Minimale Spannbaume

Datenstrukturen und Algorithmen

Vorlesung 16: Minimale Spannbdume

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://wuw-i2.informatik.rwth-aachen.de/i2/dsall2/

15. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/29

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

@ Minimale Spannbiume
@ Greedy Algorithmen
@ Minimaler Spannbaum
@ Algorithmus von Prim

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/29

Ubersicht

@ Minimale Spannbiume
@ Greedy Algorithmen
@ Minimaler Spannbaum
@ Algorithmus von Prim

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/29

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Minimale Spannbaume Minimale Spannbaume

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Minimale Spannbaume Minimale Spannbaume

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Minimale Spannbaume Minimale Spannbaume

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Minimale Spannbaume Minimale Spannbaume

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)
» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

,Minimal“ und , kirzester" beziehen sich hierbei auf die besuchten
Gewichte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Minimale Spannbaume Minimale Spannbaume

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

,Minimal“ und , kirzester" beziehen sich hierbei auf die besuchten

Gewichte. Die Gewichte konnen als Kosten fiir die Benutzung der Kante
aufgefasst werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.

Beispiel (Optimierungsprobleme auf Graphen)

» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

,Minimal“ und , kirzester" beziehen sich hierbei auf die besuchten
Gewichte. Die Gewichte konnen als Kosten fiir die Benutzung der Kante
aufgefasst werden.

Diese Probleme kénnen durch greedy Algorithmen geldst werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/29

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

> Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

> Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.

» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Minimale Spannbaume Minimale Spannbaume

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)
> Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.
» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Minimale Spannbaume Minimale Spannbaume

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)
> Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.
» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Losung
gefunden wird, denn

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Minimale Spannbaume Minimale Spannbaume

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)
» Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.
» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Losung
gefunden wird, denn

» immer das lokale Optimum zu nehmen, fiihrt nicht automatisch auch
zum globalen Optimum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Minimale Spannbaume Minimale Spannbaume

Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

» Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.
» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Losung
gefunden wird, denn
» immer das lokale Optimum zu nehmen, fiihrt nicht automatisch auch
zum globalen Optimum.
> In einigen Fallen, wie dem minimalen Spannbaum und dem
Kiirzesten-Wege-Problem, wird aber immer die optimale Losung
gefunden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/29

Greedy?

Datenstrukturen und Algorithmen

Greedy?

Greedy kann beliebig schlecht werden:
» Traveling Salesman Problem (TSP)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/29

Greedy?

Greedy kann beliebig schlecht werden:
» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/29

Greedy?

Beispiel

Greedy kann beliebig schlecht werden:

» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)
Greedy kann optimal sein:

» Minimaler Spannbaum, Kirzester-Weg-Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/29

Greedy?

Beispiel

Greedy kann beliebig schlecht werden:

» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)
Greedy kann optimal sein:

» Minimaler Spannbaum, Kirzester-Weg-Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/29

Greedy?

Greedy kann beliebig schlecht werden:

» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)
Greedy kann optimal sein:

» Minimaler Spannbaum, Kirzester-Weg-Problem.
Wann ist eine greedy Losungsstrategie optimal?

» Optimale Lésung setzt sich aus optimalen Teilproblemen zusammen

» Unabhéangigkeit von anderen Teilldsungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/29

Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist

> ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/29

Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist

> ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.

Gewicht eines Graphen

Das Gewicht W(G') eines Teilgraphen G’ = (V’/, E') vom gewichteten
Graph G ist:

> W(G) = > W(uv)
(u,v)eE’

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/29

Minimale Spannbaume Minimale Spannbaume

Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist
> ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.

Gewicht eines Graphen

Das Gewicht W(G') eines Teilgraphen G’ = (V/, E’) vom gewichteten
Graph G ist:

> W(G) = > W(uv)
(u,v)eE’

Minimaler Spannbaum

Ein Spannbaum mit minimalem Gewicht heiBt Minimaler Spannbaum
(minimum spanning tree), MST.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/29

Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/29

Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Beispiel

» Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/29

Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Beispiel

» Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

» Grundlage fiir viele andere Probleme, etwa Routing-Probleme
(,Wegfindung").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/29

Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Beispiel
» Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

» Grundlage fiir viele andere Probleme, etwa Routing-Probleme
(,Wegfindung").

» Bestandteil von Approximationsalgorithmen fiir das TSP Problem.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/29

Minimale Spannbaume Minimale Spannbaume

Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Beispiel
» Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

» Grundlage fiir viele andere Probleme, etwa Routing-Probleme
(,Wegfindung").
» Bestandteil von Approximationsalgorithmen fiir das TSP Problem.

» Verdrahtung von Schaltungen mit geringstem Energieverbrauch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/29

Minimale Spannbaume Minimale Spannbaume

Minimaler Spannbaum — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/29

Minimale Spannbaume Minimale Spannbaume

Minimaler Spannbaum — Beispiel

Was ist ein minimaler Spannbaum?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/29

Minimale Spannbaume Minimale Spannbaume

Minimaler Spannbaum — Beispiel

Das ist ein minimaler Spannbaum (mit Gesamtgewicht 46).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/29

Minimale Spannbaume Minimale Spannbaume

Minimaler Spannbaum — Beispiel

Das ist ein minimaler Spannbaum (mit Gesamtgewicht 46).
In diesem Fall ist es auch der einzige.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/29

Minimale Spannbaume Minimale Spannbaume

Tiefen- oder Breitensuche?

Tiefensuchbaum (von A gestartet) Breitensuchbaum (von A gestartet)
Gesamtgewicht: 55 Gesamtgewicht: 67

Der Tiefensuchbaum und der Breitensuchbaum sind zwar Spannbaume,
aber nicht notwendigerweise MSTs.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten

Grundkonzept:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

» Fige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

» Fige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

» Fige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

|
Ist das korrekt?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Minimale Spannbaume Minimale Spannbaume

Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

> Fange mit einen Baum aus nur einem Knoten an, indem ein beliebiger
Knoten des Graphens ausgewahlt wird.

» Finde die giinstigste Kante (d. h. mit minimalem Gewicht), die den
bisherigen Baum verlasst.

» Fige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

|
Ist das korrekt? Und wenn, was ist die Komplexitat?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/29

Prim’s Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten
2 void primMST(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);

4 wéhle irgendeinen Knoten s und markiere ihn mit Baum (BLACK) ;
5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;
6 while (es gibt Randknoten) {

7 wdhle von allen Kanten zwischen einem Baumknoten t und

8 einem Randknoten v die billigste;

9 reklassifiziere v als Baum (BLACK);

10 flige Kante tv zum Baum hinzu;

1 reklassifiziere alle zu v adjazenten ungesehenen Knoten

12 als (GRAY) ;

13}

14 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Minimale Spannbaume Minimale Spannbaume

Prim’s Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/29

Die MST-Eigenschaft

MST-Eigenschaft auf G

Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G, wenn
1. jede Kante (u,v) € G — T einen Zyklus in T erzeugen wiirde, und
2. in diesem Zyklus die Kante mit maximalem Gewicht ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/29

Minimale Spannbaume Minimale Spannbaume

Die MST-Eigenschaft
MST-Eigenschaft auf G

Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G, wenn
1. jede Kante (u,v) € G — T einen Zyklus in T erzeugen wiirde, und
2. in diesem Zyklus die Kante mit maximalem Gewicht ist.

Spannbaum, der die MST-Eigenschaft hat Spannbaum, der die MST-Eigenschaft verletzt

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/29

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(Tl) = W(T2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.

Induktionsanfang:
k =0, T; und T sind gleich, daher ist W(T1) = W(T>).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.

Induktionsanfang:
k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.
Induktionsanfang:
k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

» T7 und T, unterscheiden sich nun um k Kanten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.
Induktionsanfang:
k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

» T7 und T, unterscheiden sich nun um k Kanten.
» Betrachte die giinstigste Kante (u, v) aus T, — Tj.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.
Induktionsanfang:

k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:

k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

» T7 und T, unterscheiden sich nun um k Kanten.

» Betrachte die giinstigste Kante (u, v) aus T, — Tj.

» Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 16/29

Minimale Spannbaume Minimale Spannbaume

Spannbdaume mit gleichem Gewicht

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.
Induktionsanfang:

k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:

k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

» T7 und T, unterscheiden sich nun um k Kanten.
» Betrachte die giinstigste Kante (u, v) aus T, — Tj.

» Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn: .

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 16/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:

o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).

o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).

» Fige (u, v) zu Ty hinzu und entferne (w, x);

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).
» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).
» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).

» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.

» Da T die MST-Eigenschaft hat und T{ und T3 sich nur noch um
k—1 Kanten unterscheiden:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Spannbdaume mit gleichem Gewicht — Beweis

Beweis. (Forts.)

Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).
» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.
» Da T die MST-Eigenschaft hat und T{ und T3 sich nur noch um
k—1 Kanten unterscheiden:
= mit Induktionsannahme folgt, dass W(T{) = W(T3) und damit
W(T1) = W(T2). O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T

zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus
W(u, v) < W(x,y).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

(«<=) Angenommen T hat die MST-Eigenschaft.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

<) Angenommen T hat die MST-Eigenschaft. Sei T’ ein MST von G.
(<) Ang g

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

(<) Angenommen T hat die MST-Eigenschaft. Sei T’ ein MST von G.
Wegen = hat dann T’ die MST-Eigenschaft.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

(<) Angenommen T hat die MST-Eigenschaft. Sei T’ ein MST von G.
Wegen = hat dann T’ die MST-Eigenschaft. Mit dem vorigen Lemma
haben Spannbdume mit MST-Eigenschaft das selbe Gewicht, also:
W(T) = W(T").

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch. Sei T ein MST von G. Nehme an, daB T die
MST-Eigenschaft verletzt, d. h., das Hinzufiigen von der Kante (u,v) ¢ T
zu T erzeugt einen Zyklus, so dass fiir (x,y) € T aus dem Zyklus

W (u, v) < W(x,y). Das Ersetzen von (x, y) durch (u,v) in T liefert den
Spannbaum T’ mit W(T’) < W(T). Also kann T kein MST gewesen
sein. Widerspruch.

(<) Angenommen T hat die MST-Eigenschaft. Sei T’ ein MST von G.
Wegen = hat dann T’ die MST-Eigenschaft. Mit dem vorigen Lemma
haben Spannbdume mit MST-Eigenschaft das selbe Gewicht, also:

W(T) = W(T’). Also ist auch T ein MST. O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in T
induzierten Teilgraph Gy (d.h. (u, v) ist eine Kante in Gx wenn (u, v) eine
Kante in G ist, und v und v sind in Tj).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/29

Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in T
induzierten Teilgraph Gy (d.h. (u, v) ist eine Kante in Gx wenn (u, v) eine
Kante in G ist, und v und v sind in Tj).

Beweis.

Induktion nach k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in T
induzierten Teilgraph Gy (d.h. (u, v) ist eine Kante in Gx wenn (u, v) eine
Kante in G ist, und v und v sind in Tj).

Beweis.

Induktion nach k.

Induktionsanfang:
k =1, T1 und Gy enthalten nur Knoten und keine Kanten. T; hat
damit die MST-Eigenschaft in Gj.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.

» Sei v € Ty — Tk_1 der k-te Knoten, der hinzugefiigt wurde

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.

» Sei v € Ty — Tx_1 der k-te Knoten, der hinzugefiigt wurde und
> (u1,v),...,(um, v) die Kanten zwischen Knoten in Ty_; und v.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.

» Sei v € Ty — Tx_1 der k-te Knoten, der hinzugefiigt wurde und
> (u1,v),...,(um, v) die Kanten zwischen Knoten in Tx_; und v.
» Sei (u1, v) die glinstigste dieser Kanten, die in T, gewahlt wurde.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

v

vyvyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Seix #vund y # v.

v

vyvyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Sei x # v und y # v. Dann (x,y) € Gg—1 — Tk_1.

v

vyvyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Sei x # v und y # v. Dann (x,y) € Gx_1 — Tx_1. Hinzufiigen von
(x,y) zu Tk_1 liefert einen Zyklus, mit (nach Ind. Annahme) (x, y)
maximalem Gewicht auf dem Zyklus.

v

vyvyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Sei x # v und y # v. Dann (x,y) € Gx_1 — Tx_1. Hinzufiigen von
(x,y) zu Tk_1 liefert einen Zyklus, mit (nach Ind. Annahme) (x, y)
maximalem Gewicht auf dem Zyklus. Dies ist jedoch der Zykel den
es auch in Ty gibt.

v

vyvyy

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Sei x # v und y # v. Dann (x,y) € Gx_1 — Tx_1. Hinzufiigen von
(x,y) zu Tk_1 liefert einen Zyklus, mit (nach Ind. Annahme) (x, y)
maximalem Gewicht auf dem Zyklus. Dies ist jedoch der Zykel den
es auch in Ty gibt. Deswegen hat Tj die MST-Eigenschaft auf G.

2. siehe nachste Folie.

v

vyvyy

_)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x,y) € {(u2,v),...,(um, v)} mit m> 2.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
v nach u; (1 <i<<m)in Ty

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnachu; (1 <i<m)inTe:v wg wo... wy.
—~—

~—~

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von

vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass
~— ~—
=uy =uj

(wj, wjy1) die erste Kante auf diesem Pfad ist mit
W(wj, wiy1) > W(uj, v).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass
A ~~
=ux =Uu;
(wj, wjy1) die erste Kante auf diesem Pfad ist mit
W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem

Pfad mit W(wp_1, wp) > W(uj, v).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass
—~— ~—

=u =u;
(wj, wjy1) die erste Kante auf diesem Pfad ist mit
W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt
p=j+1.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass

~— ~—
=u =uj

(wj, wjy1) die erste Kante auf diesem Pfad ist mit

W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt

p = j+1.) Wir zeigen, dass w; und w, nicht in T,_; existieren
kénnen. (Siehe Vorlesung.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von

vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass
~— ~—
=uy =uj

(wj, wjy1) die erste Kante auf diesem Pfad ist mit

W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt

p = j+1.) Wir zeigen, dass w; und w, nicht in T,_; existieren
konnen. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad
wy ... wy ein groBeres Gewicht als W(u;, v),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass

~— ~—
=u =uj

(wj, wjy1) die erste Kante auf diesem Pfad ist mit

W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt

p = j+1.) Wir zeigen, dass w; und w, nicht in T,_; existieren
konnen. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad
wy ... wy ein groBeres Gewicht als W(u;, v), und damit auch nicht
groBer als W(ug, v).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:

2. (x,y) € {(u2,v),...,(um, v)} mit m> 2. Betrachte den Pfad von
vnach u; (L<i<m)in Tg:v wy wyp... wy. Nimm an, dass

~— ~—
=u =uj

(wj, wjy1) die erste Kante auf diesem Pfad ist mit

W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt

p = j+1.) Wir zeigen, dass w; und w, nicht in T,_; existieren
konnen. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad
wy ... wy ein groBeres Gewicht als W(u;, v), und damit auch nicht
groBer als W(u1, v). Also, hat Ty die MST-Eigenschaft.

Ol

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/29

Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/29

Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Beweis.

Sei G = (V, E) und |V| = n Anzahl der Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/29

Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Beweis.

Sei G = (V, E) und |V| = n Anzahl der Knoten.

» Sei T, der durch Prim berechnete Baum. Dann ist G, = G, und es
folgt — siehe letztes Theorem — dass T, die MST-Eigenschaft hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/29

Minimale Spannbaume Minimale Spannbaume

Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Sei G = (V, E) und |V| = n Anzahl der Knoten.

» Sei T, der durch Prim berechnete Baum. Dann ist G, = G, und es
folgt — siehe letztes Theorem — dass T, die MST-Eigenschaft hat.

» Da T, die MST-Eigenschaft hat gdw. es ein MST ist, folgt: T, ist ein
MST.

Ol

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).
> Reklassifiziere einen Randknoten als Baumknoten (fiige den
Kantenkandidat zum Baum hinzu).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).
> Reklassifiziere einen Randknoten als Baumknoten (fiige den
Kantenkandidat zum Baum hinzu).

» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
glnstigerer Kantenkandidat gefunden wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).
> Reklassifiziere einen Randknoten als Baumknoten (fiige den
Kantenkandidat zum Baum hinzu).
» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
glnstigerer Kantenkandidat gefunden wird.

Idee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).
> Reklassifiziere einen Randknoten als Baumknoten (fiige den
Kantenkandidat zum Baum hinzu).
» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
glnstigerer Kantenkandidat gefunden wird.

Idee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht).

Prioritatswarteschlange (priority queue)

> PriorityQueue pq;
> pq.insert(int e, int k), int pq.getMin(), pq.delMin()

> void pq.decrKey(int e, int k) setzt den Schliissel von Element e
auf k; k muss kleiner als der bisherige Schliissel von e sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
» Wahle eine billigste Kante zu einem Randknoten (Kantenkandidat).
> Reklassifiziere einen Randknoten als Baumknoten (fiige den
Kantenkandidat zum Baum hinzu).
» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
glnstigerer Kantenkandidat gefunden wird.

Idee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht).

Prioritatswarteschlange (priority queue)

> PriorityQueue pq;
> pq.insert(int e, int k), int pq.getMin(), pq.delMin()

> void pq.decrKey(int e, int k) setzt den Schliissel von Element e
auf k; k muss kleiner als der bisherige Schliissel von e sein.

= Wir entscheiden uns fiir die Prioritatswarteschlange als Datenstruktur
fur die Randknoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:

» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:
» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

» Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geléscht werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:
» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

» Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geléscht werden.

» Die Prioritat eines Randknotens muss nach jeder gefundenen Kante
angepasst werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:
» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

» Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geléscht werden.

» Die Prioritat eines Randknotens muss nach jeder gefundenen Kante
angepasst werden.

Bei einem Graph mit n Knoten und m Kanten ergibt sich:

T(n,m) € O(n-T(insert)+n-T (getMin)+n- T (delMin)+m- T (decrKey))

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Vorlaufige Komplexitatsanalyse

Im Worst-Case:
» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

» Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geléscht werden.

» Die Prioritat eines Randknotens muss nach jeder gefundenen Kante
angepasst werden.

Bei einem Graph mit n Knoten und m Kanten ergibt sich:

T(n,m) € O(n-T(insert)+n-T (getMin)+n- T (delMin)+m- T (decrKey))

» Welche Implementierung der Prioritatswarteschlange ist dafiir gut
geeignet?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/29

Drei Prioritatswarteschlangenimplementierungen

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) O(1) O(1) o(1)
insert(pq,e,k) ©(1) ©(n) O(log n)
getMin(pq) ©(n) O(1) o(1)
delMin(pq) ©(n) O(1) ©(log n)
getElt (pq,k) ©(n) O(log n) ©(n)
decrKey(pq,e,k) o(1) ©(n) O(log n)
Prim O(n? O(n? O(nlogn
+m)) + m-n) + mlog n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/29

Drei Prioritatswarteschlangenimplementierungen

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) o(1) O(1) o(1)
insert(pq,e,k) ©(1) ©(n) O(log n)
getMin(pq) O(n) O(1) o(1)
delMin(pq) ©(n) O(1) ©(log n)
getElt (pq,k) O(n) O(log n) ©(n)
decrKey(pq,e,k) o(1) ©(n) O(log n)
Prim O(n? O(n? O(nlogn
+m)) + m-n) + mlog n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/29

Drei Prioritatswarteschlangenimplementierungen

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) o(1) O(1) o(1)
insert(pq,e,k) ©(1) ©(n) O(log n)
getMin(pq) O(n) O(1) o(1)
delMin(pq) ©(n) O(1) ©(log n)
getElt (pq,k) O(n) O(log n) ©(n)
decrKey(pq,e,k) o(1) ©(n) O(log n)
Prim O(n? O(n? O(nlogn
+m)) + m-n) + mlog n)

> Wir ergdnzen auBerdem noch zwei Operationen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

» bool pq.isEmpty() ©(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

» bool pq.isEmpty() ©(n)

> void pq.insert(int elem, VertexState &key) ©(1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

» bool pq.isEmpty() ©(n)
> void pq.insert(int elem, VertexState &key) ©(1)
» float pq.getMin() ©(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

» bool pq.isEmpty() ©(n)
> void pq.insert(int elem, VertexState &key) ©(1)
» float pq.getMin() ©(n)
> void pq.delMin() ©(n)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

> bool pq.isEmpty() ©
> void pq.insert(int elem, VertexState &key) ©
> float pq.getMin() ©
> void pq.delMin() ©

» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

> bool pq.isEmpty() ©
> void pq.insert(int elem, VertexState &key) ©
> float pq.getMin() ©
> void pq.delMin() ©

» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)

> int pq.getColor(int elem) gibt color von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

> bool pq.isEmpty() ©
> void pq.insert(int elem, VertexState &key) ©
> float pq.getMin() ©
> void pq.delMin() ©

» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)

> int pq.getColor(int elem) gibt color von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)

> float pq.getWeight(int elem) gibt curWeight von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29

Der Algorithmus von Prim — Implementierung (1)

1 // Ergebnis als Vorgdngerbaum in .parent:

2 //VveV:(xv)e MST(V,E) gdw. x = state[v].parent, x # —1

3 VertexState[n] primMST(List adjLst[n], int n, int start) {

4 VertexState state[n] = // (eigentlich im Konstruktor von pg)
5 { color: WHITE, parent: -1, curWeight: +inf };

6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7

8

9

pq.insert(start, {parent: -1, curWeight: 0});
while (!pq.isEmpty()) { // solange es Randknoten gibt
10 int v = pq.getMin(); // ginstigste Kante, bzw. Randknoten
11 pq.delMin(); // setzt auch Farbe auf BLACK
12 updateFringe(pq, adjlist, v); // update den Rand
13}

14 return state;

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/29

Der Algorithmus von Prim — Implementierung (1)

1 void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
foreach (edge in adjLst([v]) {
// berechnet MST.
float newWeight = edge.weight;

pq.insert(edge.w, {parent: v, curWeight: newWeight});
} else if (pq.getColor(edge.w) == GRAY) {

2
3

4

5

6 if (pq.getColor(edge.w) == WHITE) { // -> GRAY
7

8

9 if (newWeight < pq.getWeight(edge.w)) {

10 // Randknoten-update: Kante wvon v aus ist besser

11 pq.decrKey(edge.w, {parent: v, curWeight: newWeightl});
12

13 }

4}

15 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/29

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.

= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.

= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.

» Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Minimale Spannbaume Minimale Spannbaume

Komplexitatsanalyse
T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.
» Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal
ausgefiihrt und sind ©(1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Minimale Spannbaume Minimale Spannbaume

Komplexitatsanalyse
T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.
» Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal
ausgefiihrt und sind ©(1).

> Der zusatzliche Speicherbedarf ist ©(n).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

Minimale Spannbaume Minimale Spannbaume

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.

» Beachte, dass getMin eine Komplexitit von ©(n) hat.

» Die Schleife in updateFringe wird insgesamt etwa 2m mal

durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal

ausgefiihrt und sind ©(1).
> Der zusatzliche Speicherbedarf ist ©(n).
> Die untere Schranke der Zeitkomplexitat ist 2(m), da jede Kante des
Graphen untersucht werden muss, um einen MST zu konstruieren.

Datenstrukturen und Algorithmen 29/29

Joost-Pieter Katoen

Minimale Spannbaume Minimale Spannbaume

Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

v

Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.
Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal
ausgefiihrt und sind ©(1).

v

Der zusatzliche Speicherbedarf ist ©(n).

Die untere Schranke der Zeitkomplexitat ist 2(m), da jede Kante des
Graphen untersucht werden muss, um einen MST zu konstruieren.

= Insgesamt: Worst-Case-Komplexitit O(n? + m) = O(n?).

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/29

	Minimale Spannbäume
	Greedy Algorithmen
	Minimaler Spannbaum
	Algorithmus von Prim

