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Ubersicht

@ Starke Zusammenhangskomponenten
@ Kondensationsgraph
@ Sharir's Algorithmus

© Gerichtete zykelfreie Graphen
@ Topologische Sortierung
o Kritische-Pfad-Analyse
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Sei G ein gerichteter Graph.

Zusammenhang

» G heiBt stark zusammenhangend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

» G heiBt schwach zusammenhangend, wenn der zugehorige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhangend ist.

» Eine starke Zusammenhangskomponente (strongly connected
component) von G ist ein maximaler stark zusammenhéngender
Teilgraph von G.

» Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.
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Starke Zusammenhangskomponenten

Zusammenhangskomponenten

Ein nicht-zusammenhangender Digraph, aufgeteilt in seine maximalen
zusammenhangenden Teilgraphen.
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Kondensationsgraph

Die starken Komponenten von G induzieren den Kondensationsgraph.

Kondensationsgraph

Sei G = (V, E) ein gerichteter Graph mit k starken Komponenten
Si=(Vi, E) fur 0 < i < k.
Der Kondensationsgraph G| = (V’, E’) ist definiert als:
> V’Z{Vl,..., Vk}.
» (V;,V)) € E' gdw. i # j und
es gibt (v,w) € Emit ve Viund w € V.

Der Kondensationsgraph G| ist azyklisch.
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Kondensationsgraph — Beispiel

©

starke Zusammenhangskomponenten

Ein nicht-zusammenhangender Digraph und seine Kondensation.
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Starke Komponenten und Transponierung
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Starke Komponenten und Transponierung

Transponieren

Der transponierte Graph von G = (V, E) ist GT = (V, E) mit
(v,w) € E' gdw. (w,v) € E.

In GT ist die Richtung der Kanten von G gerade umgedreht.
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Starke Komponenten und Transponierung

Transponieren

Der transponierte Graph von G = (V, E) ist GT = (V, E) mit
(v,w) € E' gdw. (w,v) € E.

In GT ist die Richtung der Kanten von G gerade umgedreht.

Lemma: Beziehung zwischen G und G'

1. Die starken Komponenten von G und G sind die selben.
2. Die Kondensation und die Transposition kommutieren, d. h.:
(G = (6N
Beweis: Ubungsaufgabe.
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Erinnerung: Tiefensuche

Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als ,nicht-gefunden" (WHITE) markiert.
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Erinnerung: Tiefensuche

Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als ,nicht-gefunden" (WHITE) markiert.
Die zugrundeliegende Strategie ist:

» Markiere den aktuellen Knoten v als , gefunden® (GRAY).
» Fir jede Kante (v, w) im Graph G mit ,nicht-gefundenem*
Nachfolger w:
» Suche rekursiv von w aus, d. h.:
» Erforsche Kante (v, w), besuche w, forsche von dort aus, bis es nicht
mehr weiter geht.
» Dann backtracke von w nach v.
» Fir jede Kante (v, w) in G mit gefundenem Nachfolger w:
» ,Uberpriife* die Kante, ohne aber w zu besuchen.
» Markiere Knoten v als ,,abgeschlossen” (BLACK).

> Man erhilt wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.
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DFS auf einen Graphen

1 void dfsGraphSearch(List adjLst[n], int n) {

2 int color([n];

3 for (int v = 0; v < n; v++) { color[v] = WHITE; }

4 for (int v = 0; v < n; v++) {

5 if (color[v] == WHITE) { dfsSearch(adjLst, n, v, color); }
6 X
7}

9 void dfsSearch(List adjL[n], int n, int start, int &color[n]) {
10 color[start] = GRAY;

11 foreach (next in adjL[start]) {

12 if (color[next] == WHITE) {

13 dfsSearch(adjL, n, next, color);
14 }

15}

16 color[start] = BLACK; // Schliesse ab
17 }
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Algorithmus zum Finden starker Komponenten

Sharir's Algorithmus findet starke Komponenten in zwei Phasen:
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Sharir's Algorithmus findet starke Komponenten in zwei Phasen:
1. Fihre eine DFS auf G durch,
» wobei alle Knoten beim AbschlieBen (d.h. wenn der Knoten BLACK
gefarbt wird) auf einem Stack gespeichert werden.
2. Fiithre eine DFS auf dem transponierten Graphen G’ durch. Dazu

» féarbe alle Knoten WHITE (wie tblich);

» beginne jeweils bei noch weiBen Knoten vom (in Phase 1 erzeugten)
Stack, d. h. Knoten auf dem Stapel, die grau oder schwarz sind, werden
ignoriert, und

> speichere den Leiter der zu Knoten v gehdrenden starken Komponente.

Leiter einer starken Komponente

Ein Knoten v in einer starken Komponente S; heiBt Leiter (leader), wenn
er als erster Knoten bei einer DFS von S; entdeckt wird (d.h. GRAY gefarbt
wird).
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Sharir’s Algorithmus — Beispiel

Urspriinglicher Digraph Transponierter Graph

NOWT>OMm

Stack am Ende der Phase 1 In Phase 2 gefundene starke Komponenten
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Korrektheit (1)

Lemma

Sei v Leiter der starken Komponente S;, w eine Knoten in S;, i # j, und
es existiert ein Pfad von v nach w.
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Sei v Leiter der starken Komponente S;, w eine Knoten in S;, i # j, und
es existiert ein Pfad von v nach w. Es gilt: Wenn v bei einer DFS entdeckt
wird (d.h. GRAY gefarbt wird), dann:

1. w ist BLACK, oder
2. es existiert ein weiBer Pfad v ug ... u,w von v nach w.
—_———

weiBe Knoten

Beweis:

In der Vorlesung. Beruht auf folgender Eigenschaft der Tiefensuche: Es
existiert ein weiBer Pfad von w nach v. Dann gilt: v ist Nachfolger von w
in dem DFS-Baum. Dies kann man durch Induktion (iber die Lange des
weiBen Pfades von w nach v beweisen.
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Korrektheit (I1)
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Korrektheit (I1)

Lemma

Jeder weiBer Knoten, der in der 2. Phase vom Stapel genommen wird, ist
Leiter einer starken Komponente.
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Korrektheit (I1)

Lemma

Jeder weiBer Knoten, der in der 2. Phase vom Stapel genommen wird, ist
Leiter einer starken Komponente.

1. Jeder in Phase 2 erzeugte DFS-Baum ist gerade eine starke
Komponente.

2. Alle starken Komponenten von G’ (und deswegen auch von G)
werden in der 2. Phase bestimmt.
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Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat von Sharir's Algorithmus zum Finden
starker Komponenten in einen gerichteten Graph ist O(| V| + |E|).
Seine Speicherkomplexitat ist O(|V/|).

Beweis

» Die DFS iiber G und G benétigen jeweils O(|V| + |E|).
» Der transponierte Graph G kann in ©(|V| + |E|) gebildet werden.
» Der Stack benétigt ©(|V/|) Speicher.
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formulieren.

» Scheduling: Vorranggraphen beschreiben, welche Aufgaben erledigt sein
missen, bevor ein nachfolgender Schritt beginnen kann.
» Ein Zyklus in solch einem Vorranggraphen ware ein Deadlock.

> Viele Probleme haben auf DAGs eine niedrigere Komplexitat als auf
Digraphen.

» Ein DAG entspricht einer partiellen Ordnung < auf den Knoten:
» Eine Kante (v, w) besagt: v < w.

= Da eine partielle Ordnung anti-symmetrisch ist, kann sie keine Zykel
enthalten.

» Wir betrachten: Topologische Sortierung und Kritische-Pfad-Analyse.
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Topologische Sortierung — Motivation (1)

Welcher der gerichteten Graphen ist azyklisch?
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Topologische Sortierung — Motivation (1)

Der rechte enthalt einen Zyklus!

Der linke enthélt keinen Zyklus.
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Topologische Ordnung
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Topologische Ordnung

Sei G = (V, E) ein gerichteter Graph mit n Knoten. Eine topologische
Ordnung von G ist eine Zuordnung topo : V — {1,...,n}, so dass:

fur jede Kante (v, w) € E gilt: topo(v) > topo(w).

topo(v) heiBt der topologische Zahl von v.

Eine topologische Ordnung ist die Einbettung einer partiellen Ordnung in
eine totale (d. h. lineare Ordnung).

1. Fiir einen Digraph G mit einem Zyklus existiert keine topologische
Ordnung.

2. Jeder DAG G dagegen hat mindestens eine topologische Ordnung.
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Topologische Sortierung — Beispiel
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» Gibt es einen Schedule fiir dieses Problem? D. h. kann man eine
Reihenfolge finden, um alle Aufgaben ausfiihren zu kénnen?
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Topologische Sortierung — Implementierung

1 void dfsSearch(List adjLst[n], int n, int start, int &color[n],
int &topoNum, int &topo[n]) {
color[start] = GRAY;
foreach (next in adjLst([start]) {
// if (color[next] == GRAY) throw "Graph ist zyklisch';
if (color[next] == WHITE) {
dfsSearch(adjLst, n, next, color, topoNum, topo);
}
}
topo[start] = ++topoNum;
11 color[start] = BLACK;
12}

© 0 N o g A~ W N

=
o

14 // Ausgabe der topologischen Zahl von Knoten v in topo[v]

15 void topoSort(List adjLst[n], int n, int &topo[n]) {

16 int color[n] = WHITE, topoNum = 0; // wgl. connComponents()
17 for (imt v = 0; v < n; v++)

18 if (color[v] == WHITE)

19 dfsSearch(adjLst, n, v, color, topoNum, topo);

20 }
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Topologische Sortierung — Ergebnis

Abhangigkeitsgraph, der topologischen Ordnung entsprechend gezeichnet.
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Korrektheit

Der Algorithmus terminiert, und wenn er terminiert enthalt das Array topo
eine topologische Ordnung von G.

Beweis:

1. Die DFS besucht jeden Knoten, daher sind die Zahlen in dem Array
topo alle verschieden im Bereich 1 bis M.

2. Sei (v,w) € E.
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Korrektheit

Der Algorithmus terminiert, und wenn er terminiert enthalt das Array topo
eine topologische Ordnung von G.

Beweis:

1. Die DFS besucht jeden Knoten, daher sind die Zahlen in dem Array
topo alle verschieden im Bereich 1 bis M.

2. Sei (v, w) € E. w ist kein Vorganger im DFS-Baum, sonst ware G
nicht azyklisch. Damit folgt, dass w BLACK ist, wenn topo [v] ein Wert
zugewiesen wird. Also wurde topo[w] schon vorher ein Wert
zugewiesen. Da topoNum immer groBer wird, folgt topo[v] > topo[w].
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Komplexitat

Zeitkomplexitat

Eine topologische Ordnung kann in ©(|V/| + |E|) bestimmt werden.
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Gewichtete Graphen

Knotengewichteter Graph

Ein knotengewichteter Graph G ist ein Tripel (V, E, W), wobei:
» (V, E) ein — gerichteter oder ungerichteter — Graph ist, und

» W:V — IR die Gewichtsfunktion.
W(v) ist das Gewicht des Knotens v.
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» (V, E) ein — gerichteter oder ungerichteter — Graph ist, und

» W:V — IR die Gewichtsfunktion.
W(v) ist das Gewicht des Knotens v.

Kantengewichteter Graph

Ein (kanten-)gewichteter Graph G ist ein Tripel (V, E, W), wobei:
» (V, E) ein — gerichteter oder ungerichteter — Graph ist, und
» W : E — IR Gewichtsfunktion. W/(e) ist das Gewicht der Kante e.
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Gewichtete Graphen
Ein knotengewichteter Graph G ist ein Tripel (V, E, W), wobei:
» (V, E) ein — gerichteter oder ungerichteter — Graph ist, und

» W:V — IR die Gewichtsfunktion.
W(v) ist das Gewicht des Knotens v.

Kantengewichteter Graph

Ein (kanten-)gewichteter Graph G ist ein Tripel (V, E, W), wobei:
» (V, E) ein — gerichteter oder ungerichteter — Graph ist, und
» W : E — IR Gewichtsfunktion. W/(e) ist das Gewicht der Kante e.

» Ein knotengewichteter Graph (V/, E, W) l3sst sich in einen
kantengewichteten Graphen (V/, E, W’) tberfiihren, indem alle von
einem Knoten v ausgehenden Kanten e = (v, ) € E das Gewicht
W'(e) = W(v) erhalten.
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Gewichtete Graphen — Darstellung (1)

Gewichtete Graphen werden ebenso als Adjazenzlisten oder
Adjazenzmatrix dargestellt:
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» Bei knotengewichteten Graphen wird die Zusatzinformation zu den
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Gewichtete Graphen — Darstellung (1)

Gewichtete Graphen werden ebenso als Adjazenzlisten oder
Adjazenzmatrix dargestellt:

» Bei knotengewichteten Graphen wird die Zusatzinformation zu den
Knoten iiblicherweise in einem weiteren Array gespeichert — vgl.
int color[n]; bei BFS oder DFS.

» Kantengewichte kénnen bei der Adjazenzmatrixdarstellung direkt in
der Matrix gespeichert werden.
Ein besonderer Wert, etwa oo besagt, dass keine Kante existiert.
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Gewichtete Graphen — Darstellung (1)

> Bei der Adjazenzlistendarstellung von kantengewichteten Graphen
wird das Gewicht jeweils mit in der Liste gespeichert:
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Gewichtete Graphen — Darstellung (1)

> Bei der Adjazenzlistendarstellung von kantengewichteten Graphen
wird das Gewicht jeweils mit in der Liste gespeichert:

Beispiel (Kantengewichteter Graph als Adjazenzlisten)

1 // bisher (ohne Gewichte):
2 List adjList([n]; // wobeti List im Grunde "List<int>" war, also:
3 List<int> adjList[n];

5 // neu (mit Gewichten):
6 struct Edge {

7 int w;
s float weight;
o}

10 List<Edge> adjlList[n];
11 // wir verwenden aber weiterhin die Kurzschreibweise:
12 List adjList[nl; // ggf. mit Gewichten

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33



Das Kritische-Pfad-Problem — Einfiihrung
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Das Kritische-Pfad-Problem — Einfiihrung

Das Gewicht eines Pfades ist die Summe der Kantengewichten der

besuchten Kanten, oder die Summe der Knotengewichte der besuchten
Knoten.
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Das Kritische-Pfad-Problem — Einfiihrung

Das Gewicht eines Pfades ist die Summe der Kantengewichten der

besuchten Kanten, oder die Summe der Knotengewichte der besuchten
Knoten.

Kritischer-Pfad-Problem

Finde den langsten Pfad (bezogen auf das Gesamtgewicht) in einem
(kanten- oder knoten-)gewichteten DAG.
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Das Kritische-Pfad-Problem — Einfiihrung

Das Gewicht eines Pfades ist die Summe der Kantengewichten der

besuchten Kanten, oder die Summe der Knotengewichte der besuchten
Knoten.

Kritischer-Pfad-Problem

Finde den langsten Pfad (bezogen auf das Gesamtgewicht) in einem
(kanten- oder knoten-)gewichteten DAG.

» Wir betrachten hier nur knotengewichtete DAGs.
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besuchten Kanten, oder die Summe der Knotengewichte der besuchten
Knoten.

Kritischer-Pfad-Problem

Finde den langsten Pfad (bezogen auf das Gesamtgewicht) in einem
(kanten- oder knoten-)gewichteten DAG.

» Wir betrachten hier nur knotengewichtete DAGs.

Beispiel (Anwendung)

Wie lange benétigt man fiir die Ausfiihrung der bereits vorgestellten
Aufgaben mindestens, wenn fiir jede Aufgabe eine Dauer gegeben ist und
unabhangige Aufgaben gleichzeitig erledigt werden kénnen?
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Friiheste Startzeit- und Endzeitpunkt

Finde den frithestmoglichen Beendigungszeitpunkt (earliest finish time) fir
eine Menge voneinander abhangiger Aufgaben.
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» Jede Aufgabe hat eine (nicht-negative) Dauer.

> Der fritheste Startzeitpunkt (earliest start time) fiir Aufgabe v
(est(v)) ist 0 wenn v keine Abhangigkeiten hat; andernfalls:

» est(v) ist das Maximum der frithesten Endzeitpunkte seiner
Abhangigkeiten.
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Friiheste Startzeit- und Endzeitpunkt

Finde den friihestmoglichen Beendigungszeitpunkt (earliest finish time) fiir
eine Menge voneinander abhangiger Aufgaben.

» Jede Aufgabe hat eine (nicht-negative) Dauer.

> Der fritheste Startzeitpunkt (earliest start time) fiir Aufgabe v
(est(v)) ist 0 wenn v keine Abhangigkeiten hat; andernfalls:

» est(v) ist das Maximum der frithesten Endzeitpunkte seiner
Abhangigkeiten.

Der frilheste Endzeitpunkt (earliest finish time) fiir Aufgabe v (eft(v)) ist
gleich est(v) plus der Dauer von v.
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Das Kritische-Pfad-Problem — Anwendung

Kritische Pfad

Der kritische Pfad ist eine Folge von Aufgaben vy, ..., vk, so dass

> g keine Abhangigkeiten hat.
» v; abhangig von v;_; ist, wobei est(v;) = eft(v;_1) (kein Schlupf).
» eft(vk) das Maximum Ulber alle Aufgaben ergibt.

Es gibt eine kritische Abhangigkeit zwischen v;_; und v;, d.h. eine
Verzogerung in v;_1 fiihrt zu einer Verzoégerung in v;.
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Kritische-Pfad-Analyse — Program

1 // Knotengewichte in duration. Aufruf analog zu
connComponents ()

2 // Ausgabe: eft, kritischer Pfad als Vorgdngerliste in critDep

3 void dfsSearch(List adjL[n], int n, int start, int &color[n],

4 int duration[n], int &critDep[n], int &eft[n]) {

5 int est = 0;

6 color[start] = GRAY;

7 critDep[start] = -1;

g8 foreach (next in adjL[start]) {

9 if (color[next] == WHITE) {

10 dfsSearch(adjL, n, next, color, duration, critDep, eft);
11 }

12 if (eft[next] >= est) {

13 est = eft[next];

14 critDep[start] = next;

15 }

T

17 eft[start] = est + duration[start];
18 color[start] = BLACK;

19 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/33



Kritische-Pfad-Analyse — Beispiel

| A H B E F G C D
wake choose shower dress make make pour eat leave
up clothes coffee  toast juice breakf
0.0 3.0 8.5 6.5 4.5 2.0 0.5 6.0 1.0
Dauer
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Kritische-Pfad-Analyse — Beispiel

1.0
| A H B E F G C D
wake choose shower dress make make pour eat leave
up clothes coffee  toast juice breakf
0.0 3.0 8.5 6.5 4.5 2.0 0.5 6.0 1.0
Dauer

» eft=14+65+85+0=16.
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