Kiirzeste Pfadalgorithmen

Datenstrukturen und Algorithmen

Vorlesung 17: Kiirzeste Pfadalgorithmen

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

22. Juni 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/24
Ubersicht
@ Kiirzeste Pfade
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/24

Kiirzeste Pfadalgorithmen

Ubersicht

© Kiirzeste Pfade

e Bellman-Ford

© Dijkstra

Joost-Pieter Katoen

Kiirzeste Pfadalgorithmen

Datenstrukturen und Algorithmen

Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Joost-Pieter Katoen

yards

tomtom

0.30 10:1
33.“,.‘
Broadway

Datenstrukturen und Algorithmen

2/24

e

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Kirzeste Pfade

Es gibt verschiedene Varianten:

> Kiirzeste Pfade von einem Startknoten s zu allen anderen Knoten:
Single-Source Shortest Paths (SSSP).

» Kiirzeste Pfade von allen Knoten zu einem Zielknoten t.
Lasst sich auf SSSP zuruckfihren.

» Kiirzeste Pfade fiir ein festes Knotenpaar u, v.
Es ist kein Algorithmus bekannt, der asymptotisch schneller als der
beste SSSP-Algorithmus ist.

» Kiirzeste Pfade fiir alle Knotenpaare.
All-Pairs Shortest Paths (nachste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Andere Rechenprobleme: kiirzester Weg

Beispiel (kiirzester Weg)

Eingabe: 1. Eine StraBenkarte, auf der der Abstand zwischen jedem
Paar benachbarter Kreuzungen eingezeichnet ist,
2. eine Startkreuzung s, und
3. eine Zielkreuzung t.

Ausgabe: Der kiirzeste Weg von s nach t.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/24

Kiirzeste Pfadalgorithmen Kiirzeste Pfade

Single-Source Shortest Paths

Gegeben sei ein gewichteter (gerichteter oder ungerichteter) Graph G.

Das Gewicht eines Weges ist die Summe der Gewichte seiner Kanten.

Problem (Single-Source Shortest Path)

Finde den Weg mit minimalem Gewicht, von Knoten s (Quelle / source)
aus zu jedem anderen Knoten aus G.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/24

Ubersicht Der Bellman-Ford Algorithmus

> Kiirzeste Pfade bei einem einzigen Startknoten.
> Erlaubt negative Kantengewichte.

> Er zeigt an, ob es einen Zyklus mit negativem Gewicht gibt, der vom

Startknoten aus erreichbar ist.
@ Bellman-Ford > Falls ein solcher Zyklus gefunden wird, gibt es keine Losung
» (da die Gewichte der kiirzesten Pfade nicht mehr wohldefiniert sind).

» Sonst bestimmt der Algorithmus die kiirzesten Pfade mit ihren
Gewichten.

» Er berechnet (iterativ) Schatzungen d[v] fiir die Gewichte des
kiirzesten Pfades vom Startknoten nach v.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/24 Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/24
Bellman-Ford — Idee Bellman-Ford — Beispiel
» Wir wollen die Abstande aller Knoten v € V' zum Startknoten start
bestimmen.

» Dazu initialisieren wir d[v] mit oo, sowie d[start]=0.
» Fir alle Kanten (v, w) € E mit Gewicht W(v, w):
» Ist der bisher bekannte Abstand d[w] groBer als d[v]+W(v,w),
dann verbessere d [w] auf diesen Wert (Relaxierung).
» Wiederhole vorigen Schritt, bis sich nichts mehr andert, bzw. breche
ab, falls es einen negativen Zyklus gibt.

Theorem

Wenn nach |V |—1 Wiederholungen noch Verbesserungen mdéglich sind,
dann gibt es einen negativen Zyklus. Andernfalls enthalt d[v] fiir alle v
den kiirzesten Abstand zum Startknoten.

Beweisidee:
» Ein Pfad in (V, E) kann hochstens die Lange |V|—1 haben.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/24 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24

Kiirzeste Pfadalgorithmen Bellman-Ford Kiirzeste Pfadalgorithmen Bellman-Ford

Bellman-Ford — Beispiel Bellman-Ford — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24
Kiirzeste Pfadalgorithmen Bellman-Ford Kiirzeste Pfadalgorithmen Bellman-Ford
Bellman-Ford — Beispiel Bellman-Ford — Implementierung

1 // Keine Zyklen mit negativem Gewicht?
2 bool bellFord(List adjLst[n], int n, int start) {

3 int d[n] = +inf;

4 d[start] = 0;

5 for (int i = 1; i < n; i++) // n-1 Durchldufe
6 for (int v = 0; v < n; v++) // alle Kanten
7 foreach (edge in adjLst[v])

8 if (d[edge.w] > d[v] + edge.weight) {
9 d[edge.w] = d[v] + edge.weight;

10 }

1u for (int v = 0; v < n; v++) // alle Kanten
12 foreach (edge in adjLst[v])

13 if (d[edge.w] > d[v] + edge.weight)

14 return false; // "noch kurzerer Weg"

15 return true;

16

» Erweiterbar durch Speichern des Vorgangers auf die Riickgabe der
kiirzesten Wege (Ubung).
» Komplexitat: O(|V|-|E|) = O(n- m) € O(n?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/24 Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/24

Kiirzeste Pfadalgorithmen Dijkstra
Ubersicht
© Dijkstra
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/24
Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Ubersicht
Wie beim Algorithmus von Prim ordnen wir die Knoten in drei Kategorien
(BLACK, GRAY, WHITE) ein:

Baum-knoten: Knoten, die Teil vom bis jetzt konstruierten Baum sind.
Rand-knoten: Nicht im Baum, jedoch adjazent zu Knoten im Baum.

Ungesehene Knoten: Alle anderen Knoten.

Grundkonzept:
» Fange mit einen Baum aus nur einem Knoten an, in dem der
Quellen-Knoten s die Wurzel ist.
» Finde die Kante mit kiirzestem Abstand von s, die den bisherigen
Baum verlasst.
» Fige den iiber diese Kante erreichten (Rand-)Knoten dem Baum
hinzu, zusammen mit der Kante.
» Fahre fort, bis keine weiteren Randknoten mehr vorhanden sind.
Genauso wie der MST-Algorithmus von Prim handelt es sich um einen
Greedy-Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus

Alle Kantengewichte sind nicht-negativ, d.h. W(v, w) > 0.

» Kirzeste Wege kdnnen nun nur noch Pfade (jeder Knoten wird
hochstens einmal besucht) sein.

Dijkstras Kiirzeste-Wege-Algorithmus basiert auf folgender Eigenschaft:
> Angenommen der kiirzeste Pfad von x nach z geht (iber Knoten y.

=- Dann ist der Teilpfad von x nach y auch ein kiirzester Pfad von x
nach y.

= Auch der Teilpfad von y nach z ist ein kiirzester Pfad von y nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/24
Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Grundgeriist

1 // ungerichteter Graph G mit n Knoten
2 void dijkstraSP(Graph G, int n) {
3 initialisiere alle Knoten als ungesehen (WHITE);

4+ markiere s als Baum (BLACK) und setze d(s,s)=0;
5 reklassifiziere alle zu s adjazenten Knoten als (GRAY) ;
6 while (es gibt Randknoten) {
7 wéhle von allen Kanten zwischen einem Baumknoten t und
8 einem Randknoten v die mit minimalem d(s,t)+ W(t, v);
9 reklassifiziere v als Baum (BLACK);
10 fiige Kante tv zum Baum hinzu;
11 setze d(s,v) =d(s, t)+ W(t,v);
12 reklassifiziere alle zu v adjazenten ungesehenen Knoten
13 mit (GRAY) ;
14}
15 }
Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/24

Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/24
Kiirzeste Pfadalgorithmen Dijkstra
Beweis

Beweis.

Sei P der kiirzeste Weg von s nach y, erweitert um die Kante (y, z), die
»,am nahesten an s liegt".

Seinun P =s,zy,...,2, ...,z der kiirzeste Weg von s nach z, wobei z
der erste Knoten ¢ V/ ist.

» Wegen der Wahl von (y, z) gilt:
W(P)=d(s,y)+ W(y,z) < d(s, zxk—1) + W(zk—_1, z«)-

» Da s,z ...,z ein Prefix von P’ ist und alle verbleibenden Kanten
nicht-negatives Gewicht haben, gilt:

d(S,Zk_l) T W(Zk—lyzk) < W('D/)

= Daher ist W(P) < W(P'), d.h. P ist der kiirzeste Weg! O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/24

Theorem

Sei s € V/ C V mit kiirzestem Abstand d(s, y) von s nach y € V'.

Wenn (y, z) die Kante mit minimalem d(s, y) + W(y, z) tber alle Kanten
mit y € V/ und z € V' \ V' ist, dann ist der zusammengesetzte Weg
bestehend aus dem kiirzesten Weg von s nach y gefolgt von der Kante
(v, z) auch der kiirzeste Weg von s nach z.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/24

Kiirzeste Pfadalgorithmen Dijkstra

Korrektheit

Theorem (Korrektheit)

Dijkstras kiirzeste-Wege-Algorithmus berechnet den kiirzesten Abstand
von Knoten s zu jedem von s erreichbaren Knoten in G.

Beweis.

Induktion nach der Sequenz von hinzugefiigte Knoten im SSSP-Baum.
(Ubung.) O]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/24

Kiirzeste Pfadalgorithmen Dijkstra Kiirzeste Pfadalgorithmen Dijkstra

Dijkstras Kiirzeste-Wege-Algorithmus — Dijkstras Kiirzeste-Wege-Algorithmus —
Implementierung (1) Implementierung (I1)

void updateFringe(PriorityQueue &pq, List adjLst[], int v) {
1 // Wie Prim. Ergebnis als Vorgdngerliste(-baum) in .parent // kirzester Weg wvon s mach v
2 // curWeight[v] enthdilt gerade d(s,v) float ownWeight = pq.getWeight (v);
3 VertexState[n] dijkSP(List adjLst[n], int n, int start) { foreach (edge in adjLst[v]) {

1
2
3
4
VertexState state[n] = // (eigentlich im Konstruktor wvon pg) 5 // Distanz von s nach w iber v
6
7
8
9

4
5 { color: WHITE, parent: -1, curWeight: +inf }; float newWeight = edge.weight + ownWeight;
6 PriorityQueue pq = VS_PriorityQueue<&VS.curWeight>(&state);
7 ' ' if (pq.getColor(edge.w) == WHITE) { // -> GRAY
s pq.insert(start, {parent: -1, curWeight: 0}); pq.insert(edge.w, {parent: v, curWeight: newWeightl});
9o while (!pq.isEmpty()) { // solange es Randknoten gibt 10 } else if (pq.getColor(edge.w) == GRAY) {
10 int v = pq.getMin(); // gunstigste Kante, bzw. Randknoten 1 if (newWeight < pq.getWeight (edge.w)) {
1 pq.delMig(); /7 set?t.auch Farbe auf BLACK 12 // Randknoten-update: Weg uber v ist besser
12 3 updateFringe(pq, adjList, v); // update den Rand 13 pq.decrKey(edge.w, {parent: v, curWeight: newWeight});
13 14
14 return state; 15 }
15 } 6}

17
Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/24 Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/24

Eigenschaften von Dijkstras Algorithmus

v

Kiirzeste Wege werden mit zunehmendem Abstand zur Quelle s
gefunden.
» Implementierung: Ahnlich dem Algorithmus von Prim.
Zeitkomplexitat im Worst-Case: O(|V/|?).
Untere Schranke der Komplexitat: Q(|E|).

» da im schlimmsten Fall alle Kanten iberprift werden missen.

Platzkomplexitat: O(|V/]).

v

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/24

	Kürzeste Pfade
	Bellman-Ford
	Dijkstra

