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Probleme auf kanten-gewichteten Graphen

Betrachte einen gewichteten Graphen, wobei den Kanten ein Gewicht
zugeordnet ist.
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» Finde den minimalen Spannbaum (minimal spanning tree) in einem
ungerichteten Graphen.

» Finde den kiirzesten Weg (shortest path) in einem gerichteten oder
ungerichteten Graphen.

,Minimal“ und , kirzester" beziehen sich hierbei auf die besuchten
Gewichte. Die Gewichte konnen als Kosten fiir die Benutzung der Kante
aufgefasst werden.

Diese Probleme kénnen durch greedy Algorithmen geldst werden.
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Greedy Algorithmen

Eine Losungstechnik:

Greedy-Algorithmen (,, gierig*)

» Treffe in jedem Schritt eine Entscheidung, die beziiglich eines
wkurzfristigen* Kriteriums optimal ist.
» Dieses Kriterium sollte giinstig (— Komplexitat) auswertbar sein.

» Nachdem eine Wahl getroffen wurde, kann sie nicht mehr riickgangig
gemacht werden.

Mit Greedy-Methoden ist nicht garantiert, dass immer die beste Losung
gefunden wird, denn
» immer das lokale Optimum zu nehmen, fiihrt nicht automatisch auch
zum globalen Optimum.
> In einigen Fallen, wie dem minimalen Spannbaum und dem
Kiirzesten-Wege-Problem, wird aber immer die optimale Losung
gefunden.
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Greedy?

Greedy kann beliebig schlecht werden:

» Traveling Salesman Problem (TSP)
Greedy kann gut sein:

» Bin Packing (< 2x Optimum)
Greedy kann optimal sein:

» Minimaler Spannbaum, Kirzester-Weg-Problem.
Wann ist eine greedy Losungsstrategie optimal?

» Optimale Lésung setzt sich aus optimalen Teilproblemen zusammen

» Unabhéangigkeit von anderen Teilldsungen
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Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist

> ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.
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Was ist ein minimaler Spannbaum?

Ein Spannbaum eines ungerichteten, zusammenhangenden Graphen G ist
> ein Teilgraph von G, der ein ungerichteter Baum ist und alle Knoten
von G enthalt.

Gewicht eines Graphen

Das Gewicht W(G') eines Teilgraphen G’ = (V/, E’) vom gewichteten
Graph G ist:

> W(G) = > W(uv)
(u,v)eE’

Minimaler Spannbaum

Ein Spannbaum mit minimalem Gewicht heiBt Minimaler Spannbaum
(minimum spanning tree), MST.
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Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.
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Anwendungen

Finde einen MST eines gewichteten, ungerichteten, zusammenhangenden
Graphen.

Beispiel
» Finde den kostengiinstigsten Weg, um eine Menge von
Flughafenterminals, Stadten, ... zu verbinden.

» Grundlage fiir viele andere Probleme, etwa Routing-Probleme
(,Wegfindung").
» Bestandteil von Approximationsalgorithmen fiir das TSP Problem.

» Verdrahtung von Schaltungen mit geringstem Energieverbrauch.
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Minimaler Spannbaum — Beispiel
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Minimaler Spannbaum — Beispiel

Das ist ein minimaler Spannbaum (mit Gesamtgewicht 46).
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Minimale Spannbaume Minimale Spannbaume

Minimaler Spannbaum — Beispiel

Das ist ein minimaler Spannbaum (mit Gesamtgewicht 46).
In diesem Fall ist es auch der einzige.
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Tiefen- oder Breitensuche?

Tiefensuchbaum (von A gestartet) Breitensuchbaum (von A gestartet)
Gesamtgewicht: 55 Gesamtgewicht: 67

Der Tiefensuchbaum und der Breitensuchbaum sind zwar Spannbaume,
aber nicht notwendigerweise MSTs.
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Der Algorithmus von Prim — Ubersicht

Wir ordnen die Knoten in drei Kategorien (BLACK, GRAY, WHITE) ein:
Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.
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|
Ist das korrekt?
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|
Ist das korrekt? Und wenn, was ist die Komplexitat?
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Prim’s Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten
2 void primMST(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);

4 wéhle irgendeinen Knoten s und markiere ihn mit Baum (BLACK) ;
5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;
6 while (es gibt Randknoten) {

7 wdhle von allen Kanten zwischen einem Baumknoten t und

8 einem Randknoten v die billigste;

9 reklassifiziere v als Baum (BLACK);

10 flige Kante tv zum Baum hinzu;

1 reklassifiziere alle zu v adjazenten ungesehenen Knoten

12 als (GRAY) ;

13}

14 }
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Die MST-Eigenschaft

MST-Eigenschaft auf G

Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G, wenn
1. jede Kante (u,v) € G — T einen Zyklus in T erzeugen wiirde, und
2. in diesem Zyklus die Kante mit maximalem Gewicht ist.
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Die MST-Eigenschaft
MST-Eigenschaft auf G

Ein Spannbaum T hat die minimale-Spannbaum-Eigenschaft auf G, wenn
1. jede Kante (u,v) € G — T einen Zyklus in T erzeugen wiirde, und
2. in diesem Zyklus die Kante mit maximalem Gewicht ist.

Spannbaum, der die MST-Eigenschaft hat Spannbaum, der die MST-Eigenschaft verletzt
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Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W( Tl) = W( T2).
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Induktion tber die Anzahl k an Kanten in 77 — T5.
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Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
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Spannbdaume mit gleichem Gewicht

Lemma

Wenn zwei Spannbdume Ty und T, die MST-Eigenschaft auf G haben,
dann ist W(T1) = W(T>).

Beweis.

Induktion tber die Anzahl k an Kanten in 77 — T5.
Induktionsanfang:
k =0, T; und T sind gleich, daher ist W(T1) = W(T>).
Induktionsschritt:
k > 0, Angenommen das Lemma gilt fiir Spannbaume, die sich nur in
Jj < k Kanten unterscheiden.

» T7 und T, unterscheiden sich nun um k Kanten.
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o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
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= W(w,x) = W(u,v).
» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/29



Spannbdaume mit gleichem Gewicht — Beweis
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Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).

» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.

» Da T die MST-Eigenschaft hat und T{ und T3 sich nur noch um
k—1 Kanten unterscheiden:
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Der Pfad von u nach v in T; (mit Lange > 2) muss eine Kante
(w, x) € T, enthalten. Es gilt W(w, x) = W(u, v), denn:
o Wegen der MST-Eigenschaft von Ty gilt W(w, x) < W(u, v).
o Wegen der MST-Eigenschaft von T, gilt W(u, v) < W(w, x).
= W(w,x) = W(u,v).
» Fige (u, v) zu Ty hinzu und entferne (w, x);
Wir erhalten T{ mit W(T1) = W(T7).
» Bemerke, daB T, die MST-Eigenschaft hat, da T die hatte.
» Da T die MST-Eigenschaft hat und T{ und T3 sich nur noch um
k—1 Kanten unterscheiden:
= mit Induktionsannahme folgt, dass W(T{) = W(T3) und damit
W(T1) = W(T2). O
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Theorem

Ein Baum ist ein minimaler Spannbaum gdw. er die MST-Eigenschaft hat.

Beweis.

(=) Durch Widerspruch.
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Wegen = hat dann T’ die MST-Eigenschaft. Mit dem vorigen Lemma
haben Spannbdume mit MST-Eigenschaft das selbe Gewicht, also:
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Minimale Spannbaume Minimale Spannbaume

Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in T
induzierten Teilgraph Gy (d.h. (u, v) ist eine Kante in Gx wenn (u, v) eine
Kante in G ist, und v und v sind in Tj).
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Korrektheit von Prim’s Algorithmus

Der vom Prim’s Algorithmus erzeugte Spannbaum T, mit k > 0 Knoten
(k=1,...,n) hat die MST-Eigenschaft auf dem durch die Knoten in T
induzierten Teilgraph Gy (d.h. (u, v) ist eine Kante in Gx wenn (u, v) eine
Kante in G ist, und v und v sind in Tj).

Beweis.

Induktion nach k.

Induktionsanfang:
k =1, T1 und Gy enthalten nur Knoten und keine Kanten. T; hat
damit die MST-Eigenschaft in Gj.
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Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
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» Sei v € Ty — Tx_1 der k-te Knoten, der hinzugefiigt wurde und
> (u1,v),...,(um, v) die Kanten zwischen Knoten in Tx_; und v.
» Sei (u1, v) die glinstigste dieser Kanten, die in T, gewahlt wurde.
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(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.
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Beweis. (Forts.)

Induktionsschritt:

k > 1. Angenommen T; hat die MST-Eigenschaft auf G; fiir j < k.
Sei v € Ty — Ty_1 der k-te Knoten, der hinzugefiigt wurde und
(u1,v), ..., (um, v) die Kanten zwischen Knoten in T;_; und v.
Sei (uy, v) die giinstigste dieser Kanten, die in Ty gewahlt wurde.
Betrachte die Kante (x,y) € Gx — Tk.

1. Sei x # v und y # v. Dann (x,y) € Gx_1 — Tx_1. Hinzufiigen von
(x,y) zu Tk_1 liefert einen Zyklus, mit (nach Ind. Annahme) (x, y)
maximalem Gewicht auf dem Zyklus. Dies ist jedoch der Zykel den
es auch in Ty gibt. Deswegen hat Tj die MST-Eigenschaft auf G.

2. siehe nachste Folie.

v

vyvyy

_)
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Korrektheit von Prim’s Algorithmus — Beweis

Beweis. (Forts.)

Induktionsschritt:
2. (x,y) € {(u2,v),...,(um, v)} mit m> 2.
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kénnen. (Siehe Vorlesung.)
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(wj, wjy1) die erste Kante auf diesem Pfad ist mit

W(w;, wiy1) > W(uj, v). Sei (wp—1, wp) die letzte Kante auf dem
Pfad mit W(wp_1, wp) > W(u;, v). (Mglicherweise gilt

p = j+1.) Wir zeigen, dass w; und w, nicht in T,_; existieren
konnen. (Siehe Vorlesung.) Damit hat keine Kante auf dem Pfad
wy ... wy ein groBeres Gewicht als W(u;, v), und damit auch nicht
groBer als W(u1, v). Also, hat Ty die MST-Eigenschaft.
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Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.
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Korrektheit

Der Algorithmus von Prim bestimmt einen minimalen Spannbaum.

Sei G = (V, E) und |V| = n Anzahl der Knoten.

» Sei T, der durch Prim berechnete Baum. Dann ist G, = G, und es
folgt — siehe letztes Theorem — dass T, die MST-Eigenschaft hat.

» Da T, die MST-Eigenschaft hat gdw. es ein MST ist, folgt: T, ist ein
MST.

Ol
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ADT zum Vorhalten der Randknoten (1)

Die bendétigten Operationen fiir den Algorithmus von Prim sind:
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Idee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht).

Prioritatswarteschlange (priority queue)

> PriorityQueue pq;
> pq.insert(int e, int k), int pq.getMin(), pq.delMin()

> void pq.decrKey(int e, int k) setzt den Schliissel von Element e
auf k; k muss kleiner als der bisherige Schliissel von e sein.
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Kantenkandidat zum Baum hinzu).
» Andere die Kosten (Randgewicht) eines Randknotens, wenn ein
glnstigerer Kantenkandidat gefunden wird.

Idee: Ordne die Randknoten nach ihrer Prioritit (= Randgewicht).

Prioritatswarteschlange (priority queue)

> PriorityQueue pq;
> pq.insert(int e, int k), int pq.getMin(), pq.delMin()

> void pq.decrKey(int e, int k) setzt den Schliissel von Element e
auf k; k muss kleiner als der bisherige Schliissel von e sein.

= Wir entscheiden uns fiir die Prioritatswarteschlange als Datenstruktur
fur die Randknoten.
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Vorlaufige Komplexitatsanalyse

Im Worst-Case:
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Vorlaufige Komplexitatsanalyse

Im Worst-Case:
» Jeder Knoten muss zur Prioritatswarteschlange hinzugefiigt werden.

» Auf jeden Knoten muss auch wieder zugegriffen werden und er muss
geléscht werden.

» Die Prioritat eines Randknotens muss nach jeder gefundenen Kante
angepasst werden.

Bei einem Graph mit n Knoten und m Kanten ergibt sich:

T(n,m) € O(n-T(insert)+n-T (getMin)+n- T (delMin)+m- T (decrKey))

» Welche Implementierung der Prioritatswarteschlange ist dafiir gut
geeignet?
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Drei Prioritatswarteschlangenimplementierungen

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) O(1) O(1) o(1)
insert(pq,e,k) ©(1) ©(n) O(log n)
getMin(pq) ©(n) O(1) o(1)
delMin(pq) ©(n) O(1) ©(log n)
getElt (pq,k) ©(n) O(log n) ©(n)
decrKey(pq,e,k) o(1) ©(n) O(log n)
Prim O(n? O(n? O(nlogn
+m)) + m-n) + mlog n)
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Drei Prioritatswarteschlangenimplementierungen

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

Implementierung

Operation unsortiertes Array sortiertes Array Heap
isEmpty (pq) o(1) O(1) o(1)
insert(pq,e,k) ©(1) ©(n) O(log n)
getMin(pq) O(n) O(1) o(1)
delMin(pq) ©(n) O(1) ©(log n)
getElt (pq,k) O(n) O(log n) ©(n)
decrKey(pq,e,k) o(1) ©(n) O(log n)
Prim O(n? O(n? O(nlogn
+m)) + m-n) + mlog n)

> Wir ergdnzen auBerdem noch zwei Operationen:
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Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

» bool pq.isEmpty() ©(n)
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Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

> bool pq.isEmpty() ©
> void pq.insert(int elem, VertexState &key) ©
> float pq.getMin() ©
> void pq.delMin() ©

» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)
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» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)

> int pq.getColor(int elem) gibt color von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)
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Prioritatswarteschlange, die Vierte (l11)

Prioritatswarteschlange

> bool pq.isEmpty() ©
> void pq.insert(int elem, VertexState &key) ©
> float pq.getMin() ©
> void pq.delMin() ©

» void pq.decrKey(int elem, VertexState &newkey) setzt den
Schlissel von elem auf newkey; newkey.curWeight muss kleiner als
beim bisherigen Schliissel von elem sein. O(1)

> int pq.getColor(int elem) gibt color von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)

> float pq.getWeight(int elem) gibt curWeight von elem zuriick.
elem muss dazu nicht in der Warteschlange sein. o(1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/29



Der Algorithmus von Prim — Implementierung (1)

1 // Ergebnis als Vorgdngerbaum in .parent:

2 //VveV:(xv)e MST(V,E) gdw. x = state[v].parent, x # —1

3 VertexState[n] primMST(List adjLst[n], int n, int start) {

4 VertexState state[n] = // (eigentlich im Konstruktor von pg)
5 { color: WHITE, parent: -1, curWeight: +inf };

6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7

8

9

pq.insert(start, {parent: -1, curWeight: 0});
while (!pq.isEmpty()) { // solange es Randknoten gibt
10 int v = pq.getMin(); // ginstigste Kante, bzw. Randknoten
11 pq.delMin(); // setzt auch Farbe auf BLACK
12 updateFringe(pq, adjlist, v); // update den Rand
13}

14 return state;
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Der Algorithmus von Prim — Implementierung (1)

1 void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
foreach (edge in adjLst([v]) {
// berechnet MST.
float newWeight = edge.weight;

pq.insert(edge.w, {parent: v, curWeight: newWeight});
} else if (pq.getColor(edge.w) == GRAY) {

2
3

4

5

6 if (pq.getColor(edge.w) == WHITE) { // -> GRAY
7

8

9 if (newWeight < pq.getWeight(edge.w)) {

10 // Randknoten-update: Kante wvon v aus ist besser

11 pq.decrKey(edge.w, {parent: v, curWeight: newWeightl});
12

13 }

4}

15 }
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Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))
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Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

> Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.

» Beachte, dass getMin eine Komplexitit von ©(n) hat.

» Die Schleife in updateFringe wird insgesamt etwa 2m mal

durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal

ausgefiihrt und sind ©(1).
> Der zusatzliche Speicherbedarf ist ©(n).
> Die untere Schranke der Zeitkomplexitat ist 2(m), da jede Kante des
Graphen untersucht werden muss, um einen MST zu konstruieren.
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Komplexitatsanalyse

T(n,m) € O(n-T(insert)+n-T(getMin)+n-T(delMin)+m- T (decrKey))

v

Die Schleife in primMST wird n mal ausgefiihrt.
= isEmpty, getMin, delMin und updateFringe wird n mal ausgefihrt.
» Beachte, dass getMin eine Komplexitit von ©(n) hat.
Die Schleife in updateFringe wird insgesamt etwa 2m mal
durchlaufen.
= insert, getColor, getWeight und decrKey werden m mal
ausgefiihrt und sind ©(1).

v

Der zusatzliche Speicherbedarf ist ©(n).

Die untere Schranke der Zeitkomplexitat ist 2(m), da jede Kante des
Graphen untersucht werden muss, um einen MST zu konstruieren.

= Insgesamt: Worst-Case-Komplexitit O(n? + m) = O(n?).

v

v
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