Kiirzeste Pfadalgorithmen

Datenstrukturen und Algorithmen

Vorlesung 17: Kiirzeste Pfadalgorithmen

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://wuw-i2.informatik.rwth-aachen.de/i2/dsall2/

22. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/24

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

@ Kiirzeste Pfade

© Bellman-Ford

© Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/24

Ubersicht

@ Kiirzeste Pfade

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

0.30% 10:
, 33w
Broadway

vards

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/24

Andere Rechenprobleme: kiirzester Weg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Beispiel (kiirzester Weg)

Eingabe: 1. Eine StraBenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,
2. eine Startkreuzung s, und
3. eine Zielkreuzung t.

Ausgabe: Der kiirzeste Weg von s nach t.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zurlckfuhren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zurlckfuhren.

» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zurlckfuhren.
» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.

Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zurlckfuhren.

» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

» Kiirzeste Pfade fiir alle Knotenpaare.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiurzeste Pfade

Es gibt verschiedene Varianten:

» Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zurlckfuhren.

» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

» Kiirzeste Pfade fiir alle Knotenpaare.
All-Pairs Shortest Paths (nachste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G.

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G.

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Ubersicht

© Bellman-Ford

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/24

Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.

> Erlaubt negative Kantengewichte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.
» Erlaubt negative Kantengewichte.

> Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Der Bellman-Ford Algorithmus

v

Kiirzeste Pfade bei einem einzigen Startknoten.

v

Erlaubt negative Kantengewichte.

v

Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.

v

Falls ein solcher Zyklus gefunden wird, gibt es keine Lésung
» (da die Gewichte der kiirzesten Pfade nicht mehr wohldefiniert sind).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.
» Erlaubt negative Kantengewichte.

> Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.
» Falls ein solcher Zyklus gefunden wird, gibt es keine Losung
» (da die Gewichte der kiirzesten Pfade nicht mehr wohldefiniert sind).
» Sonst bestimmt der Algorithmus die kiirzesten Pfade mit ihren
Gewichten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.
» Erlaubt negative Kantengewichte.

> Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom
Startknoten aus erreichbar ist.
» Falls ein solcher Zyklus gefunden wird, gibt es keine Losung
» (da die Gewichte der kiirzesten Pfade nicht mehr wohldefiniert sind).
» Sonst bestimmt der Algorithmus die kiirzesten Pfade mit ihren
Gewichten.

> Er berechnet (iterativ) Schatzungen d[v] fiir die Gewichte des
kiirzesten Pfades vom Startknoten nach v.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24

Bellman-Ford — ldee

» Wir wollen die Abstande aller Knoten v € V zum Startknoten start
bestimmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Bellman-Ford — ldee

» Wir wollen die Abstande aller Knoten v € V zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — ldee

» Wir wollen die Abstande aller Knoten v € V' zum Startknoten start
bestimmen.
» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.
» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):
> Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — ldee

» Wir wollen die Abstande aller Knoten v € V zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.

» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):

> Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),
dann verbessere d [w] auf diesen Wert (Relaxierung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — ldee

» Wir wollen die Abstande aller Knoten v € V zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.

» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):

> Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),
dann verbessere d [w] auf diesen Wert (Relaxierung).

» Wiederhole vorigen Schritt, bis sich nichts mehr dndert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — ldee
» Wir wollen die Abstande aller Knoten v € V zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.
» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):

> Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),
dann verbessere d [w] auf diesen Wert (Relaxierung).

» Wiederhole vorigen Schritt, bis sich nichts mehr dndert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Wenn nach |V|—1 Wiederholungen noch Verbesserungen mdéglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthalt d[v] fiir alle v
den kiirzesten Abstand zum Startknoten.

Beweisidee:
» Ein Pfad in (V, E) kann hochstens die Lange |V|—1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Implementierung

1 // Keine Zyklen mit negativem Gewicht?

2 bool bellFord(List adjLst([n], int n, int start) {
3 int d[n] = +inf;

4 d[start] = 0;

5 for (int i = 1; i < n; i++) // n-1 Durchldufe

6 for (int v = 0; v < n; v++) // alle Kanten

7
8
9

foreach (edge in adjLst([v])
if (d[edge.w] > d[v] + edge.weight) {
d[edge.w] = d[v] + edge.weight;
10 }
11 for (dnt v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst([v])

13 if (d[edge.w] > d[v] + edge.weight)

14 return false; // "noch kirzerer Weg"
15 return true;

16 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Implementierung

1 // Keine Zyklen mit negativem Gewicht?

2 bool bellFord(List adjLst([n], int n, int start) {
3 int d[n] = +inf;

4 d[start] = 0;

5 for (int i = 1; i < n; i++) // n-1 Durchldufe

6 for (int v = 0; v < n; v++) // alle Kanten

7
8
9

foreach (edge in adjLst([v])
if (d[edge.w] > d[v] + edge.weight) {
d[edge.w] = d[v] + edge.weight;
10 }
11 for (dnt v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst([v])

13 if (d[edge.w] > d[v] + edge.weight)

14 return false; // "noch kirzerer Weg"
15 return true;

16 }

> Erweiterbar durch Speichern des Vorgangers auf die Riickgabe der
kiirzesten Wege (Ubung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Implementierung

1 // Keine Zyklen mit negativem Gewicht?

2 bool bellFord(List adjLst([n], int n, int start) {
3 int d[n] = +inf;

4 d[start] = 0;

5 for (int i = 1; i < n; i++) // n-1 Durchldufe

6 for (int v = 0; v < n; v++) // alle Kanten

7
8
9

foreach (edge in adjLst([v])
if (d[edge.w] > d[v] + edge.weight) {
d[edge.w] = d[v] + edge.weight;
10 }
11 for (dnt v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst([v])

13 if (d[edge.w] > d[v] + edge.weight)

14 return false; // "noch kirzerer Weg"
15 return true;

16 }

> Erweiterbar durch Speichern des Vorgangers auf die Riickgabe der
kiirzesten Wege (Ubung).
» Komplexitit: O(|V| - |E|) = O(n- m) € O(n3).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Ubersicht

© Dijkstra

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/24

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kiirzeste Wege konnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kiirzeste Wege konnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kiirzeste Wege konnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:

» Angenommen der kiirzeste Pfad von x nach z geht iiber Knoten y.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kiirzeste Wege konnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
» Angenommen der kiirzeste Pfad von x nach z geht iiber Knoten y.

= Dann ist der Teilpfad von x nach y auch ein kiirzester Pfad von x
nach y.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kiirzeste Wege konnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
» Angenommen der kiirzeste Pfad von x nach z geht iiber Knoten y.

= Dann ist der Teilpfad von x nach y auch ein kiirzester Pfad von x
nach y.

= Auch der Teilpfad von y nach z ist ein kiirzester Pfad von y nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.
Grundkonzept:

» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.

Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

» Finde die Kante mit kirzestem Abstand von s, die den bisherigen
Baum verlasst.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

» Finde die Kante mit kirzestem Abstand von s, die den bisherigen
Baum verlasst.

> Fiige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

» Finde die Kante mit kiirzestem Abstand von s, die den bisherigen
Baum verlasst.

> Fiige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht

Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.
Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:

» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.

» Finde die Kante mit kiirzestem Abstand von s, die den bisherigen
Baum verlasst.

> Fiige den iber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.

» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.

Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Dijkstras Kiirzeste-Wege-Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten
2 void dijkstraSP(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);

4+ markiere s als Baum (BLACK) und setze d(s,s)=0;

5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;
6 while (es gibt Randknoten) {

7 wdhle von allen Kanten zwischen einem Baumknoten t und
8 einem Randknoten v die mit minimalem d(s,t)+ W(t, v);

9 reklassifiziere v als Baum (BLACK);

10 fiige Kante tv zum Baum hinzu;

1 setze d(s,v) =d(s, t)+ W(t, v);

12 reklassifiziere alle zu v adjazenten ungesehenen Knoten
13 mit (GRAY) ;

4}

15 +

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24

Kiirzeste Pfadalgorithmen Dijkstra

Theorem

Sei s € V/ C V mit kiirzestem Abstand d(s, y) von s nach y € V'.

Wenn (y, z) die Kante mit minimalem d(s, y) + W(y, z) tber alle Kanten
mit y € V' und z € V' \ V' ist, dann ist der zusammengesetzte Weg
bestehend aus dem kiirzesten Weg von s nach y gefolgt von der Kante
(v, z) auch der kiirzeste Weg von s nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/24

Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt".

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Kiirzeste Pfadalgorithmen Dijkstra

Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt".

Sei nun P =s,71,..., 2, ...,z der kiirzeste Weg von s nach z, wobei zj
der erste Knoten ¢ V/ ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt®

Sei nun P =s,71,..., 2, ...,z der kiirzeste Weg von s nach z, wobei zj
der erste Knoten ¢ V/ ist.

» Wegen der Wahl von (y, z) gilt:
W(P)=d(s,y)+ W(y,z) < d(s,zk—1) + W(zxk_1, zk)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt®

Sei nun P =s,71,..., 2, ...,z der kiirzeste Weg von s nach z, wobei zj
der erste Knoten ¢ V/ ist.

» Wegen der Wahl von (y, z) gilt:
W(P)=d(s,y)+ W(y,z) < d(s,zk—1) + W(zxk_1, zk)-

» Das,z,..., 2z ein Prefix von P’ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk—1) + W(zk—1, zx) < W(P')

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt®

Sei nun P =s,71,..., 2, ...,z der kiirzeste Weg von s nach z, wobei zj
der erste Knoten ¢ V/ ist.

» Wegen der Wahl von (y, z) gilt:
W(P)=d(s,y)+ W(y,z) < d(s,zk—1) + W(zxk_1, zk)-

» Das,z,..., 2z ein Prefix von P’ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(s, zk—1) + W(zk—1, zx) < W(P')

= Daher ist W(P) < W(P’), d.h. P ist der kiirzeste Weg! O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Korrektheit

Theorem (Korrektheit)

Dijkstras kiirzeste-Wege-Algorithmus berechnet den kiirzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/24

Kiirzeste Pfadalgorithmen Dijkstra

Korrektheit

Theorem (Korrektheit)

Dijkstras kiirzeste-Wege-Algorithmus berechnet den kiirzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G.

Beweis.

Induktion nach der Sequenz von hinzugefiigte Knoten im SSSP-Baum.
(Ubung.) O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus —
Implementierung (1)

1 // Wie Prim. Ergebnis als Vorgdngerliste(-baum) in .parent

2 // curWeight[v] enthdlt gerade d(s,v)

3 VertexState[n] dijkSP(List adjLst[n], int n, int start) {

4+ VertexState state[n] = // (eigentlich im Konstruktor wvon pq)
5 { color: WHITE, parent: -1, curWeight: +inf };

6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7

8

9

pq.insert(start, {parent: -1, curWeight: 0});
while (!pq.isEmpty()) { // solange es Randknoten gibt
10 int v = pq.getMin(); // gunstigste Kante, bzw. Randknoten
11 pq.delMin(); // setzt auch Farbe auf BLACK
12 updateFringe(pq, adjlList, v); // update den Rand
13}

14 return state;

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus —
Implementierung (1)

1 void updateFringe (PriorityQueue &pq, List adjLst[], int v) {
2 // kiurzester Weg von s nach v

3 float ownWeight = pq.getWeight(v);

4+ foreach (edge in adjLst([v]) {

5 // Distanz wvon s mach w uber v

6 float newWeight = edge.weight + ownWeight;

7
8
9

if (pq.getColor(edge.w) == WHITE) { // -> GRAY
pq.insert(edge.w, {parent: v, curWeight: newWeight});
10 } else if (pq.getColor(edge.w) == GRAY) {

11 if (newWeight < pq.getWeight(edge.w)) {

12 // Randknoten-update: Weg uber v ist besser

13 pq.decrKey(edge.w, {parent: v, curWeight: newWeight});
14 }

15 }

6}

17}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/24

Eigenschaften von Dijkstras Algorithmus

» Kirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Eigenschaften von Dijkstras Algorithmus

» Kirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

» Implementierung: Ahnlich dem Algorithmus von Prim.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Eigenschaften von Dijkstras Algorithmus

» Kirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

» Implementierung: Ahnlich dem Algorithmus von Prim.
» Zeitkomplexitat im Worst-Case: O(|V/|?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Eigenschaften von Dijkstras Algorithmus

v

Kirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

v

Implementierung: Ahnlich dem Algorithmus von Prim.
Zeitkomplexitat im Worst-Case: O(|V/|?).

Untere Schranke der Komplexitat: Q(|E|).
» da im schlimmsten Fall alle Kanten Gberpriift werden missen.

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

Eigenschaften von Dijkstras Algorithmus

v

Kirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.

v

Implementierung: Ahnlich dem Algorithmus von Prim.
Zeitkomplexitat im Worst-Case: O(|V/|?).
Untere Schranke der Komplexitat: Q(|E|).

» da im schlimmsten Fall alle Kanten Gberpriift werden missen.

Platzkomplexitat: O(|V/]).

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

	Kürzeste Pfade
	Bellman-Ford
	Dijkstra

