
Kürzeste Pfadalgorithmen

Datenstrukturen und Algorithmen
Vorlesung 17: Kürzeste Pfadalgorithmen

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

22. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/24

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Kürzeste Pfadalgorithmen

Übersicht

1 Kürzeste Pfade

2 Bellman-Ford

3 Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Übersicht

1 Kürzeste Pfade

2 Bellman-Ford

3 Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Andere Rechenprobleme: kürzester Weg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Andere Rechenprobleme: kürzester Weg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Andere Rechenprobleme: kürzester Weg

Beispiel (kürzester Weg)

Eingabe: 1. Eine Straßenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,

2. eine Startkreuzung s, und
3. eine Zielkreuzung t.

Ausgabe: Der kürzeste Weg von s nach t.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).

I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.
Lässt sich auf SSSP zurückführen.

I Kürzeste Pfade für ein festes Knotenpaar u, v .
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.
I Kürzeste Pfade für ein festes Knotenpaar u, v .

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.

I Kürzeste Pfade für ein festes Knotenpaar u, v .
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.
I Kürzeste Pfade für ein festes Knotenpaar u, v .

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.
I Kürzeste Pfade für ein festes Knotenpaar u, v .

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.
I Kürzeste Pfade für ein festes Knotenpaar u, v .

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.

All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Kürzeste Pfade

Es gibt verschiedene Varianten:
I Kürzeste Pfade von einem Startknoten s zu allen anderen Knoten:

Single-Source Shortest Paths (SSSP).
I Kürzeste Pfade von allen Knoten zu einem Zielknoten t.

Lässt sich auf SSSP zurückführen.
I Kürzeste Pfade für ein festes Knotenpaar u, v .

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

I Kürzeste Pfade für alle Knotenpaare.
All-Pairs Shortest Paths (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G .

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G .

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Kürzeste Pfadalgorithmen Kürzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G .

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Kürzeste Pfadalgorithmen Bellman-Ford

Übersicht

1 Kürzeste Pfade

2 Bellman-Ford

3 Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.

I Erlaubt negative Kantengewichte.
I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.
I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung

I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).
I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren

Gewichten.
I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des

kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.
I Erlaubt negative Kantengewichte.

I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.

I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung
I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).

I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren
Gewichten.

I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des
kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.
I Erlaubt negative Kantengewichte.
I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.

I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung
I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).

I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren
Gewichten.

I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des
kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.
I Erlaubt negative Kantengewichte.
I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.
I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung

I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).

I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren
Gewichten.

I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des
kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.
I Erlaubt negative Kantengewichte.
I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.
I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung

I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).
I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren

Gewichten.

I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des
kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Der Bellman-Ford Algorithmus

I Kürzeste Pfade bei einem einzigen Startknoten.
I Erlaubt negative Kantengewichte.
I Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.
I Falls ein solcher Zyklus gefunden wird, gibt es keine Lösung

I (da die Gewichte der kürzesten Pfade nicht mehr wohldefiniert sind).
I Sonst bestimmt der Algorithmus die kürzesten Pfade mit ihren

Gewichten.
I Er berechnet (iterativ) Schätzungen d[v] für die Gewichte des

kürzesten Pfades vom Startknoten nach v .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.

I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.
I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):

I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),
dann verbessere d[w] auf diesen Wert (Relaxierung).

I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.
I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.

I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):
I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),

dann verbessere d[w] auf diesen Wert (Relaxierung).
I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche

ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.
I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.
I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):

I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),

dann verbessere d[w] auf diesen Wert (Relaxierung).
I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche

ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.
I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.
I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):

I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),
dann verbessere d[w] auf diesen Wert (Relaxierung).

I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.
I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.
I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):

I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),
dann verbessere d[w] auf diesen Wert (Relaxierung).

I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Idee
I Wir wollen die Abstände aller Knoten v ∈ V zum Startknoten start

bestimmen.
I Dazu initialisieren wir d[v] mit ∞, sowie d[start]=0.
I Für alle Kanten (v ,w) ∈ E mit Gewicht W (v ,w):

I Ist der bisher bekannte Abstand d[w] größer als d[v]+W(v,w),
dann verbessere d[w] auf diesen Wert (Relaxierung).

I Wiederhole vorigen Schritt, bis sich nichts mehr ändert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem
Wenn nach |V |−1 Wiederholungen noch Verbesserungen möglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthält d[v] für alle v
den kürzesten Abstand zum Startknoten.

Beweisidee:
I Ein Pfad in (V ,E) kann höchstens die Länge |V |−1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

∞

∞ ∞

∞

∞

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

∞ ∞

∞

∞

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

∞ ∞

6

∞

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

∞ ∞

6

∞

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 ∞

6

∞

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 ∞

6

24

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 ∞

6

24

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 27

6

24

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 27

6

24

∞ ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

14

18 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

18 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

18 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

18 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

17 27

6

24

15 ∞

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

17 27

6

24

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

17 27

6

24

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

17 27

6

24

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

17 27

6

24

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 27

6

24

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 27

6

19

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 27

6

19

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

15 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

10 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

10 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

10 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

13 22

6

19

10 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 30

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 22

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

10 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

9 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

9 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

9 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

12 21

6

19

9 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 25

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 21

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

9 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

8 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

8 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

8 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

11 20

6

19

8 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

10 20

6

19

8 24

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

10 20

6

19

8 23

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

10 20

6

19

8 23

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Beispiel

0

9

10 20

6

19

8 23

14

6

4

10

9

-12

3

3
8

2

15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Implementierung
1 // Keine Zyklen mit negativem Gewicht?
2 bool bellFord(List adjLst[n], int n, int start) {
3 int d[n] = +inf;
4 d[start] = 0;
5 for (int i = 1; i < n; i++) // n-1 Durchläufe
6 for (int v = 0; v < n; v++) // alle Kanten
7 foreach (edge in adjLst[v])
8 if (d[edge.w] > d[v] + edge.weight) {
9 d[edge.w] = d[v] + edge.weight;

10 }
11 for (int v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst[v])
13 if (d[edge.w] > d[v] + edge.weight)
14 return false; // "noch kürzerer Weg"
15 return true;
16 }

I Erweiterbar durch Speichern des Vorgängers auf die Rückgabe der
kürzesten Wege (Übung).

I Komplexität: O(|V | · |E |) = O(n ·m) ∈ O(n3).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Implementierung
1 // Keine Zyklen mit negativem Gewicht?
2 bool bellFord(List adjLst[n], int n, int start) {
3 int d[n] = +inf;
4 d[start] = 0;
5 for (int i = 1; i < n; i++) // n-1 Durchläufe
6 for (int v = 0; v < n; v++) // alle Kanten
7 foreach (edge in adjLst[v])
8 if (d[edge.w] > d[v] + edge.weight) {
9 d[edge.w] = d[v] + edge.weight;

10 }
11 for (int v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst[v])
13 if (d[edge.w] > d[v] + edge.weight)
14 return false; // "noch kürzerer Weg"
15 return true;
16 }

I Erweiterbar durch Speichern des Vorgängers auf die Rückgabe der
kürzesten Wege (Übung).

I Komplexität: O(|V | · |E |) = O(n ·m) ∈ O(n3).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kürzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford – Implementierung
1 // Keine Zyklen mit negativem Gewicht?
2 bool bellFord(List adjLst[n], int n, int start) {
3 int d[n] = +inf;
4 d[start] = 0;
5 for (int i = 1; i < n; i++) // n-1 Durchläufe
6 for (int v = 0; v < n; v++) // alle Kanten
7 foreach (edge in adjLst[v])
8 if (d[edge.w] > d[v] + edge.weight) {
9 d[edge.w] = d[v] + edge.weight;

10 }
11 for (int v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst[v])
13 if (d[edge.w] > d[v] + edge.weight)
14 return false; // "noch kürzerer Weg"
15 return true;
16 }

I Erweiterbar durch Speichern des Vorgängers auf die Rückgabe der
kürzesten Wege (Übung).

I Komplexität: O(|V | · |E |) = O(n ·m) ∈ O(n3).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kürzeste Pfadalgorithmen Dijkstra

Übersicht

1 Kürzeste Pfade

2 Bellman-Ford

3 Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .
⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x

nach y .
⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .
⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x

nach y .
⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:

I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .
⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x

nach y .
⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .

⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x
nach y .

⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .
⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x

nach y .

⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus

Annahme
Alle Kantengewichte sind nicht-negativ, d. h. W (v ,w) > 0.

I Kürzeste Wege können nun nur noch Pfade (jeder Knoten wird
höchstens einmal besucht) sein.

Dijkstras Kürzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
I Angenommen der kürzeste Pfad von x nach z geht über Knoten y .
⇒ Dann ist der Teilpfad von x nach y auch ein kürzester Pfad von x

nach y .
⇒ Auch der Teilpfad von y nach z ist ein kürzester Pfad von y nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.

Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

I Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

I Finde die Kante mit kürzestem Abstand von s, die den bisherigen
Baum verlässt.

I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.

I Finde die Kante mit kürzestem Abstand von s, die den bisherigen
Baum verlässt.

I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.

I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.

I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Übersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
I Fange mit einen Baum aus nur einem Knoten an, in dem der

Quellen-Knoten s die Wurzel ist.
I Finde die Kante mit kürzestem Abstand von s, die den bisherigen

Baum verlässt.
I Füge den über diese Kante erreichten (Rand-)Knoten dem Baum

hinzu, zusammen mit der Kante.
I Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Grundgerüst

1 // ungerichteter Graph G mit n Knoten
2 void dijkstraSP(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);
4 markiere s als Baum (BLACK) und setze d(s, s) = 0;
5 reklassifiziere alle zu s adjazenten Knoten als Rand (GRAY);
6 while (es gibt Randknoten) {
7 wähle von allen Kanten zwischen einem Baumknoten t und
8 einem Randknoten v die mit minimalem d(s, t) + W (t, v);
9 reklassifiziere v als Baum (BLACK);

10 füge Kante tv zum Baum hinzu;
11 setze d(s, v) = d(s, t) + W (t, v);
12 reklassifiziere alle zu v adjazenten ungesehenen Knoten
13 mit Rand (GRAY);
14 }
15 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

∞

∞

∞

∞

∞ ∞

∞

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

14

6

10

∞

5 ∞

∞

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

14

6

10

7

5 14

∞

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

14

6

10

7

5 14

∞

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

14

6

10

7

5 14

22

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

13

6

10

7

5 14

22

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

13

6

10

7

5 14

22

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

13

6

10

7

5 14

22

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus – Beispiel

0

13

6

10

7

5 14

22

14

6

10

55

33

44

88

2

1515

99

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kürzeste Pfadalgorithmen Dijkstra

Theorem

Sei s ∈ V ′ ⊆ V mit kürzestem Abstand d(s, y) von s nach y ∈ V ′.

Theorem
Wenn (y , z) die Kante mit minimalem d(s, y) + W (y , z) über alle Kanten
mit y ∈ V ′ und z ∈ V \ V ′ ist, dann ist der zusammengesetzte Weg
bestehend aus dem kürzesten Weg von s nach y gefolgt von der Kante
(y , z) auch der kürzeste Weg von s nach z .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/24

Kürzeste Pfadalgorithmen Dijkstra

Beweis
Beweis.
Sei P der kürzeste Weg von s nach y , erweitert um die Kante (y , z), die
„am nahesten an s liegt“.

Sei nun P ′ = s, z1, . . . , zk , . . . , z der kürzeste Weg von s nach z , wobei zk
der erste Knoten 6∈ V ′ ist.

I Wegen der Wahl von (y , z) gilt:
W (P) = d(s, y) + W (y , z) 6 d(s, zk−1) + W (zk−1, zk).

I Da s, z1, . . . , zk ein Prefix von P ′ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk−1) + W (zk−1, zk) 6 W (P ′)

⇒ Daher ist W (P) 6 W (P ′), d. h. P ist der kürzeste Weg!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kürzeste Pfadalgorithmen Dijkstra

Beweis
Beweis.
Sei P der kürzeste Weg von s nach y , erweitert um die Kante (y , z), die
„am nahesten an s liegt“.
Sei nun P ′ = s, z1, . . . , zk , . . . , z der kürzeste Weg von s nach z , wobei zk
der erste Knoten 6∈ V ′ ist.

I Wegen der Wahl von (y , z) gilt:
W (P) = d(s, y) + W (y , z) 6 d(s, zk−1) + W (zk−1, zk).

I Da s, z1, . . . , zk ein Prefix von P ′ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk−1) + W (zk−1, zk) 6 W (P ′)

⇒ Daher ist W (P) 6 W (P ′), d. h. P ist der kürzeste Weg!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kürzeste Pfadalgorithmen Dijkstra

Beweis
Beweis.
Sei P der kürzeste Weg von s nach y , erweitert um die Kante (y , z), die
„am nahesten an s liegt“.
Sei nun P ′ = s, z1, . . . , zk , . . . , z der kürzeste Weg von s nach z , wobei zk
der erste Knoten 6∈ V ′ ist.

I Wegen der Wahl von (y , z) gilt:
W (P) = d(s, y) + W (y , z) 6 d(s, zk−1) + W (zk−1, zk).

I Da s, z1, . . . , zk ein Prefix von P ′ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk−1) + W (zk−1, zk) 6 W (P ′)

⇒ Daher ist W (P) 6 W (P ′), d. h. P ist der kürzeste Weg!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kürzeste Pfadalgorithmen Dijkstra

Beweis
Beweis.
Sei P der kürzeste Weg von s nach y , erweitert um die Kante (y , z), die
„am nahesten an s liegt“.
Sei nun P ′ = s, z1, . . . , zk , . . . , z der kürzeste Weg von s nach z , wobei zk
der erste Knoten 6∈ V ′ ist.

I Wegen der Wahl von (y , z) gilt:
W (P) = d(s, y) + W (y , z) 6 d(s, zk−1) + W (zk−1, zk).

I Da s, z1, . . . , zk ein Prefix von P ′ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk−1) + W (zk−1, zk) 6 W (P ′)

⇒ Daher ist W (P) 6 W (P ′), d. h. P ist der kürzeste Weg!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kürzeste Pfadalgorithmen Dijkstra

Beweis
Beweis.
Sei P der kürzeste Weg von s nach y , erweitert um die Kante (y , z), die
„am nahesten an s liegt“.
Sei nun P ′ = s, z1, . . . , zk , . . . , z der kürzeste Weg von s nach z , wobei zk
der erste Knoten 6∈ V ′ ist.

I Wegen der Wahl von (y , z) gilt:
W (P) = d(s, y) + W (y , z) 6 d(s, zk−1) + W (zk−1, zk).

I Da s, z1, . . . , zk ein Prefix von P ′ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk−1) + W (zk−1, zk) 6 W (P ′)

⇒ Daher ist W (P) 6 W (P ′), d. h. P ist der kürzeste Weg!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kürzeste Pfadalgorithmen Dijkstra

Korrektheit

Theorem (Korrektheit)

Dijkstras kürzeste-Wege-Algorithmus berechnet den kürzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G .

Beweis.
Induktion nach der Sequenz von hinzugefügte Knoten im SSSP-Baum.
(Übung.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/24

Kürzeste Pfadalgorithmen Dijkstra

Korrektheit

Theorem (Korrektheit)

Dijkstras kürzeste-Wege-Algorithmus berechnet den kürzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G .

Beweis.
Induktion nach der Sequenz von hinzugefügte Knoten im SSSP-Baum.
(Übung.)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus –
Implementierung (I)

1 // Wie Prim. Ergebnis als Vorgängerliste(-baum) in .parent
2 // curWeight[v] enthält gerade d(s,v)
3 VertexState[n] dijkSP(List adjLst[n], int n, int start) {
4 VertexState state[n] = // (eigentlich im Konstruktor von pq)
5 { color: WHITE, parent: -1, curWeight: +inf };
6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7

8 pq.insert(start, {parent: -1, curWeight: 0});
9 while (!pq.isEmpty()) { // solange es Randknoten gibt

10 int v = pq.getMin(); // günstigste Kante, bzw. Randknoten
11 pq.delMin(); // setzt auch Farbe auf BLACK
12 updateFringe(pq, adjList, v); // update den Rand
13 }
14 return state;
15 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/24

Kürzeste Pfadalgorithmen Dijkstra

Dijkstras Kürzeste-Wege-Algorithmus –
Implementierung (II)

1 void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
2 // kürzester Weg von s nach v
3 float ownWeight = pq.getWeight(v);
4 foreach (edge in adjLst[v]) {
5 // Distanz von s nach w über v
6 float newWeight = edge.weight + ownWeight;
7

8 if (pq.getColor(edge.w) == WHITE) { // -> GRAY
9 pq.insert(edge.w, {parent: v, curWeight: newWeight});

10 } else if (pq.getColor(edge.w) == GRAY) {
11 if (newWeight < pq.getWeight(edge.w)) {
12 // Randknoten-update: Weg über v ist besser
13 pq.decrKey(edge.w, {parent: v, curWeight: newWeight});
14 }
15 }
16 }
17 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/24

Kürzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

I Kürzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

I Implementierung: Ähnlich dem Algorithmus von Prim.
I Zeitkomplexität im Worst-Case: Θ(|V |2).
I Untere Schranke der Komplexität: Ω(|E |).

I da im schlimmsten Fall alle Kanten überprüft werden müssen.
I Platzkomplexität: O(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Kürzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

I Kürzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

I Implementierung: Ähnlich dem Algorithmus von Prim.

I Zeitkomplexität im Worst-Case: Θ(|V |2).
I Untere Schranke der Komplexität: Ω(|E |).

I da im schlimmsten Fall alle Kanten überprüft werden müssen.
I Platzkomplexität: O(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Kürzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

I Kürzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

I Implementierung: Ähnlich dem Algorithmus von Prim.
I Zeitkomplexität im Worst-Case: Θ(|V |2).

I Untere Schranke der Komplexität: Ω(|E |).
I da im schlimmsten Fall alle Kanten überprüft werden müssen.

I Platzkomplexität: O(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Kürzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

I Kürzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

I Implementierung: Ähnlich dem Algorithmus von Prim.
I Zeitkomplexität im Worst-Case: Θ(|V |2).
I Untere Schranke der Komplexität: Ω(|E |).

I da im schlimmsten Fall alle Kanten überprüft werden müssen.

I Platzkomplexität: O(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Kürzeste Pfadalgorithmen Dijkstra

Eigenschaften von Dijkstras Algorithmus

I Kürzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

I Implementierung: Ähnlich dem Algorithmus von Prim.
I Zeitkomplexität im Worst-Case: Θ(|V |2).
I Untere Schranke der Komplexität: Ω(|E |).

I da im schlimmsten Fall alle Kanten überprüft werden müssen.
I Platzkomplexität: O(|V |).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

	Kürzeste Pfade
	Bellman-Ford
	Dijkstra

