++) { // Initialisierung
14 color[i] = WHITE;

15}
16 dfsRec(adjList, n, start, color);
17 }
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Eigenschaften der Tiefensuche

» Erforsche einen Pfad so weit wie moglich, bevor man backtrackt.
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Eigenschaften der Tiefensuche
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> Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge gepriift.
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Eigenschaften der Tiefensuche
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= Diese letztgenannte Moglichkeit macht Tiefensuche beliebt.
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Eigenschaften der Tiefensuche

v

Erforsche einen Pfad so weit wie moglich, bevor man backtrackt.

v

Das entspricht der Reihenfolge der rekursiven Aufrufe.

v

Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge gepriift.

v

Es gibt zwei ,Verarbeitungsmoglichkeiten” fiir einen Knoten:

1. Wenn der Knoten entdeckt wird.
2. Wenn der Knoten als ,, abgearbeitet” markiert wird (und alle seine
Nachfolger entdeckt werden).

= Diese letztgenannte Moglichkeit macht Tiefensuche beliebt.

Theorem (Komplexitat der Tiefensuche)

Zeitkomplexitat: O(|V| + |E|), Platzkomplexitat: ©(|V]).
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Finden von Zusammenhangskomponenten (1)

Finde die Zusammenhangskomponenten des ungerichteten Graphen G.
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» Konstruiere den zugehdrigen symmetrischen Digraph (mit 2 - |E|
Kanten).
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Finden von Zusammenhangskomponenten (1)

Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

» Konstruiere den zugehdrigen symmetrischen Digraph (mit 2 - |E|
Kanten).

» Verwende Tiefensuche:

» Beginne bei einem beliebigen Knoten.

» Finde alle anderen Knoten (und Kanten) in der selben Komponente mit
DFS.

» Wenn es weitere Knoten gibt, wahle einen und wiederhole das
Verfahren.
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Finden von Zusammenhangskomponenten (1)

Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

» Konstruiere den zugehdrigen symmetrischen Digraph (mit 2 - |E|
Kanten).

» Verwende Tiefensuche:

» Beginne bei einem beliebigen Knoten.

» Finde alle anderen Knoten (und Kanten) in der selben Komponente mit
DFS.

» Wenn es weitere Knoten gibt, wahle einen und wiederhole das
Verfahren.

» Man erhilt einen Tiefensuchwald.

» Die Zeitkomplexitat ist ©(| V| + |E|).
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Finden von Zusammenhangskomponenten (1)

1 // Ausgabe in cc: ccl[v] = Komponente von Knoten v
2 void connComponents(List adjLst[n], int n, int &cc[n]) {
3 int color[n], ccNum = O;

4 for (int v = 0; v < n; v++) { // Initialisierung
5 color[v] = WHITE;

6 X

7 for (int v = 0; v < n; v++) {

8 if (color([v] == WHITE) { // weitere Komponente
9 dfsSearch(adjLst, n, v, ccNum++, cc);

10 }

1 ¥

12}
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Finden von Zusammenhangskomponenten (l11)

void dfsSearch(List adjLst[n], int n, int start, int &color[n],
int ccNum, int &ccln]) {
color[start] = GRAY;
cclstart] = ccNum; // speichere Nummer der Kompomente von v
foreach (next in adjLst([start]) {
if (color[next] == WHITE) {
dfsSearch(adjLst, n, next, color, ccNum, cc);
}
}
10 color[start] = BLACK;
1}

© N O U A W N R
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