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Zusammenhängende gerichtete Graphen

Sei G ein gerichteter Graph.

Zusammenhang

I G heißt stark zusammenhängend (strongly connected), wenn jeder
Knoten von jedem anderen aus erreichbar ist.

I G heißt schwach zusammenhängend, wenn der zugehörige
ungerichtete Graph (wenn man alle Kanten ungerichtet macht)
zusammenhängend ist.

I Eine starke Zusammenhangskomponente (strongly connected
component) von G ist ein maximaler stark zusammenhängender
Teilgraph von G .

I Ein nicht-verbundener Graph kann eindeutig in verschiedene
Zusammenhangskomponenten aufgeteilt werden.
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Starke Zusammenhangskomponenten

Zusammenhangskomponenten

Ein nicht-zusammenhängender Digraph, aufgeteilt in seine maximalen
zusammenhängenden Teilgraphen.
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Kondensationsgraph

Die starken Komponenten von G induzieren den Kondensationsgraph.

Kondensationsgraph
Sei G = (V ,E ) ein gerichteter Graph mit k starken Komponenten
Si = (Vi ,Ei ) für 0 < i 6 k.
Der Kondensationsgraph G↓ = (V ′,E ′) ist definiert als:

I V ′ = {V1, . . . ,Vk }.
I (Vi ,Vj) ∈ E ′ gdw. i 6= j und

es gibt (v ,w) ∈ E mit v ∈ Vi und w ∈ Vj .

Der Kondensationsgraph G↓ ist azyklisch.
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Kondensationsgraph – Beispiel

starke Zusammenhangskomponenten

Ein nicht-zusammenhängender Digraph und seine Kondensation.
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Starke Komponenten und Transponierung

Transponieren
Der transponierte Graph von G = (V ,E ) ist GT = (V ,E ′) mit
(v ,w) ∈ E ′ gdw. (w , v) ∈ E .
In GT ist die Richtung der Kanten von G gerade umgedreht.

Lemma: Beziehung zwischen G und GT

1. Die starken Komponenten von G und GT sind die selben.
2. Die Kondensation und die Transposition kommutieren, d. h.:

(G↓)T = (GT )↓.

Beweis: Übungsaufgabe.
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Erinnerung: Tiefensuche
Tiefensuche (Depth-First Search, DFS)

Am Anfang seien alle Knoten als „nicht-gefunden“ (WHITE) markiert.
Die zugrundeliegende Strategie ist:

I Markiere den aktuellen Knoten v als „gefunden“ (GRAY).
I Für jede Kante (v ,w) im Graph G mit „nicht-gefundenem“

Nachfolger w :
I Suche rekursiv von w aus, d. h.:
I Erforsche Kante (v ,w), besuche w , forsche von dort aus, bis es nicht

mehr weiter geht.
I Dann backtracke von w nach v .

I Für jede Kante (v ,w) in G mit gefundenem Nachfolger w :
I „Überprüfe“ die Kante, ohne aber w zu besuchen.

I Markiere Knoten v als „abgeschlossen“ (BLACK).

I Man erhält wieder die Menge aller Knoten, die vom Startknoten aus
erreichbar sind.
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DFS auf einen Graphen

1 void dfsGraphSearch(List adjLst[n], int n) {
2 int color[n];
3 for (int v = 0; v < n; v++) { color[v] = WHITE; }
4 for (int v = 0; v < n; v++) {
5 if (color[v] == WHITE) { dfsSearch(adjLst, n, v, color); }
6 }
7 }

9 void dfsSearch(List adjL[n], int n, int start, int &color[n]) {
10 color[start] = GRAY;
11 foreach (next in adjL[start]) {
12 if (color[next] == WHITE) {
13 dfsSearch(adjL, n, next, color);
14 }
15 }
16 color[start] = BLACK; // Schliesse ab
17 }
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Algorithmus zum Finden starker Komponenten
Sharir’s Algorithmus findet starke Komponenten in zwei Phasen:
1. Führe eine DFS auf G durch,

I wobei alle Knoten beim Abschließen (d. h. wenn der Knoten BLACK
gefärbt wird) auf einem Stack gespeichert werden.

2. Führe eine DFS auf dem transponierten Graphen GT durch. Dazu
I färbe alle Knoten WHITE (wie üblich);
I beginne jeweils bei noch weißen Knoten vom (in Phase 1 erzeugten)

Stack, d. h. Knoten auf dem Stapel, die grau oder schwarz sind, werden
ignoriert, und

I speichere den Leiter der zu Knoten v gehörenden starken Komponente.

Leiter einer starken Komponente
Ein Knoten v in einer starken Komponente Si heißt Leiter (leader), wenn
er als erster Knoten bei einer DFS von Si entdeckt wird (d.h. GRAY gefärbt
wird).
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Sharir’s Algorithmus – Beispiel
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Korrektheit (I)

Lemma
Sei v Leiter der starken Komponente Si , w eine Knoten in Sj , i 6= j , und
es existiert ein Pfad von v nach w. Es gilt: Wenn v bei einer DFS entdeckt
wird (d.h. GRAY gefärbt wird), dann:
1. w ist BLACK, oder
2. es existiert ein weißer Pfad v u0 . . . un w︸ ︷︷ ︸

weiße Knoten
von v nach w.

Beweis:
In der Vorlesung. Beruht auf folgender Eigenschaft der Tiefensuche: Es
existiert ein weißer Pfad von w nach v . Dann gilt: v ist Nachfolger von w
in dem DFS-Baum. Dies kann man durch Induktion über die Länge des
weißen Pfades von w nach v beweisen.
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Korrektheit (II)

Lemma
Jeder weißer Knoten, der in der 2. Phase vom Stapel genommen wird, ist
Leiter einer starken Komponente.

Korrektheit

1. Jeder in Phase 2 erzeugte DFS-Baum ist gerade eine starke
Komponente.

2. Alle starken Komponenten von GT (und deswegen auch von G)
werden in der 2. Phase bestimmt.
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Komplexität

Zeitkomplexität
Die Worst-Case Zeitkomplexität von Sharir’s Algorithmus zum Finden
starker Komponenten in einen gerichteten Graph ist Θ(|V |+ |E |).
Seine Speicherkomplexität ist Θ(|V |).

Beweis
I Die DFS über G und GT benötigen jeweils Θ(|V |+ |E |).
I Der transponierte Graph GT kann in Θ(|V |+ |E |) gebildet werden.
I Der Stack benötigt Θ(|V |) Speicher.
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Gerichtete zykelfreie Graphen
Gerichtete zykelfreie Graphen
Gerichtete zykelfreie Graphen (directed acyclic graph, DAG) sind eine
wichtige Klasse von Graphen:

I Viele Probleme lassen sich naturgemäß mit Hilfe von DAGs
formulieren.

I Scheduling: Vorranggraphen beschreiben, welche Aufgaben erledigt sein
müssen, bevor ein nachfolgender Schritt beginnen kann.

I Ein Zyklus in solch einem Vorranggraphen wäre ein Deadlock.
I Viele Probleme haben auf DAGs eine niedrigere Komplexität als auf

Digraphen.
I Ein DAG entspricht einer partiellen Ordnung < auf den Knoten:

I Eine Kante (v ,w) besagt: v < w .
⇒ Da eine partielle Ordnung anti-symmetrisch ist, kann sie keine Zykel

enthalten.

I Wir betrachten: Topologische Sortierung und Kritische-Pfad-Analyse.
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Topologische Sortierung – Motivation (I)
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Welcher der gerichteten Graphen ist azyklisch?
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Topologische Sortierung – Motivation (II)
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Der rechte enthält einen Zyklus!
Der linke enthält keinen Zyklus.
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Topologische Ordnung
Topologische Ordnung
Sei G = (V ,E ) ein gerichteter Graph mit n Knoten. Eine topologische
Ordnung von G ist eine Zuordnung topo : V → { 1, . . . , n }, so dass:

für jede Kante (v ,w) ∈ E gilt: topo(v) > topo(w).

topo(v) heißt der topologische Zahl von v .

Eine topologische Ordnung ist die Einbettung einer partiellen Ordnung in
eine totale (d. h. lineare Ordnung).

Lemma

1. Für einen Digraph G mit einem Zyklus existiert keine topologische
Ordnung.

2. Jeder DAG G dagegen hat mindestens eine topologische Ordnung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33



Elementare Graphenalgorithmen II Gerichtete zykelfreie Graphen

Topologische Sortierung – Beispiel

A E

G H

F I

B

C

D

Abhängigkeitsgraph

Nr Aufgabe Hängt ab von

A choose clothes I
B dress A, H
C eat breakfast E, F, G
D leave B, C
E make coffee I
F make toast I
G pour juice I
H shower I
I wake up –

I Gibt es einen Schedule für dieses Problem? D. h. kann man eine
Reihenfolge finden, um alle Aufgaben ausführen zu können?
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Topologische Sortierung – Implementierung
1 void dfsSearch(List adjLst[n], int n, int start, int &color[n],
2 int &topoNum, int &topo[n]) {
3 color[start] = GRAY;
4 foreach (next in adjLst[start]) {
5 // if (color[next] == GRAY) throw "Graph ist zyklisch";
6 if (color[next] == WHITE) {
7 dfsSearch(adjLst, n, next, color, topoNum, topo);
8 }
9 }

10 topo[start] = ++topoNum;
11 color[start] = BLACK;
12 }

14 // Ausgabe der topologischen Zahl von Knoten v in topo[v]
15 void topoSort(List adjLst[n], int n, int &topo[n]) {
16 int color[n] = WHITE, topoNum = 0; // vgl. connComponents()
17 for (int v = 0; v < n; v++)
18 if (color[v] == WHITE)
19 dfsSearch(adjLst, n, v, color, topoNum, topo);
20 }
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Topologische Sortierung – Ergebnis

2 3 4 51 6 7 98
A H B EI F G DC

Abhängigkeitsgraph, der topologischen Ordnung entsprechend gezeichnet.
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Korrektheit

Theorem
Der Algorithmus terminiert, und wenn er terminiert enthält das Array topo
eine topologische Ordnung von G .

Beweis:

1. Die DFS besucht jeden Knoten, daher sind die Zahlen in dem Array
topo alle verschieden im Bereich 1 bis N.

2. Sei (v ,w) ∈ E . w ist kein Vorgänger im DFS-Baum, sonst wäre G
nicht azyklisch. Damit folgt, dass w BLACK ist, wenn topo[v] ein Wert
zugewiesen wird. Also wurde topo[w] schon vorher ein Wert
zugewiesen. Da topoNum immer größer wird, folgt topo[v] > topo[w].
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Komplexität

Zeitkomplexität
Eine topologische Ordnung kann in Θ(|V |+ |E |) bestimmt werden.
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Gewichtete Graphen
Knotengewichteter Graph
Ein knotengewichteter Graph G ist ein Tripel (V ,E ,W ), wobei:

I (V ,E ) ein – gerichteter oder ungerichteter – Graph ist, und
I W : V −→ IR die Gewichtsfunktion.

W (v) ist das Gewicht des Knotens v .

Kantengewichteter Graph
Ein (kanten-)gewichteter Graph G ist ein Tripel (V ,E ,W ), wobei:

I (V ,E ) ein – gerichteter oder ungerichteter – Graph ist, und
I W : E −→ IR Gewichtsfunktion. W (e) ist das Gewicht der Kante e.

I Ein knotengewichteter Graph (V ,E ,W ) lässt sich in einen
kantengewichteten Graphen (V ,E ,W ′) überführen, indem alle von
einem Knoten v ausgehenden Kanten e = (v , ·) ∈ E das Gewicht
W ′(e) = W (v) erhalten.
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Gewichtete Graphen – Darstellung (I)

Gewichtete Graphen werden ebenso als Adjazenzlisten oder
Adjazenzmatrix dargestellt:

I Bei knotengewichteten Graphen wird die Zusatzinformation zu den
Knoten üblicherweise in einem weiteren Array gespeichert – vgl.
int color[n]; bei BFS oder DFS.

I Kantengewichte können bei der Adjazenzmatrixdarstellung direkt in
der Matrix gespeichert werden.
Ein besonderer Wert, etwa ∞ besagt, dass keine Kante existiert.
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Gewichtete Graphen – Darstellung (II)
I Bei der Adjazenzlistendarstellung von kantengewichteten Graphen

wird das Gewicht jeweils mit in der Liste gespeichert:

Beispiel (Kantengewichteter Graph als Adjazenzlisten)

1 // bisher (ohne Gewichte):
2 List adjList[n]; // wobei List im Grunde "List<int>" war, also:
3 List<int> adjList[n];

5 // neu (mit Gewichten):
6 struct Edge {
7 int w;
8 float weight;
9 }

10 List<Edge> adjList[n];
11 // wir verwenden aber weiterhin die Kurzschreibweise:
12 List adjList[n]; // ggf. mit Gewichten
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Das Kritische-Pfad-Problem – Einführung
Das Gewicht eines Pfades ist die Summe der Kantengewichten der
besuchten Kanten, oder die Summe der Knotengewichte der besuchten
Knoten.
Kritischer-Pfad-Problem
Finde den längsten Pfad (bezogen auf das Gesamtgewicht) in einem
(kanten- oder knoten-)gewichteten DAG.

I Wir betrachten hier nur knotengewichtete DAGs.

Beispiel (Anwendung)

Wie lange benötigt man für die Ausführung der bereits vorgestellten
Aufgaben mindestens, wenn für jede Aufgabe eine Dauer gegeben ist und
unabhängige Aufgaben gleichzeitig erledigt werden können?
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Das Kritische-Pfad-Problem – Anwendung

Früheste Startzeit- und Endzeitpunkt
Finde den frühestmöglichen Beendigungszeitpunkt (earliest finish time) für
eine Menge voneinander abhängiger Aufgaben.

I Jede Aufgabe hat eine (nicht-negative) Dauer.
I Der früheste Startzeitpunkt (earliest start time) für Aufgabe v

(est(v)) ist 0 wenn v keine Abhängigkeiten hat; andernfalls:
I est(v) ist das Maximum der frühesten Endzeitpunkte seiner

Abhängigkeiten.
Der früheste Endzeitpunkt (earliest finish time) für Aufgabe v (eft(v)) ist
gleich est(v) plus der Dauer von v .
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Das Kritische-Pfad-Problem – Anwendung

Kritische Pfad
Der kritische Pfad ist eine Folge von Aufgaben v0, . . . , vk , so dass

I v0 keine Abhängigkeiten hat.
I vi abhängig von vi−1 ist, wobei est(vi ) = eft(vi−1) (kein Schlupf).
I eft(vk) das Maximum über alle Aufgaben ergibt.

Es gibt eine kritische Abhängigkeit zwischen vi−1 und vi , d.h. eine
Verzögerung in vi−1 führt zu einer Verzögerung in vi .
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Kritische-Pfad-Analyse – Program
1 // Knotengewichte in duration. Aufruf analog zu

connComponents()
2 // Ausgabe: eft, kritischer Pfad als Vorgängerliste in critDep
3 void dfsSearch(List adjL[n], int n, int start, int &color[n],
4 int duration[n], int &critDep[n], int &eft[n]) {
5 int est = 0;
6 color[start] = GRAY;
7 critDep[start] = -1;
8 foreach (next in adjL[start]) {
9 if (color[next] == WHITE) {

10 dfsSearch(adjL, n, next, color, duration, critDep, eft);
11 }
12 if (eft[next] >= est) {
13 est = eft[next];
14 critDep[start] = next;
15 }
16 }
17 eft[start] = est + duration[start];
18 color[start] = BLACK;
19 }
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Kritische-Pfad-Analyse – Beispiel

fertig

3.0

8.5 4.56.5 2.0 0.5 6.0

0.0 1.0
A H B EI F G DC

I A H B E F G C D
wake choose shower dress make make pour eat leave
up clothes coffee toast juice breakf

0.0 3.0 8.5 6.5 4.5 2.0 0.5 6.0 1.0
Dauer

I eft = 1 + 6.5 + 8.5 + 0 = 16.
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Kritische-Pfad-Analyse – Beispiel

fertig

3.0

8.5 4.56.5 2.0 0.5 6.0

0.0 1.0
G C DFEBHAI

I A H B E F G C D
wake choose shower dress make make pour eat leave
up clothes coffee toast juice breakf

0.0 3.0 8.5 6.5 4.5 2.0 0.5 6.0 1.0
Dauer

I eft = 1 + 6.5 + 8.5 + 0 = 16.
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