Elementare Graphenalgorithmen |

Datenstrukturen und Algorithmen

Vorlesung 14: Elementare Graphenalgorithmen |

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

8. Juni 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/36
Ubersicht
© Graphen

@ Terminologie
@ Reprasentation von Graphen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/36

Elementare Graphenalgorithmen |

Ubersicht

@ Graphen

@ Terminologie
@ Reprasentation von Graphen

© Graphendurchlauf
@ Breitensuche
o Tiefensuche
@ Finden von Zusammenhangskomponenten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/36

Elementare Graphenalgorithmen | Graphen

Die Bedeutung von Graphen

Graphen werden in vielen (Informatik-)Anwendungen verwendet:

» (Computer-)Netzwerke

» Darstellung von topologischen Informationen (Karten, ...)
» Darstellung von elektronischen Schaltungen

» Vorranggraphen (precedence graph), Ablaufplane, ...

» Semantische Netze (z. B. Entity-Relationship-Diagramme)

Wir werden uns auf fundamentale Graphalgorithmen konzentrieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/36

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Was ist ein gerichteter Graph? (1)

Gerichteter Graph

Ein gerichteter Graph (auch: Digraph) G ist ein Paar (V, E) mit
» einer Menge Knoten (vertices) V' und

» einer Menge (geordneter) Paare von Knoten E C V x V, die
(gerichtete) Kanten (edges) genannt werden.

> Falls E eine Menge ungeordneter Paare ist, heit G ungerichtet.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/36

Terminologie bei Graphen (1)

Teilgraph

Ein Teilgraph (subgraph) eines Graphen G = (V, E) ist ein Graph

G = (V' E) mit:
> V' C Vund E' CE.
» AuBerdem ist E/ C V'’ x V' wegen der Grapheigenschaft von G’.
» Ist V/ C V und E’ C E, so heiBt G’ echter (proper) Teilgraph.

Symmetrischer Graph

Der Graph G heiBit symmetrisch, wenn aus (v, w) € E folgt (w, v) € E.

> Zu jedem ungerichteten Graphen gibt es korrespondierenden
symmetrischen Digraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen K

Elementare Graphenalgorithmen | Graphen

Was ist ein gerichteter Graph? (1)

Beispiel

» V={A...,F}
» E={(A B),(A D), (BE)(CE)(CF) (D, B)(ED),(F F)}

Kante-.--- & . Knoten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/36

Elementare Graphenalgorithmen | Graphen

Terminologie bei Graphen (I1)

Volistandiger Graph

Der Graph G ist vollstandig, wenn jedes Paar von Knoten mit einer Kante
verbunden ist.

Adjazent

Knoten w ist adjazent zu v, wenn (v, w) € E.

Transponieren

Transponiert man G (transpose graph), so erhilt man G = (V, E’) mit
(v,w) € E' gdw. (w, v) € E.
» In GT ist die Richtung der Kanten von G gerade umgedreht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/36

Elementare Graphenalgorithmen | Graphen

Terminologie bei Graphen (l11)

@ Teilgraph

Vollstandiger (und symmetrischer) Digraph
auf vier Knoten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/36

Elementare Graphenalgorithmen | Graphen

Pfade und Zyklen (II)

- Schleife

A

ABE DB und CF F waren hier Beispiele fir Wege.
E D B und C F sind Pfade.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/36

Elementare Graphenalgorithmen | Graphen
Pfade und Zyklen (1)

Weg, Pfad

Ein Weg von Knoten v nach w ist eine Folge von Kanten (v;, vit1):
VO VLVe...Vk_1 Vg sodass vg=v und vy = w
Ein Weg, bei dem alle v; # v; fiir i # j verschieden sind, heiBt Pfad.
» Lange eines Pfades(Weges) ist die Anzahl der durchlaufenen Kanten.

Erreichbarkeit

Knoten w heiBt erreichbar von v, wenn es einen Pfad von v nach w gibt.

VAT

Ein Zyklus ist ein nicht-leerer Weg bei dem der Startknoten auch
Endknoten ist.

» Ein Zyklus der Form vv heiBt Schleife (loop, self-cycle).
» Ein Graph ist azyklisch, wenn er keine Zyklen hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/36

Elementare Graphenalgorithmen | Graphen

Zusammenhangende Graphen (1)

Beim ungerichteten Graphen G:

Zusammenhang

» G heiBt zusammenhangend, wenn jeder Knoten von jedem anderen
Knoten aus erreichbar ist.

» Eine Zusammenhangskomponente (connected component) von G ist
ein maximaler zusammenhangender Teilgraph von G.

> In einer Ansammlung von Graphen heift ein Graph maximal, wenn er
von keinem anderen dieser Graphen ein echter Teilgraph ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/36

Zusammenhangende Graphen (11)

Beim gerichteten Graphen G:

Zusammenhang

» G heiBt stark zusammenhangend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

» G heiBt schwach zusammenhangend, wenn der zugehérige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhangend ist.

> Eine starke Zusammenhangskomponente von G ist ein maximaler
stark zusammenhangender Teilgraph von G.

> Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/36

Elementare Graphenalgorithmen | Graphen

Ungerichtete, zusammenhangende Graphen

(&)

Die Zusammenhangskomponenten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/36

Elementare Graphenalgorithmen | Graphen

Ungerichtete, zusammenhdngende Graphen

&) ©
o

Ein ungerichteter Graph; Was sind die Zusammenhangskomponenten?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/36

Elementare Graphenalgorithmen | Graphen

Starke Zusammenhangskomponenten

Zusammenhangskomponenten

Ein nicht-zusammenhangender Digraph, aufgeteilt in seine maximalen
zusammenhangenden Teilgraphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/36

Elementare Graphenalgorithmen | Graphen

Reprasentation von Graphen — Adjazenzmatrix

Sei G=(V,E)mit |V|=n, |[E|=mund V={vi,..., vy}

Adjazenzmatrix

Die Adjazenzmatrix-Darstellung eines Graphen ist durch eine n x n Matrix
A gegeben, wobei A(/, j) = 1, wenn (v;, v;) € E, sonst 0.

» Wenn G ungerichtet ist, ergibt sich symmetrisches A (d.h. A= AT).
Dann muss nur die Hélfte gespeichert werden.

= Platzbedarf: ©(n?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/36
Elementare Graphenalgorithmen | Graphen

Darstellung eines ungerichteten Graphen

MmO O ®>™

Adjazenzliste

01
1 0
01
01
11

Adjazenzmatrix

O ORr O
H O R KO
O R O K=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/36

Elementare Graphenalgorithmen | Graphen

Reprasentation von Graphen — Adjazenzliste

Adjazenzliste

Bei der Darstellung als Array von Adjazenzlisten gibt es ein durch die
Nummer des Knoten indiziertes Array, das jeweils verkettete Listen
(Adjazenzlisten) enthilt.

» Der i-te Arrayeintrag enthalt alle Kanten von G, die von v;
»ausgehen”.

> Ist G ungerichtet, dann werden Kanten doppelt gespeichert.
» Kanten, die in G nicht vorkommen, benétigen keinen Speicherplatz.
= Platzbedarf: ©(n+ m).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/36

Elementare Graphenalgorithmen | Graphen

Darstellung eines gerichteten Graphen

TMO O T

Adjazenzliste

OO OO oo
O OO
OO O oo

O OOOK

= O O OO

OO O+~ EFEO

Adjazenzmatrix

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/36

Ubersicht Graphendurchlauf (1)

Viele Algorithmen untersuchen jeden Knoten (und jede Kante).

|
Es gibt verschiedene Graphendurchlaufstrategien (traversal strategies), die
jeden Knoten (oder jede Kante) genau einmal besuchen:

» Tiefensuche

> Breit h
© Graphendurchlauf reitensuche

@ Breitensuche
@ Tiefensuche

v

Es handelt sich um Verallgemeinerungen von Strategien zur

) Baumtraversierung.
@ Finden von Zusammenhangskomponenten . . .
» Nun miissen wir uns aber alle bereits gefundenen Knoten merken.

Algorithmen auf dieser Basis sind in O(|V| + |E|).

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/36 Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/36
Graphendurchlauf (1) Breitensuche

Breitensuche (Breadth-First Search, BFS)

Find ki 7 h k Die zugrundeliegende Strategie ist:
» Finden von (starke sammenhangskomponente _)
nen von (starken) Zusammenhangsiempenenten » Markiere den aktuellen Knoten v als , gefunden" (GRAY).

> Topologische Sortierung, » Fir jede Kante (v, w) im Graph G mit ,nicht-gefundenem*

» Kritische-Pfad-Analyse, Nachfolger w:

» Finden von 2-Zusammenhangskomponenten (biconnected » Suche , gleichzeitig" von allen solchen w aus weiter.
components) » Kein Backtracking.

» ...und viele weitere . .. » Markiere Knoten v als ,abgeschlossen (BLACK).

» Man erhélt die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/36 Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/36

Elementare Graphenalgorithmen | Graphendurchlauf

Breitensuche — Beispiel
0@
®

Beginn der Breitensuche Erforsche alle folgenden nicht-gefundenen Knoten

d
hl

@\G (o)

Erforsche alle folgenden nicht-gefundenen Knoten Fertig!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/36

Elementare Graphenalgorithmen | Graphendurchlauf

Eigenschaften der Breitensuche

> Knoten werden in der Reihenfolge mit zunehmenden Abstand vom
Startknoten aus besucht.

» Nachdem alle Knoten mit Abstand d verarbeitet wurden, werden die
mit d 4+ 1 angegangen.
» Die Suche terminiert, wenn in Abstand d keine Knoten auftreten.
» Die Tiefe des Knotens v im Breitensuchbaum ist seine kiirzeste
Kantendistanz zum Startknoten.

» Die zu verarbeitenden Knoten werden als FIFO-Queue (first-in
first-out) organisiert.

> Es gibt eine einzige ,Verarbeitungsmoglichkeit” fiir v, namlich, wenn
es aus der Queue entnommen wird.

Theorem (Komplexitat der Breitensuche)

Die Zeitkomplexitat ist O(|V/| + |E|), der Platzbedarf ©(|V|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/36

Elementare Graphenalgorithmen | Graphendurchlauf

Breitensuche — Implementierung
1 void bfsSearch(List adjList[n], int n, int start) {

2 int color([n];

3 Queue wait; // zu werarbeitende Knoten

4 for (dnt i = 0; i < n; i++) {

5 color[i] = WHITE; // noch nicht gefunden

6

7 color[start] = GRAY; // start ist moch zu verarbeiten

8 wait.enqueue(start);

o while (!wait.isEmpty()) {

10 // ndichster mnoch unverarbeiteter Knoten

1 int v = wait.dequeue();

12 foreach (w in adjList[v]) {

13 if (color[w] == WHITE) { // neuer ("ungefundener") Knoten

14 color[w] = GRAY; // w ist noch zu verarbeiten

15 wait.enqueue (w) ;

16 }

17 }

18 color[v] = BLACK; // v ist abgeschlossen

19}

20 }
Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/36
Tiefensuche

Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als , nicht-gefunden® (WHITE) markiert.
Die zugrundeliegende Strategie ist:

» Markiere den aktuellen Knoten v als ,, gefunden" (GRAY).

» Fir jede Kante (v, w) im Graph G mit ,nicht-gefundenem*
Nachfolger w:

» Suche rekursiv von w aus, d. h.:
» Erforsche Kante (v, w), besuche w, forsche von dort aus, bis es nicht
mehr weiter geht.
» Dann backtracke von w nach v.
» Fir jede Kante (v, w) in G mit gefundenem Nachfolger w:
» ,Uberpriife" die Kante, ohne aber w zu besuchen.

» Markiere Knoten v als ,abgeschlossen (BLACK).

» Man erhélt wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/36

Elementare Graphenalgorithmen | Graphendurchlauf Elementare Graphenalgorithmen | Graphendurchlauf

Al D

Nachster Zustand wurde bereits gefunden Nachster Zustand wurde bereits gefunden
Backtracke und erforsche den niachsten Knoten Backtracke und erforsche den nachsten Knoten

N ;

Tiefensuche — Beispiel (1) Tiefensuche — Beispiel (1)

0\?-@ ; (4) . \@

Beginn der Tiefensuche Erforsche einen Knoten

&

. | . . . n
Erforsche einen Knoten Sackgasse!) D ist eine Sackgasse B ist eine Sackgasse
Backtracke und erforsche den nichsten Knoten Backtracke und erforsche den nachsten Knoten ~ Backtracke und erforsche den nichsten Knoten
Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/36 Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/36
Elementare Graphenalgorithmen | Graphendurchlauf Elementare Graphenalgorithmen | Graphendurchlauf
Tiefensuche — Beispiel (111) Tiefensuche — Implementierung

C wurde bereits gefunden 5 1 tart] = BLACK;
Backtracke und erforsche den nachsten Knoten Erforsche den nachsten Knoten } color[start] cK;

Al ~
void dfsSearch(List adjList[n], int n, int start) {
12 int color[n];
13 for (int i = 0; i < n; i++) { // Initialisierung
14 color[i] = WHITE;
15}

f jLi 1 ;
Beide nichsten Knoten wurden bereits gefunden Fertig! 16 dfsRec(adjlist, n, start, color);

o e 1 void dfsRec(List adjList[n], int n, int start, int &color[n]) {
~ ~ > color[start] = GRAY;
3 foreach (next in adjList[start]) {
4 if (color[next] == WHITE) {
5 dfsSRec(adjList, n, next, color);
6 }
7}
8
9

-
=

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/36 Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/36

Elementare Graphenalgorithmen | Graphendurchlauf

Eigenschaften der Tiefensuche

v

Erforsche einen Pfad so weit wie moglich, bevor man backtrackt.

v

Das entspricht der Reihenfolge der rekursiven Aufrufe.

v

Die zu verarbeitenden Knoten werden in LIFO-Reihenfolge gepriift.
Es gibt zwei ,Verarbeitungsmoglichkeiten flr einen Knoten:
1. Wenn der Knoten entdeckt wird.

2. Wenn der Knoten als ,abgearbeitet” markiert wird (und alle seine
Nachfolger entdeckt werden).

v

= Diese letztgenannte Moglichkeit macht Tiefensuche beliebt.

Theorem (Komplexitat der Tiefensuche)

Zeitkomplexitit: O(|V| + |E|), Platzkomplexitit: ©(|V|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/36

Elementare Graphenalgorithmen | Graphendurchlauf

Finden von Zusammenhangskomponenten (I1)

1 // Ausgabe in cc: ccl[v] = Komponente wvon Knoten v
2 void connComponents(List adjLst[n], int n, int &ccln]) {
3 int color[n], ccNum = O;
for (int v = 0; v < n; v++) { // Initialisierung
color[v] WHITE;
}

4
5
6
7 for (int v = 0; v < n; v++) {
8
9

if (color[v] == WHITE) { // weitere Komponente
dfsSearch(adjLst, n, v, ccNum++, cc);

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/36

Elementare Graphenalgorithmen | Graphendurchlauf

Finden von Zusammenhangskomponenten (1)

Finde die Zusammenhangskomponenten des ungerichteten Graphen G.

» Konstruiere den zugehérigen symmetrischen Digraph (mit 2 - |E|
Kanten).
» Verwende Tiefensuche:

» Beginne bei einem beliebigen Knoten.

» Finde alle anderen Knoten (und Kanten) in der selben Komponente mit
DFS.

» Wenn es weitere Knoten gibt, wihle einen und wiederhole das
Verfahren.

» Man erhalt einen Tiefensuchwald.
» Die Zeitkomplexitat ist O(|V/| + | E|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/36
Elementare Graphenalgorithmen | Graphendurchlauf

Finden von Zusammenhangskomponenten (l11)

1 void dfsSearch(List adjLst[n], int n, int start, int &color[n],
2 int ccNum, int &ccln]) {
3 color[start] = GRAY;
4 cclstart] = ccNum; // speichere Nummer der Kompomente von v
5 foreach (next in adjLst[start]) {
6 if (color[next] == WHITE) {
7 dfsSearch(adjLst, n, next, color, ccNum, cc);
8 3
.
10 color[start] = BLACK;
1}
Joost-Pieter Katoen Datenstrukturen und Algorithmen 36/36

	Graphen
	Terminologie
	Repräsentation von Graphen

	Graphendurchlauf
	Breitensuche
	Tiefensuche
	Finden von Zusammenhangskomponenten

